SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
- Classification head: a OneVsRestClassifier instance
- Maximum Sequence Length: 128 tokens
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("faodl/model_g20_multilabel_30sample")
# Run inference
preds = model("Housing and Community Amenities
133.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 41.0925 | 506 |
Training Hyperparameters
- batch_size: (8, 8)
- num_epochs: (4, 4)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0001 | 1 | 0.2661 | - |
0.0068 | 50 | 0.1923 | - |
0.0136 | 100 | 0.1856 | - |
0.0204 | 150 | 0.1927 | - |
0.0272 | 200 | 0.1708 | - |
0.0340 | 250 | 0.1706 | - |
0.0408 | 300 | 0.156 | - |
0.0476 | 350 | 0.1597 | - |
0.0544 | 400 | 0.149 | - |
0.0612 | 450 | 0.1488 | - |
0.0680 | 500 | 0.1375 | - |
0.0748 | 550 | 0.1234 | - |
0.0816 | 600 | 0.1339 | - |
0.0884 | 650 | 0.126 | - |
0.0952 | 700 | 0.1347 | - |
0.1020 | 750 | 0.1323 | - |
0.1088 | 800 | 0.1159 | - |
0.1156 | 850 | 0.1236 | - |
0.1224 | 900 | 0.1218 | - |
0.1293 | 950 | 0.1323 | - |
0.1361 | 1000 | 0.1258 | - |
0.1429 | 1050 | 0.1206 | - |
0.1497 | 1100 | 0.1127 | - |
0.1565 | 1150 | 0.1211 | - |
0.1633 | 1200 | 0.1234 | - |
0.1701 | 1250 | 0.1178 | - |
0.1769 | 1300 | 0.1009 | - |
0.1837 | 1350 | 0.11 | - |
0.1905 | 1400 | 0.1103 | - |
0.1973 | 1450 | 0.1015 | - |
0.2041 | 1500 | 0.0926 | - |
0.2109 | 1550 | 0.099 | - |
0.2177 | 1600 | 0.1079 | - |
0.2245 | 1650 | 0.0979 | - |
0.2313 | 1700 | 0.1001 | - |
0.2381 | 1750 | 0.1039 | - |
0.2449 | 1800 | 0.0838 | - |
0.2517 | 1850 | 0.0941 | - |
0.2585 | 1900 | 0.0929 | - |
0.2653 | 1950 | 0.0851 | - |
0.2721 | 2000 | 0.0956 | - |
0.2789 | 2050 | 0.075 | - |
0.2857 | 2100 | 0.1067 | - |
0.2925 | 2150 | 0.0891 | - |
0.2993 | 2200 | 0.0939 | - |
0.3061 | 2250 | 0.0908 | - |
0.3129 | 2300 | 0.0847 | - |
0.3197 | 2350 | 0.0812 | - |
0.3265 | 2400 | 0.0918 | - |
0.3333 | 2450 | 0.0935 | - |
0.3401 | 2500 | 0.0792 | - |
0.3469 | 2550 | 0.0669 | - |
0.3537 | 2600 | 0.0883 | - |
0.3605 | 2650 | 0.0829 | - |
0.3673 | 2700 | 0.0656 | - |
0.3741 | 2750 | 0.0752 | - |
0.3810 | 2800 | 0.0825 | - |
0.3878 | 2850 | 0.0813 | - |
0.3946 | 2900 | 0.0852 | - |
0.4014 | 2950 | 0.0903 | - |
0.4082 | 3000 | 0.0902 | - |
0.4150 | 3050 | 0.0739 | - |
