test-ner
This model is a fine-tuned version of bert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4431
- Overall Precision: 0.7848
- Overall Recall: 0.7371
- Overall F1: 0.7602
- Overall Accuracy: 0.8909
- Cw F1: 0.0435
- Date F1: 0.8512
- Eve F1: 0.3552
- Gpe F1: 0.2694
- Loc F1: 0.8575
- Misc F1: 0.0
- Obj F1: 0.5506
- Org F1: 0.6249
- Per F1: 0.9249
- Time F1: 0.2662
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | Cw F1 | Date F1 | Eve F1 | Gpe F1 | Loc F1 | Misc F1 | Obj F1 | Org F1 | Per F1 | Time F1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 53 | 0.9845 | 0.5582 | 0.5316 | 0.5445 | 0.7825 | 0.0 | 0.5253 | 0.0 | 0.0 | 0.6964 | 0.0 | 0.0105 | 0.0254 | 0.6707 | 0.0 |
No log | 2.0 | 106 | 0.6825 | 0.6836 | 0.6160 | 0.6481 | 0.8338 | 0.0 | 0.7518 | 0.0 | 0.0090 | 0.7787 | 0.0 | 0.0665 | 0.3462 | 0.8034 | 0.0302 |
No log | 3.0 | 159 | 0.5386 | 0.7556 | 0.6740 | 0.7124 | 0.8678 | 0.0442 | 0.8097 | 0.1012 | 0.1431 | 0.8312 | 0.0 | 0.3589 | 0.4756 | 0.8770 | 0.2222 |
No log | 4.0 | 212 | 0.4683 | 0.7716 | 0.7283 | 0.7493 | 0.8859 | 0.0333 | 0.8403 | 0.3259 | 0.2372 | 0.8473 | 0.0 | 0.5455 | 0.6094 | 0.9123 | 0.1927 |
No log | 5.0 | 265 | 0.4431 | 0.7848 | 0.7371 | 0.7602 | 0.8909 | 0.0435 | 0.8512 | 0.3552 | 0.2694 | 0.8575 | 0.0 | 0.5506 | 0.6249 | 0.9249 | 0.2662 |
Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 19
Model tree for farihashifa/test-ner
Base model
google-bert/bert-base-multilingual-cased