SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("faodl/model_inclusive_credit_and_financial_services")
# Run inference
preds = model("Training infrastructure will be adapted to accommodate 
new	programmes.")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 1 47.7118 1181

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (1, 1)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 20
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0003 1 0.265 -
0.0142 50 0.1787 -
0.0283 100 0.1639 -
0.0425 150 0.1446 -
0.0567 200 0.1216 -
0.0708 250 0.1237 -
0.0850 300 0.1108 -
0.0992 350 0.1177 -
0.1133 400 0.1069 -
0.1275 450 0.1032 -
0.1416 500 0.1064 -
0.1558 550 0.1048 -
0.1700 600 0.0913 -
0.1841 650 0.0868 -
0.1983 700 0.098 -
0.2125 750 0.0788 -
0.2266 800 0.0699 -
0.2408 850 0.0839 -
0.2550 900 0.0841 -
0.2691 950 0.0823 -
0.2833 1000 0.0732 -
0.2975 1050 0.0674 -
0.3116 1100 0.0731 -
0.3258 1150 0.0744 -
0.3399 1200 0.0748 -
0.3541 1250 0.0735 -
0.3683 1300 0.067 -
0.3824 1350 0.0712 -
0.3966 1400 0.0731 -
0.4108 1450 0.0582 -
0.4249 1500 0.0577 -
0.4391 1550 0.0681 -
0.4533 1600 0.0572 -
0.4674 1650 0.058 -
0.4816 1700 0.0611 -
0.4958 1750 0.063 -
0.5099 1800 0.0565 -
0.5241 1850 0.0592 -
0.5382 1900 0.0576 -
0.5524 1950 0.0624 -
0.5666 2000 0.0627 -
0.5807 2050 0.0695 -
0.5949 2100 0.0485 -
0.6091 2150 0.0546 -
0.6232 2200 0.0453 -
0.6374 2250 0.0569 -
0.6516 2300 0.0528 -
0.6657 2350 0.047 -
0.6799 2400 0.0503 -
0.6941 2450 0.0456 -
0.7082 2500 0.0563 -
0.7224 2550 0.0512 -
0.7365 2600 0.059 -
0.7507 2650 0.0398 -
0.7649 2700 0.0489 -
0.7790 2750 0.0477 -
0.7932 2800 0.0467 -
0.8074 2850 0.0479 -
0.8215 2900 0.049 -
0.8357 2950 0.0544 -
0.8499 3000 0.0504 -
0.8640 3050 0.0429 -
0.8782 3100 0.0479 -
0.8924 3150 0.0465 -
0.9065 3200 0.0478 -
0.9207 3250 0.056 -
0.9348 3300 0.0522 -
0.9490 3350 0.0459 -
0.9632 3400 0.0428 -
0.9773 3450 0.0418 -
0.9915 3500 0.0439 -

Framework Versions

  • Python: 3.11.13
  • SetFit: 1.1.2
  • Sentence Transformers: 4.1.0
  • Transformers: 4.52.4
  • PyTorch: 2.6.0+cu124
  • Datasets: 3.6.0
  • Tokenizers: 0.21.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
21
Safetensors
Model size
118M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for faodl/model_inclusive_credit_and_financial_services