0.4218 | 3100 | 0.0786 | - |
0.4286 | 3150 | 0.083 | - |
0.4354 | 3200 | 0.0648 | - |
0.4422 | 3250 | 0.0704 | - |
0.4490 | 3300 | 0.0798 | - |
0.4558 | 3350 | 0.0651 | - |
0.4626 | 3400 | 0.0705 | - |
0.4694 | 3450 | 0.0653 | - |
0.4762 | 3500 | 0.0767 | - |
0.4830 | 3550 | 0.0747 | - |
0.4898 | 3600 | 0.0738 | - |
0.4966 | 3650 | 0.055 | - |
0.5034 | 3700 | 0.0741 | - |
0.5102 | 3750 | 0.0688 | - |
0.5170 | 3800 | 0.0699 | - |
0.5238 | 3850 | 0.0787 | - |
0.5306 | 3900 | 0.0673 | - |
0.5374 | 3950 | 0.0629 | - |
0.5442 | 4000 | 0.0639 | - |
0.5510 | 4050 | 0.0809 | - |
0.5578 | 4100 | 0.0694 | - |
0.5646 | 4150 | 0.0696 | - |
0.5714 | 4200 | 0.0577 | - |
0.5782 | 4250 | 0.0707 | - |
0.5850 | 4300 | 0.0542 | - |
0.5918 | 4350 | 0.0541 | - |
0.5986 | 4400 | 0.0462 | - |
0.6054 | 4450 | 0.0675 | - |
0.6122 | 4500 | 0.0561 | - |
0.6190 | 4550 | 0.056 | - |
0.6259 | 4600 | 0.0556 | - |
0.6327 | 4650 | 0.0552 | - |
0.6395 | 4700 | 0.0566 | - |
0.6463 | 4750 | 0.0578 | - |
0.6531 | 4800 | 0.0488 | - |
0.6599 | 4850 | 0.0419 | - |
0.6667 | 4900 | 0.0485 | - |
0.6735 | 4950 | 0.0477 | - |
0.6803 | 5000 | 0.0566 | - |
0.6871 | 5050 | 0.0571 | - |
0.6939 | 5100 | 0.0531 | - |
0.7007 | 5150 | 0.0563 | - |
0.7075 | 5200 | 0.0452 | - |
0.7143 | 5250 | 0.0459 | - |
0.7211 | 5300 | 0.039 | - |
0.7279 | 5350 | 0.0382 | - |
0.7347 | 5400 | 0.0679 | - |
0.7415 | 5450 | 0.0465 | - |
0.7483 | 5500 | 0.0493 | - |
0.7551 | 5550 | 0.0489 | - |
0.7619 | 5600 | 0.0443 | - |
0.7687 | 5650 | 0.0591 | - |
0.7755 | 5700 | 0.0441 | - |
0.7823 | 5750 | 0.0501 | - |
0.7891 | 5800 | 0.0497 | - |
0.7959 | 5850 | 0.0543 | - |
0.8027 | 5900 | 0.05 | - |
0.8095 | 5950 | 0.0449 | - |
0.8163 | 6000 | 0.0432 | - |
0.8231 | 6050 | 0.0491 | - |
0.8299 | 6100 | 0.0507 | - |
0.8367 | 6150 | 0.0405 | - |
0.8435 | 6200 | 0.0426 | - |
0.8503 | 6250 | 0.0528 | - |
0.8571 | 6300 | 0.0428 | - |
0.8639 | 6350 | 0.0534 | - |
0.8707 | 6400 | 0.0512 | - |
0.8776 | 6450 | 0.049 | - |
0.8844 | 6500 | 0.0386 | - |
0.8912 | 6550 | 0.0468 | - |
0.8980 | 6600 | 0.0505 | - |
0.9048 | 6650 | 0.0538 | - |
0.9116 | 6700 | 0.0484 | - |
0.9184 | 6750 | 0.044 | - |
0.9252 | 6800 | 0.0431 | - |
0.9320 | 6850 | 0.0456 | - |
0.9388 | 6900 | 0.0342 | - |
0.9456 | 6950 | 0.0445 | - |
