fawwazanvilen's picture
first day of Deep RL!
d60f151
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f3b81ebdca0>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3b81ebdd30>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3b81ebddc0>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3b81ebde50>",
"_build": "<function ActorCriticPolicy._build at 0x7f3b81ebdee0>",
"forward": "<function ActorCriticPolicy.forward at 0x7f3b81ebdf70>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3b81ec1040>",
"_predict": "<function ActorCriticPolicy._predict at 0x7f3b81ec10d0>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3b81ec1160>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3b81ec11f0>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3b81ec1280>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7f3b81eb94e0>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"num_timesteps": 1015808,
"_total_timesteps": 1000000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1671950838495011366,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM1pMD4Pa2q8b5Y3O3XkX7n5f9O9fbRougAAgD8AAIA/TacuvgMyb7xqE827HHxGup5/7j36GyA7AACAPwAAgD8gxza+O9rAvADPVDnrneY3C2osPjSDlbgAAIA/AACAP83f9zzYaqg90nX7PEMpKr4WXDU62xhNPQAAAAAAAAAAbmSwvic3WD/6JwK9YRbwvnVIWL5D50g+AAAAAAAAAADaau49jayxPyJI0z5COMW+SnDwPRKhEj4AAAAAAAAAAM1T870RNDs+TskGPpM4ab502Jo83EyQvAAAAAAAAAAA8wvQPSkoIrqaXLA5PMpTtrULw7pY/Mm4AAAAAAAAgD+m+RA+vm8YP2DlmDxuaZ6+DaKTPUE0gjsAAAAAAAAAAGYkLT24CJw/xQD2PZOYHr8xiV09K1MAPQAAAAAAAAAAwM8OvrgxrT3w++09l/9Zvr55Yjw4CVQ9AAAAAAAAAACNHks+145tPMKMF76vHpq7q/OnPnx7jr0AAIA/AACAP+Z4o70pKDe6MtvAuzGntzc4pdg64ykUtwAAAAAAAIA/mmc0Pk7etrwsISC7qVWXOVQXJL7tqlw6AACAPwAAgD8TJyS+z+98vJo2DLtbAFO5jALYPQH7QDoAAIA/AACAP40+0L1ckyq65hAWNpqlKC9AuHu3sJk9tQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.015808000000000044,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVRxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIxqS/l4J+cECUhpRSlIwBbJRL8YwBdJRHQJlOy8Hv+fh1fZQoaAZoCWgPQwi46c9+ZE1xQJSGlFKUaBVL7mgWR0CZTueMhougdX2UKGgGaAloD0MIh97i4b3OZUCUhpRSlGgVTegDaBZHQJlPgKYzBRB1fZQoaAZoCWgPQwjyDBr659FxQJSGlFKUaBVNcQFoFkdAmVFWxQizLXV9lChoBmgJaA9DCNejcD2KOG9AlIaUUpRoFUv2aBZHQJlR7Ta0x/N1fZQoaAZoCWgPQwgiADj27CpxQJSGlFKUaBVNOgFoFkdAmVL1wT/Q0HV9lChoBmgJaA9DCBpR2ht8tHFAlIaUUpRoFU0BAWgWR0CZU/vFm4AkdX2UKGgGaAloD0MITRJLyh2lcUCUhpRSlGgVS/5oFkdAmVRT7MxGlXV9lChoBmgJaA9DCHB9WG+Uk3FAlIaUUpRoFU0kAWgWR0CZVLY+Sr5qdX2UKGgGaAloD0MIBU1LrEzRckCUhpRSlGgVTR4BaBZHQJm2ZuTA31l1fZQoaAZoCWgPQwjEeM2r+mxwQJSGlFKUaBVNAgFoFkdAmbagWBSUDHV9lChoBmgJaA9DCKzGEtZGzHNAlIaUUpRoFUvhaBZHQJm2wDYAbQ11fZQoaAZoCWgPQwjUnpJzosNwQJSGlFKUaBVNMwFoFkdAmbb/DHfdh3V9lChoBmgJaA9DCLMmFviKrnBAlIaUUpRoFUvsaBZHQJm3JfUnXup1fZQoaAZoCWgPQwi/RpIgnBlwQJSGlFKUaBVNCANoFkdAmbiU87p3YHV9lChoBmgJaA9DCNf5t8s+GnJAlIaUUpRoFU0bAWgWR0CZuQn+AEt/dX2UKGgGaAloD0MIs0RnmcV/bkCUhpRSlGgVS/loFkdAmbn+Fg2If3V9lChoBmgJaA9DCDHrxVAOjHNAlIaUUpRoFU0bAWgWR0CZu8CJoCdSdX2UKGgGaAloD0MISvHxCVk4bkCUhpRSlGgVS99oFkdAmbxDVH4GlnV9lChoBmgJaA9DCBQ/xtw1TGBAlIaUUpRoFU3oA2gWR0CZvFOskpqidX2UKGgGaAloD0MIcTlegeg5cUCUhpRSlGgVS/NoFkdAmbyTd56dD3V9lChoBmgJaA9DCDLmriXkq29AlIaUUpRoFUv4aBZHQJm9YfV7QcB1fZQoaAZoCWgPQwgXnwJgvH9yQJSGlFKUaBVL52gWR0CZvXW5paicdX2UKGgGaAloD0MIdhcoKXBBcECUhpRSlGgVS9xoFkdAmb20ALiMpHV9lChoBmgJaA9DCJAxdy3hHHFAlIaUUpRoFU0HAWgWR0CZviJRfnfVdX2UKGgGaAloD0MIh07Pu7Eab0CUhpRSlGgVS9xoFkdAmb8ukxh2GXV9lChoBmgJaA9DCJOmQdG8inFAlIaUUpRoFUv4aBZHQJnAedJ8OTd1fZQoaAZoCWgPQwhanDHMSRtxQJSGlFKUaBVL8GgWR0CZwUG+9Jz1dX2UKGgGaAloD0MIt39lpYnTcECUhpRSlGgVS9FoFkdAmcIEW69TP3V9lChoBmgJaA9DCKxwy0cSf3BAlIaUUpRoFUvTaBZHQJnC8plSS/11fZQoaAZoCWgPQwgOT6+UJdxwQJSGlFKUaBVL+mgWR0CZxAFZPl+3dX2UKGgGaAloD0MI24mSkEhYbUCUhpRSlGgVTQIBaBZHQJnENqnFYMh1fZQoaAZoCWgPQwhTPC6qhTFxQJSGlFKUaBVL3mgWR0CZxD8Md92HdX2UKGgGaAloD0MImfViKKfEYECUhpRSlGgVTegDaBZHQJnE5rBTGYN1fZQoaAZoCWgPQwgZVYZxt7ZvQJSGlFKUaBVL6mgWR0CZxPpn6EamdX2UKGgGaAloD0MImRJJ9LIRb0CUhpRSlGgVS+NoFkdAmcU3v2GqP3V9lChoBmgJaA9DCBQH0O/7929AlIaUUpRoFUv7aBZHQJnFNc4YJmd1fZQoaAZoCWgPQwh6ihwi7nxxQJSGlFKUaBVL8WgWR0CZxpNpdrwfdX2UKGgGaAloD0MIGELO+79VckCUhpRSlGgVS+RoFkdAmcdtlZowmHV9lChoBmgJaA9DCJ7PgHqzc3JAlIaUUpRoFUvnaBZHQJnI+tzS1E51fZQoaAZoCWgPQwjK4Ch59dFwQJSGlFKUaBVL32gWR0CZyZY9xIatdX2UKGgGaAloD0MIbFuU2WDTcUCUhpRSlGgVS+FoFkdAmcrw79ycTnV9lChoBmgJaA9DCMWRByKLm3FAlIaUUpRoFUvxaBZHQJnLQTlDF611fZQoaAZoCWgPQwjqk9xh0wtwQJSGlFKUaBVL4GgWR0CZy63FUADJdX2UKGgGaAloD0MIYcWp1gLRcUCUhpRSlGgVTR0BaBZHQJnM5z7uUll1fZQoaAZoCWgPQwjkolpElDtiQJSGlFKUaBVN6ANoFkdAmcznkDIRy3V9lChoBmgJaA9DCCtsBrhgOnBAlIaUUpRoFU0CAWgWR0CZzRdxhlUZdX2UKGgGaAloD0MIsz9Qblv7bECUhpRSlGgVTRQBaBZHQJnNoPjGT9t1fZQoaAZoCWgPQwioqzsWmxVxQJSGlFKUaBVL5GgWR0CZzrRoysS1dX2UKGgGaAloD0MIY7fPKnOKckCUhpRSlGgVS99oFkdAmdAvm5lOGnV9lChoBmgJaA9DCNI5P8XxaW5AlIaUUpRoFUvkaBZHQJnQ+eDnNgV1fZQoaAZoCWgPQwjLZDieD0xyQJSGlFKUaBVL+2gWR0CZ0yBqKxcFdX2UKGgGaAloD0MI0O6QYoDGY0CUhpRSlGgVTegDaBZHQJnTKt0V8Cx1fZQoaAZoCWgPQwhVwaikzrlvQJSGlFKUaBVL0WgWR0CZ06sniNsFdX2UKGgGaAloD0MIWhDK+7jcbUCUhpRSlGgVS9loFkdAmdQXcL0BfnV9lChoBmgJaA9DCMU3FD6b1HJAlIaUUpRoFU0LAWgWR0CZ1Xr8BMi9dX2UKGgGaAloD0MIdmwE4vVwYkCUhpRSlGgVTegDaBZHQJnVlBKL8791fZQoaAZoCWgPQwhM4UGza8FhQJSGlFKUaBVN6ANoFkdAmdXau8scyXV9lChoBmgJaA9DCIHLY80I0XJAlIaUUpRoFU1GAWgWR0CZ1iacI7eVdX2UKGgGaAloD0MIQx1WuOWxUkCUhpRSlGgVS9loFkdAmdfNbxEv03V9lChoBmgJaA9DCIAQyZAjbHFAlIaUUpRoFU1fAWgWR0CZ2K/WDpTudX2UKGgGaAloD0MIKQezCfC0ckCUhpRSlGgVTSEBaBZHQJnZPSc9W6t1fZQoaAZoCWgPQwgSaRt/ohhwQJSGlFKUaBVL2WgWR0CZ2bms/6frdX2UKGgGaAloD0MIxJlfzYFScECUhpRSlGgVTQEBaBZHQJna5T/ACXB1fZQoaAZoCWgPQwhUxr/POMVtQJSGlFKUaBVL4WgWR0CZ3OB7u2JBdX2UKGgGaAloD0MINWJmn4cmcECUhpRSlGgVS/loFkdAmdzyOinHenV9lChoBmgJaA9DCPmE7LyNjHJAlIaUUpRoFU03AWgWR0CZ3Q8P4EfUdX2UKGgGaAloD0MIQwHbwcg9cECUhpRSlGgVTQIBaBZHQJndjkp7TlV1fZQoaAZoCWgPQwhz2lNyzjBxQJSGlFKUaBVNbwFoFkdAmd80YoAn2XV9lChoBmgJaA9DCEQzT66p4nBAlIaUUpRoFUvaaBZHQJnfTIsAeaN1fZQoaAZoCWgPQwi+3v3xHmlxQJSGlFKUaBVLy2gWR0CZ3++ee4CqdX2UKGgGaAloD0MII4Wy8PXlZECUhpRSlGgVTegDaBZHQJngZTkyULV1fZQoaAZoCWgPQwg8Tzxny5JyQJSGlFKUaBVNFAFoFkdAmeOqxs2vS3V9lChoBmgJaA9DCHYyOEpeHmFAlIaUUpRoFU3oA2gWR0CZ5BblijL0dX2UKGgGaAloD0MIA9AoXXphbECUhpRSlGgVS+poFkdAmeR6HXVbzXV9lChoBmgJaA9DCPmE7LyNv21AlIaUUpRoFUvnaBZHQJnklNCZ4Od1fZQoaAZoCWgPQwhoyk4/KGBxQJSGlFKUaBVL12gWR0CZ5J64lQdkdX2UKGgGaAloD0MI16NwPYpMY0CUhpRSlGgVTegDaBZHQJnmSeWfK6p1fZQoaAZoCWgPQwiGHcakv2xxQJSGlFKUaBVL1GgWR0CZ5l7GNrCWdX2UKGgGaAloD0MISUp6GBp2ckCUhpRSlGgVS/xoFkdAmee9DYywfXV9lChoBmgJaA9DCHk+A+pNrHBAlIaUUpRoFUv+aBZHQJnodsqJ/G51fZQoaAZoCWgPQwh4uB0a1tFwQJSGlFKUaBVNAAFoFkdAmej4is4kvHV9lChoBmgJaA9DCBAlWvJ4NXFAlIaUUpRoFU1yAmgWR0CZ6VxZ+x4ZdX2UKGgGaAloD0MIsOJUa2GXb0CUhpRSlGgVS9FoFkdAmep+4XoC+3V9lChoBmgJaA9DCOyEl+DUAmNAlIaUUpRoFU3oA2gWR0CZ6v2gWac7dX2UKGgGaAloD0MImrD9ZEzCckCUhpRSlGgVS9loFkdAmetuHerMknV9lChoBmgJaA9DCMO3sG68v29AlIaUUpRoFUvtaBZHQJnrrbL2YfJ1fZQoaAZoCWgPQwi3lslwPL5tQJSGlFKUaBVL72gWR0CZ7DA3DNyHdX2UKGgGaAloD0MIAK358RcTcECUhpRSlGgVS+loFkdAme17kCFK03V9lChoBmgJaA9DCKaaWUtBR3FAlIaUUpRoFU0jAWgWR0CZ7bPdVNpNdX2UKGgGaAloD0MIl+SAXY1RcUCUhpRSlGgVS8poFkdAme3YJ/oaDXV9lChoBmgJaA9DCGg8EcT5e2JAlIaUUpRoFU3oA2gWR0CZ7jTJQtSRdX2UKGgGaAloD0MIIPEr1vDecECUhpRSlGgVTRwBaBZHQJnu+Zb6guh1fZQoaAZoCWgPQwi/gF64c2dwQJSGlFKUaBVL4mgWR0CZ70N21UlzdX2UKGgGaAloD0MIvokhOVkycUCUhpRSlGgVS/9oFkdAmfCQF1SwW3V9lChoBmgJaA9DCBedLLVeUHBAlIaUUpRoFUvzaBZHQJnwl9/jKgZ1fZQoaAZoCWgPQwi0HVN35eVwQJSGlFKUaBVL5mgWR0CZ8zULlV94dX2UKGgGaAloD0MI0jb+RGVYcUCUhpRSlGgVTQQBaBZHQJnzW2x6fJ51fZQoaAZoCWgPQwilaVA0z5hwQJSGlFKUaBVNNwFoFkdAmfSlSbYsd3V9lChoBmgJaA9DCCnsougBnnBAlIaUUpRoFUviaBZHQJn04189fTl1ZS4="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 310,
"n_steps": 2048,
"gamma": 0.99,
"gae_lambda": 0.95,
"ent_coef": 0.0,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 10,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
}