Titans-v2-OLMoE-1B-7B-0924

arXiv PyPI Release Documentation HuggingFace

Titanesque version of allenai/OLMoE-1B-7B-0924 with parallel linearized attention (TPTT ๐Ÿ˜Š) and PEFT.

The architecture was presented in the paper TPTT.

Model list

Classic model parameter with LiZA injection :

Subfolder Max Self Attn Length Mag Weight Cross Gate Max Chunk Size Bidirectional LoRA Description
delta_rule 8192 (default) 0.5 False 64 False Yes Parallel linearized attention with delta_rule operator
delta_rule_gelu 8192 (default) 0.5 False 64 False Yes Non-linear operator with gelu activation
delta_product 8192 (default) 0.5 False 64 False Yes Second order operator with derivative trick
delta_product_r 8192 (default) 0.5 False 64 False Yes Second order operator with rotative trick
delta_product_c 8192 (default) 0.5 False 64 False Yes Second order operator with combined trick

Usage

from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained(
"ffurfaro/Titans-v2-OLMoE-1B-7B-0924",
subfolder="tptt_subfolder", # see in repo tree
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained("ffurfaro/allenai/OLMoE-1B-7B-0924")

prompt = "Your prompt here"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs, skip_special_tokens=True))

Citation & Contact

If you use TPTT in your academic work, please cite Furfaro. For questions or support, please open an issue on the GitHub repository or contact the maintainer.


Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for ffurfaro/Titans-v2-OLMoE-1B-7B-0924

Finetuned
(4)
this model

Dataset used to train ffurfaro/Titans-v2-OLMoE-1B-7B-0924