0.9524 | 7000 | 0.0499 | - |
0.9592 | 7050 | 0.0589 | - |
0.9660 | 7100 | 0.0409 | - |
0.9728 | 7150 | 0.04 | - |
0.9796 | 7200 | 0.0443 | - |
0.9864 | 7250 | 0.0373 | - |
0.9932 | 7300 | 0.0306 | - |
1.0 | 7350 | 0.0303 | - |
1.0068 | 7400 | 0.0317 | - |
1.0136 | 7450 | 0.0364 | - |
1.0204 | 7500 | 0.0349 | - |
1.0272 | 7550 | 0.0388 | - |
1.0340 | 7600 | 0.0466 | - |
1.0408 | 7650 | 0.0334 | - |
1.0476 | 7700 | 0.0512 | - |
1.0544 | 7750 | 0.0413 | - |
1.0612 | 7800 | 0.0399 | - |
1.0680 | 7850 | 0.0412 | - |
1.0748 | 7900 | 0.0341 | - |
1.0816 | 7950 | 0.0395 | - |
1.0884 | 8000 | 0.045 | - |
1.0952 | 8050 | 0.0385 | - |
1.1020 | 8100 | 0.038 | - |
1.1088 | 8150 | 0.0376 | - |
1.1156 | 8200 | 0.0434 | - |
1.1224 | 8250 | 0.0323 | - |
1.1293 | 8300 | 0.0364 | - |
1.1361 | 8350 | 0.033 | - |
1.1429 | 8400 | 0.025 | - |
1.1497 | 8450 | 0.0461 | - |
1.1565 | 8500 | 0.033 | - |
1.1633 | 8550 | 0.0317 | - |
1.1701 | 8600 | 0.047 | - |
1.1769 | 8650 | 0.0344 | - |
1.1837 | 8700 | 0.0388 | - |
1.1905 | 8750 | 0.0359 | - |
1.1973 | 8800 | 0.0429 | - |
1.2041 | 8850 | 0.0355 | - |
1.2109 | 8900 | 0.0421 | - |
1.2177 | 8950 | 0.0351 | - |
1.2245 | 9000 | 0.0359 | - |
1.2313 | 9050 | 0.035 | - |
1.2381 | 9100 | 0.0331 | - |
1.2449 | 9150 | 0.0337 | - |
1.2517 | 9200 | 0.0376 | - |
1.2585 | 9250 | 0.0366 | - |
1.2653 | 9300 | 0.0369 | - |
1.2721 | 9350 | 0.0353 | - |
1.2789 | 9400 | 0.0439 | - |
1.2857 | 9450 | 0.0439 | - |
1.2925 | 9500 | 0.0288 | - |
1.2993 | 9550 | 0.0404 | - |
1.3061 | 9600 | 0.0355 | - |
1.3129 | 9650 | 0.0375 | - |
1.3197 | 9700 | 0.0452 | - |
1.3265 | 9750 | 0.0408 | - |
1.3333 | 9800 | 0.0369 | - |
1.3401 | 9850 | 0.0337 | - |
1.3469 | 9900 | 0.0294 | - |
1.3537 | 9950 | 0.0341 | - |
1.3605 | 10000 | 0.0356 | - |
1.3673 | 10050 | 0.0394 | - |
1.3741 | 10100 | 0.0387 | - |
1.3810 | 10150 | 0.0276 | - |
1.3878 | 10200 | 0.0345 | - |
1.3946 | 10250 | 0.037 | - |
1.4014 | 10300 | 0.0272 | - |
1.4082 | 10350 | 0.0341 | - |
1.4150 | 10400 | 0.033 | - |
1.4218 | 10450 | 0.0517 | - |
1.4286 | 10500 | 0.0297 | - |
1.4354 | 10550 | 0.0388 | - |
1.4422 | 10600 | 0.0312 | - |
1.4490 | 10650 | 0.0283 | - |
1.4558 | 10700 | 0.0287 | - |
1.4626 | 10750 | 0.0319 | - |
1.4694 | 10800 | 0.0343 | - |
1.4762 | 10850 | 0.033 | - |
