fbaldassarri's picture
Initial Upload
2635bf0 verified
metadata
language:
  - en
license: llama3.1
library_name: transformers
tags:
  - autoround
  - auto-round
  - intel-autoround
  - intel
  - woq
  - meta
  - pytorch
  - llama
  - llama-3
model_name: Llama-3.1 Tulu 3 8B DPO
base_model:
  - meta-llama/Llama-3.1-8B
datasets:
  - allenai/tulu-3-DPO-mixture
inference: false
model_creator: allenai
pipeline_tag: text-generation
prompt_template: '{prompt} '
quantized_by: fbaldassarri

Model Information

Quantized version of allenai/Llama-3.1-Tulu-3-8B-DPO using torch.float32 for quantization tuning.

  • 4 bits (INT4)
  • group size = 64
  • Symmetrical Quantization
  • Method WoQ (AutoRound format)

Fast and low memory, 2-3X speedup (slight accuracy drop at W4G64)

Quantization framework: Intel AutoRound v0.4.6

Note: this INT4 version of Llama-3.1-Tulu-3-8B-DPO has been quantized to run inference through CPU.

Replication Recipe

Step 1 Install Requirements

I suggest to install requirements into a dedicated python-virtualenv or a conda enviroment.

wget https://github.com/intel/auto-round/archive/refs/tags/v0.4.6.tar.gz
tar -xvzf v0.4.6.tar.gz
cd auto-round-0.4.6
pip install -r requirements-cpu.txt --upgrade

Step 2 Build Intel AutoRound wheel from sources

pip install -vvv --no-build-isolation -e .[cpu]

Step 3 Script for Quantization

  from transformers import AutoModelForCausalLM, AutoTokenizer
  model_name = "allenai/Llama-3.1-Tulu-3-8B-DPO"
  model = AutoModelForCausalLM.from_pretrained(model_name)
  tokenizer = AutoTokenizer.from_pretrained(model_name)
  from auto_round import AutoRound
  bits, group_size, sym, device = 4, 64, True, 'cpu'
  autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym, device=device)
  autoround.quantize()
  output_dir = "./AutoRound/allenai_Llama-3.1-Tulu-3-8B-DPO-autoround-int4-gs64-sym"
  autoround.save_quantized(output_dir, format='auto_round', inplace=True)

License

Llama 3.1 Community License

Disclaimer

This quantized model comes with no warrenty. It has been developed only for research purposes.