π― Perplexity drops their FIRST open-weight model on Hugging Face: A decensored DeepSeek-R1 with full reasoning capabilities. Tested on 1000+ examples for unbiased responses.
Will we soon all have our own personalized AI news agents? And what does it mean for journalism?
Just built a simple prototype based on the Hugging Face course. It lets you get customized news updates on any topic.
Not perfect yet, but you can see where things could go: we'll all be able to build personalized AI agents that curate & analyze news for each of us. And users who could decide to build custom news products for their needs, such as truly personalized newsletters or podcasts.
The implications for both readers & news organizations are significant. To name a few: - Will news articles remain the best format for informing people? - What monetization model will work for news organizations? - How do you create an effective conversion funnel?
π Multimodal > OpenGVLab released InternVideo 2.5 Chat models, new video LMs with long context > AIDC released Ovis2 model family along with Ovis dataset, new vision LMs in different sizes (1B, 2B, 4B, 8B, 16B, 34B), with video and OCR support > ColQwenStella-2b is a multilingual visual retrieval model that is sota in it's size > Hoags-2B-Exp is a new multilingual vision LM with contextual reasoning, long context video understanding
π¬ LLMs A lot of math models! > Open-R1 team released OpenR1-Math-220k large scale math reasoning dataset, along with Qwen2.5-220K-Math fine-tuned on the dataset, OpenR1-Qwen-7B > Nomic AI released new Nomic Embed multilingual retrieval model, a MoE with 500 params with 305M active params, outperforming other models > DeepScaleR-1.5B-Preview is a new DeepSeek-R1-Distill fine-tune using distributed RL on math > LIMO is a new fine-tune of Qwen2.5-32B-Instruct on Math
π£οΈ Audio > Zonos-v0.1 is a new family of speech recognition models, which contains the model itself and embeddings
πΌοΈ Vision and Image Generation > We have ported DepthPro of Apple to transformers for your convenience! > illustrious-xl-v1.0 is a new illustration generation model
RAG techniques continuously evolve to enhance LLM response accuracy by retrieving relevant external data during generation. To keep up with current AI trends, new RAG types incorporate deep step-by-step reasoning, tree search, citations, multimodality and other effective techniques.
3. Chain-of-Retrieval Augmented Generation (CoRAG) -> Chain-of-Retrieval Augmented Generation (2501.14342) Retrieves information step-by-step and adjusts it, also deciding how much compute power to use at test time. If needed it reformulates queries.