1.4830 | 10900 | 0.0444 | - |
1.4898 | 10950 | 0.0239 | - |
1.4966 | 11000 | 0.0294 | - |
1.5034 | 11050 | 0.0313 | - |
1.5102 | 11100 | 0.0344 | - |
1.5170 | 11150 | 0.0304 | - |
1.5238 | 11200 | 0.0339 | - |
1.5306 | 11250 | 0.0342 | - |
1.5374 | 11300 | 0.0291 | - |
1.5442 | 11350 | 0.0301 | - |
1.5510 | 11400 | 0.0309 | - |
1.5578 | 11450 | 0.0346 | - |
1.5646 | 11500 | 0.0406 | - |
1.5714 | 11550 | 0.034 | - |
1.5782 | 11600 | 0.0273 | - |
1.5850 | 11650 | 0.0316 | - |
1.5918 | 11700 | 0.0404 | - |
1.5986 | 11750 | 0.0295 | - |
1.6054 | 11800 | 0.0385 | - |
1.6122 | 11850 | 0.0373 | - |
1.6190 | 11900 | 0.0384 | - |
1.6259 | 11950 | 0.0307 | - |
1.6327 | 12000 | 0.0222 | - |
1.6395 | 12050 | 0.0257 | - |
1.6463 | 12100 | 0.0313 | - |
1.6531 | 12150 | 0.0293 | - |
1.6599 | 12200 | 0.0312 | - |
1.6667 | 12250 | 0.0299 | - |
1.6735 | 12300 | 0.0284 | - |
1.6803 | 12350 | 0.042 | - |
1.6871 | 12400 | 0.031 | - |
1.6939 | 12450 | 0.0295 | - |
1.7007 | 12500 | 0.0339 | - |
1.7075 | 12550 | 0.0385 | - |
1.7143 | 12600 | 0.0355 | - |
1.7211 | 12650 | 0.0291 | - |
1.7279 | 12700 | 0.0366 | - |
1.7347 | 12750 | 0.0337 | - |
1.7415 | 12800 | 0.0268 | - |
1.7483 | 12850 | 0.0373 | - |
1.7551 | 12900 | 0.0404 | - |
1.7619 | 12950 | 0.025 | - |
1.7687 | 13000 | 0.0282 | - |
1.7755 | 13050 | 0.0282 | - |
1.7823 | 13100 | 0.0341 | - |
1.7891 | 13150 | 0.0338 | - |
1.7959 | 13200 | 0.0342 | - |
1.8027 | 13250 | 0.035 | - |
1.8095 | 13300 | 0.0399 | - |
1.8163 | 13350 | 0.035 | - |
1.8231 | 13400 | 0.0367 | - |
1.8299 | 13450 | 0.0294 | - |
1.8367 | 13500 | 0.0382 | - |
1.8435 | 13550 | 0.0261 | - |
1.8503 | 13600 | 0.0301 | - |
1.8571 | 13650 | 0.0258 | - |
1.8639 | 13700 | 0.0301 | - |
1.8707 | 13750 | 0.0306 | - |
1.8776 | 13800 | 0.0242 | - |
1.8844 | 13850 | 0.0258 | - |
1.8912 | 13900 | 0.0296 | - |
1.8980 | 13950 | 0.0338 | - |
1.9048 | 14000 | 0.0315 | - |
1.9116 | 14050 | 0.0282 | - |
1.9184 | 14100 | 0.0325 | - |
1.9252 | 14150 | 0.0286 | - |
1.9320 | 14200 | 0.0355 | - |
1.9388 | 14250 | 0.0317 | - |
1.9456 | 14300 | 0.0314 | - |
1.9524 | 14350 | 0.031 | - |
1.9592 | 14400 | 0.03 | - |
1.9660 | 14450 | 0.0262 | - |
1.9728 | 14500 | 0.0275 | - |
1.9796 | 14550 | 0.0356 | - |
1.9864 | 14600 | 0.0369 | - |
1.9932 | 14650 | 0.0364 | - |
