SentenceTransformer based on shihab17/bangla-sentence-transformer

This is a sentence-transformers model finetuned from shihab17/bangla-sentence-transformer. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: shihab17/bangla-sentence-transformer
  • Maximum Sequence Length: 128 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("farihashifa/s-bn-bert_new_data-vf")
# Run inference
sentences = [
    'রাজশাহী ফেব্রুয়ারি প্রাইমনিউজ টোয়েন্টিফোর ডটকম বাংলাদেশে নিযুক্ত কাতারের রাষ্ট্রদূত ড. আহমেদ বিন সাদ আল থানি বুধবার সন্ধ্যায় আওয়ামী লীগের সভাপতি শেখ হাসিনার সঙ্গে সৌজন্য সাক্ষাৎ করেছেন।',
    'ঢাকা জানুয়ারি বিবিসি.কম-এ সৌদি আরবের রাষ্ট্রদূত ড. আবদুল্লাহ বিন নাসের আল-বুসাই',
    'গানটি গেয়েছেন লিলি ইসলাম সাজেদ আকবর, সালমা আকবর চঞ্চল খান, রোকিয়া হাসিনা ছায়া রানী কর্মকার,',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Knowledge Distillation

Metric Value
negative_mse -14.6385

Semantic Similarity

Metric Value
pearson_cosine 0.943
spearman_cosine 0.8633

Training Details

Training Dataset

Unnamed Dataset

  • Size: 5,315 training samples
  • Columns: text1, text2, and label
  • Approximate statistics based on the first 1000 samples:
    text1 text2 label
    type string string int
    details
    • min: 6 tokens
    • mean: 32.48 tokens
    • max: 128 tokens
    • min: 5 tokens
    • mean: 27.36 tokens
    • max: 54 tokens
    • 1: 100.00%
  • Samples:
    text1 text2 label
    সেখানে ডিসেম্বর থেকে ফেব্রুয়ারি মাসে বৃষ্টি হয়। নভেম্বর থেকে জানুয়ারি মাস পর্যন্ত এখানে বৃষ্টি হয়। 1
    গতকাল যশোর ও খুলনার বিভিন্ন পথসভায় বক্তব্য দেন রফিক। গতকাল কাদের কুমিল্লা ও ফেনীর বিভিন্ন জনসভায় বক্তব্য রাখেন। 1
    আমাজন প্রাইম ইনস্টাগ্রাম অ্যাপল আইক্লাউড টুইটার ওয়ার্কস্পেস জিমেইল এ সবই ক্লাউড সেবা ড্রপবক্স নেটফ্লিক্স ফ্লিকার গুগল ড্রাইভ মাইক্রোসফট অফিস ৩৬৫ ইয়াহু মেইল সব ক্লাউড সার্ভিস। 1
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 500 evaluation samples
  • Columns: text1, text2, and label
  • Approximate statistics based on the first 500 samples:
    text1 text2 label
    type string string int
    details
    • min: 4 tokens
    • mean: 31.52 tokens
    • max: 128 tokens
    • min: 6 tokens
    • mean: 26.27 tokens
    • max: 48 tokens
    • 1: 100.00%
  • Samples:
    text1 text2 label
    গত মার্চে চট্টগ্রামে নিজের বাড়িতে খুন হন রিয়াদ ও মোনা। ফেব্রুয়ারি মাসে রাজধানীতে নিজ বাড়িতে সাগর ও রুনিকে হত্যা করা হয়। 1
    পহেলা বৈশাখের বিশেষ আকর্ষণ হলো বৈসু উৎসবের অন্যতম প্রধান আকর্ষণ হচ্ছে উৎসব। 1
    আরো বক্তব্য রাখেন জাসদের সদস্য রুমানা আহমেদ নেওয়াজ অধ্যক্ষ এম বি রহমান চৌধুরী ও অধ্যাপক মাহমুদ হাসান। এ ছাড়া সমিতির সদস্য শ্যামলী নাসরিন চৌধুরী, অধ্যক্ষ এম.এ. আউয়াল সিদ্দিকী এবং অধ্যাপক সাজেদুল ইসলাম 1
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • learning_rate: 2e-05
  • warmup_ratio: 0.1
  • fp16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 3
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss stsb-dev_negative_mse sts-test_spearman_cosine
-1 -1 - - -4.2338 -
0.5952 50 0.4719 0.1734 -12.8190 -
1.1905 100 0.0867 0.1156 -12.8387 -
1.7857 150 0.0411 0.1182 -14.0452 -
2.3810 200 0.0339 0.1039 -14.3007 -
2.9762 250 0.0221 0.1009 -14.6385 -
-1 -1 - - - 0.8633

Framework Versions

  • Python: 3.11.12
  • Sentence Transformers: 4.1.0
  • Transformers: 4.52.2
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.7.0
  • Datasets: 2.14.4
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
23
Safetensors
Model size
278M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for farihashifa/s-bn-bert_new_data-vf

Finetuned
(5)
this model

Evaluation results