2.0 | 14700 | 0.0344 | - |
2.0068 | 14750 | 0.0248 | - |
2.0136 | 14800 | 0.0273 | - |
2.0204 | 14850 | 0.0282 | - |
2.0272 | 14900 | 0.023 | - |
2.0340 | 14950 | 0.0278 | - |
2.0408 | 15000 | 0.0355 | - |
2.0476 | 15050 | 0.0258 | - |
2.0544 | 15100 | 0.0258 | - |
2.0612 | 15150 | 0.0322 | - |
2.0680 | 15200 | 0.0266 | - |
2.0748 | 15250 | 0.0279 | - |
2.0816 | 15300 | 0.0282 | - |
2.0884 | 15350 | 0.0289 | - |
2.0952 | 15400 | 0.024 | - |
2.1020 | 15450 | 0.0268 | - |
2.1088 | 15500 | 0.0348 | - |
2.1156 | 15550 | 0.0281 | - |
2.1224 | 15600 | 0.0282 | - |
2.1293 | 15650 | 0.0218 | - |
2.1361 | 15700 | 0.0201 | - |
2.1429 | 15750 | 0.0207 | - |
2.1497 | 15800 | 0.0308 | - |
2.1565 | 15850 | 0.0261 | - |
2.1633 | 15900 | 0.0292 | - |
2.1701 | 15950 | 0.0308 | - |
2.1769 | 16000 | 0.0298 | - |
2.1837 | 16050 | 0.0308 | - |
2.1905 | 16100 | 0.0359 | - |
2.1973 | 16150 | 0.0265 | - |
2.2041 | 16200 | 0.0351 | - |
2.2109 | 16250 | 0.0223 | - |
2.2177 | 16300 | 0.0322 | - |
2.2245 | 16350 | 0.0261 | - |
2.2313 | 16400 | 0.0206 | - |
2.2381 | 16450 | 0.0384 | - |
2.2449 | 16500 | 0.0381 | - |
2.2517 | 16550 | 0.0238 | - |
2.2585 | 16600 | 0.0261 | - |
2.2653 | 16650 | 0.0323 | - |
2.2721 | 16700 | 0.0296 | - |
2.2789 | 16750 | 0.0256 | - |
2.2857 | 16800 | 0.0287 | - |
2.2925 | 16850 | 0.0272 | - |
2.2993 | 16900 | 0.0285 | - |
2.3061 | 16950 | 0.0245 | - |
2.3129 | 17000 | 0.0299 | - |
2.3197 | 17050 | 0.0193 | - |
2.3265 | 17100 | 0.0234 | - |
2.3333 | 17150 | 0.0308 | - |
2.3401 | 17200 | 0.0239 | - |
2.3469 | 17250 | 0.0309 | - |
2.3537 | 17300 | 0.0331 | - |
2.3605 | 17350 | 0.0316 | - |
2.3673 | 17400 | 0.0292 | - |
2.3741 | 17450 | 0.0337 | - |
2.3810 | 17500 | 0.0338 | - |
2.3878 | 17550 | 0.0288 | - |
2.3946 | 17600 | 0.031 | - |
2.4014 | 17650 | 0.0251 | - |
2.4082 | 17700 | 0.0288 | - |
2.4150 | 17750 | 0.0249 | - |
2.4218 | 17800 | 0.0281 | - |
2.4286 | 17850 | 0.0284 | - |
2.4354 | 17900 | 0.0268 | - |
2.4422 | 17950 | 0.0303 | - |
2.4490 | 18000 | 0.0233 | - |
2.4558 | 18050 | 0.0297 | - |
2.4626 | 18100 | 0.0265 | - |
2.4694 | 18150 | 0.0306 | - |
2.4762 | 18200 | 0.0286 | - |
2.4830 | 18250 | 0.0278 | - |
2.4898 | 18300 | 0.0254 | - |
2.4966 | 18350 | 0.0278 | - |
2.5034 | 18400 | 0.0257 | - |
2.5102 | 18450 | 0.0272 | - |
2.5170 | 18500 | 0.0297 | - |
2.5238 | 18550 | 0.0262 | - |
2.5306 | 18600 | 0.0309 | - |
2.5374 | 18650 | 0.0259 | - |
2.5442 | 18700 | 0.0212 | - |
2.5510 | 18750 | 0.026 | - |
2.5578 | 18800 | 0.0252 | - |
2.5646 | 18850 | 0.0228 | - |
2.5714 | 18900 | 0.0304 | - |
2.5782 | 18950 | 0.0278 | - |
2.5850 | 19000 | 0.0263 | - |
2.5918 | 19050 | 0.0305 | - |
2.5986 | 19100 | 0.0315 | - |
2.6054 | 19150 | 0.0288 | - |
2.6122 | 19200 | 0.0221 | - |
2.6190 | 19250 | 0.022 | - |
2.6259 | 19300 | 0.0299 | - |
2.6327 | 19350 | 0.0302 | - |
2.6395 | 19400 | 0.0282 | - |
2.6463 | 19450 | 0.0308 | - |
2.6531 | 19500 | 0.0306 | - |
2.6599 | 19550 | 0.0327 | - |
2.6667 | 19600 | 0.0284 | - |
2.6735 | 19650 | 0.0185 | - |
2.6803 | 19700 | 0.0248 | - |
2.6871 | 19750 | 0.0212 | - |
2.6939 | 19800 | 0.0254 | - |
2.7007 | 19850 | 0.0276 | - |
2.7075 | 19900 | 0.027 | - |
2.7143 | 19950 | 0.0261 | - |
2.7211 | 20000 | 0.0307 | - |
2.7279 | 20050 | 0.0225 | - |
2.7347 | 20100 | 0.0189 | - |
2.7415 | 20150 | 0.0325 | - |
2.7483 | 20200 | 0.0304 | - |
2.7551 | 20250 | 0.0351 | - |
2.7619 | 20300 | 0.0274 | - |
2.7687 | 20350 | 0.0318 | - |
2.7755 | 20400 | 0.0266 | - |
2.7823 | 20450 | 0.0211 | - |
2.7891 | 20500 | 0.0388 | - |
2.7959 | 20550 | 0.0245 | - |
2.8027 | 20600 | 0.0307 | - |
2.8095 | 20650 | 0.0346 | - |
2.8163 | 20700 | 0.0251 | - |
2.8231 | 20750 | 0.0289 | - |
2.8299 | 20800 | 0.0338 | - |
2.8367 | 20850 | 0.0228 | - |
2.8435 | 20900 | 0.0248 | - |
2.8503 | 20950 | 0.0176 | - |
2.8571 | 21000 | 0.0277 | - |
2.8639 | 21050 | 0.0312 | - |
2.8707 | 21100 | 0.0271 | - |
2.8776 | 21150 | 0.0251 | - |
2.8844 | 21200 | 0.0253 | - |
2.8912 | 21250 | 0.0304 | - |
2.8980 | 21300 | 0.0321 | - |
2.9048 | 21350 | 0.0223 | - |
2.9116 | 21400 | 0.0269 | - |
2.9184 | 21450 | 0.0326 | - |
2.9252 | 21500 | 0.0226 | - |
2.9320 | 21550 | 0.0347 | - |
2.9388 | 21600 | 0.0223 | - |
2.9456 | 21650 | 0.0256 | - |
2.9524 | 21700 | 0.0256 | - |
2.9592 | 21750 | 0.0322 | - |
2.9660 | 21800 | 0.0281 | - |
2.9728 | 21850 | 0.0318 | - |
2.9796 | 21900 | 0.0279 | - |
2.9864 | 21950 | 0.0303 | - |
2.9932 | 22000 | 0.0349 | - |
3.0 | 22050 | 0.0254 | - |
3.0068 | 22100 | 0.0185 | - |
3.0136 | 22150 | 0.0241 | - |
3.0204 | 22200 | 0.0285 | - |
3.0272 | 22250 | 0.0257 | - |
3.0340 | 22300 | 0.0247 | - |
3.0408 | 22350 | 0.023 | - |
3.0476 | 22400 | 0.0335 | - |
3.0544 | 22450 | 0.0302 | - |
3.0612 | 22500 | 0.0249 | - |
3.0680 | 22550 | 0.029 | - |
3.0748 | 22600 | 0.0312 | - |
3.0816 | 22650 | 0.0303 | - |
3.0884 | 22700 | 0.0225 | - |
3.0952 | 22750 | 0.0271 | - |
3.1020 | 22800 | 0.0275 | - |
3.1088 | 22850 | 0.0264 | - |
3.1156 | 22900 | 0.0202 | - |
3.1224 | 22950 | 0.0247 | - |
3.1293 | 23000 | 0.0292 | - |
3.1361 | 23050 | 0.0235 | - |
3.1429 | 23100 | 0.019 | - |
3.1497 | 23150 | 0.0247 | - |
3.1565 | 23200 | 0.0219 | - |
3.1633 | 23250 | 0.0217 | - |
3.1701 | 23300 | 0.0236 | - |
3.1769 | 23350 | 0.0223 | - |
3.1837 | 23400 | 0.0237 | - |
3.1905 | 23450 | 0.0307 | - |
3.1973 | 23500 | 0.0275 | - |
3.2041 | 23550 | 0.0192 | - |
3.2109 | 23600 | 0.0198 | - |
3.2177 | 23650 | 0.0322 | - |
3.2245 | 23700 | 0.0195 | - |
3.2313 | 23750 | 0.019 | - |
3.2381 | 23800 | 0.0266 | - |
3.2449 | 23850 | 0.0287 | - |
3.2517 | 23900 | 0.0205 | - |
3.2585 | 23950 | 0.025 | - |
3.2653 | 24000 | 0.0282 | - |
3.2721 | 24050 | 0.0261 | - |
3.2789 | 24100 | 0.0275 | - |
3.2857 | 24150 | 0.0273 | - |
3.2925 | 24200 | 0.0195 | - |
3.2993 | 24250 | 0.0265 | - |
3.3061 | 24300 | 0.0276 | - |
3.3129 | 24350 | 0.0277 | - |
3.3197 | 24400 | 0.0224 | - |
3.3265 | 24450 | 0.0231 | - |
3.3333 | 24500 | 0.0275 | - |
3.3401 | 24550 | 0.0333 | - |
3.3469 | 24600 | 0.0181 | - |
3.3537 | 24650 | 0.0266 | - |
3.3605 | 24700 | 0.0268 | - |
3.3673 | 24750 | 0.0177 | - |
3.3741 | 24800 | 0.0185 | - |
3.3810 | 24850 | 0.023 | - |
3.3878 | 24900 | 0.0281 | - |
3.3946 | 24950 | 0.0202 | - |
3.4014 | 25000 | 0.0206 | - |
3.4082 | 25050 | 0.0224 | - |
3.4150 | 25100 | 0.0275 | - |
3.4218 | 25150 | 0.0272 | - |
3.4286 | 25200 | 0.0221 | - |
3.4354 | 25250 | 0.0259 | - |
3.4422 | 25300 | 0.0244 | - |
3.4490 | 25350 | 0.034 | - |
3.4558 | 25400 | 0.0258 | - |
3.4626 | 25450 | 0.0271 | - |
3.4694 | 25500 | 0.0291 | - |
3.4762 | 25550 | 0.0204 | - |
3.4830 | 25600 | 0.0248 | - |
3.4898 | 25650 | 0.0225 | - |
3.4966 | 25700 | 0.0347 | - |
3.5034 | 25750 | 0.0243 | - |
3.5102 | 25800 | 0.031 | - |
3.5170 | 25850 | 0.024 | - |
3.5238 | 25900 | 0.0199 | - |
3.5306 | 25950 | 0.0278 | - |
3.5374 | 26000 | 0.0318 | - |
3.5442 | 26050 | 0.0267 | - |
3.5510 | 26100 | 0.027 | - |
3.5578 | 26150 | 0.0191 | - |
3.5646 | 26200 | 0.0233 | - |
3.5714 | 26250 | 0.0239 | - |
3.5782 | 26300 | 0.0203 | - |
3.5850 | 26350 | 0.0243 | - |
3.5918 | 26400 | 0.0246 | - |
3.5986 | 26450 | 0.0233 | - |
3.6054 | 26500 | 0.0364 | - |
3.6122 | 26550 | 0.0273 | - |
3.6190 | 26600 | 0.0269 | - |
3.6259 | 26650 | 0.0206 | - |
3.6327 | 26700 | 0.0316 | - |
3.6395 | 26750 | 0.023 | - |
3.6463 | 26800 | 0.0257 | - |
3.6531 | 26850 | 0.0263 | - |
3.6599 | 26900 | 0.0218 | - |
3.6667 | 26950 | 0.0257 | - |
3.6735 | 27000 | 0.0228 | - |
3.6803 | 27050 | 0.0256 | - |
3.6871 | 27100 | 0.0239 | - |
3.6939 | 27150 | 0.0225 | - |
3.7007 | 27200 | 0.0294 | - |
3.7075 | 27250 | 0.0187 | - |
3.7143 | 27300 | 0.02 | - |
3.7211 | 27350 | 0.0261 | - |
3.7279 | 27400 | 0.0201 | - |
3.7347 | 27450 | 0.0253 | - |
3.7415 | 27500 | 0.0265 | - |
3.7483 | 27550 | 0.0303 | - |
3.7551 | 27600 | 0.0239 | - |
3.7619 | 27650 | 0.0246 | - |
3.7687 | 27700 | 0.0249 | - |
3.7755 | 27750 | 0.023 | - |
3.7823 | 27800 | 0.0237 | - |
3.7891 | 27850 | 0.0197 | - |
3.7959 | 27900 | 0.0268 | - |
3.8027 | 27950 | 0.0246 | - |
3.8095 | 28000 | 0.029 | - |
3.8163 | 28050 | 0.0248 | - |
3.8231 | 28100 | 0.0275 | - |
3.8299 | 28150 | 0.0241 | - |
3.8367 | 28200 | 0.027 | - |
3.8435 | 28250 | 0.0252 | - |
3.8503 | 28300 | 0.0245 | - |
3.8571 | 28350 | 0.0241 | - |
3.8639 | 28400 | 0.0264 | - |
3.8707 | 28450 | 0.0233 | - |
3.8776 | 28500 | 0.0319 | - |
3.8844 | 28550 | 0.0236 | - |
3.8912 | 28600 | 0.0277 | - |
3.8980 | 28650 | 0.0178 | - |
3.9048 | 28700 | 0.0209 | - |
3.9116 | 28750 | 0.0263 | - |
3.9184 | 28800 | 0.0236 | - |
3.9252 | 28850 | 0.0216 | - |
3.9320 | 28900 | 0.0209 | - |
3.9388 | 28950 | 0.0283 | - |
3.9456 | 29000 | 0.0307 | - |
3.9524 | 29050 | 0.0276 | - |
3.9592 | 29100 | 0.0277 | - |
3.9660 | 29150 | 0.031 | - |
3.9728 | 29200 | 0.0304 | - |
3.9796 | 29250 | 0.0332 | - |
3.9864 | 29300 | 0.0277 | - |
3.9932 | 29350 | 0.0233 | - |
4.0 | 29400 | 0.0237 | - |
Framework Versions
- Python: 3.11.13
- SetFit: 1.1.2
- Sentence Transformers: 4.1.0
- Transformers: 4.52.4
- PyTorch: 2.6.0+cu124
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 30
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support