|
|
|
|
|
""" |
|
This module implements the TPTT model with linear attention (LiZA) and LoRA support. |
|
Author : Fabien FURFARO |
|
TPTT : Transforming Pretrained Transformers into Titans (https://arxiv.org/abs/2506.17671) |
|
""" |
|
|
|
import logging |
|
import math |
|
import os |
|
from pathlib import Path |
|
import re |
|
import shutil |
|
from functools import partial |
|
from typing import Any, Dict, List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from einops import rearrange |
|
from huggingface_hub import hf_hub_download, list_repo_files |
|
from peft import LoraConfig, PeftModel, get_peft_model |
|
from safetensors import safe_open |
|
from safetensors.torch import save_file |
|
from torch import nn |
|
from torch.utils.checkpoint import checkpoint |
|
from transformers import AutoConfig, AutoModelForCausalLM, DynamicCache, PreTrainedModel |
|
from transformers.configuration_utils import PretrainedConfig |
|
|
|
from .configuration_tptt import TpttConfig |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
class LCache: |
|
"""Cache for storing intermediate states of linear attention layers.""" |
|
|
|
def __init__(self): |
|
"""Stores per-layer intermediate states: {layer_idx: state_dict}""" |
|
self.inputs_states: Dict[int, Dict[str, torch.Tensor]] = ( |
|
{} |
|
) |
|
|
|
def __getitem__(self, layer_idx: int) -> Optional[Dict[str, torch.Tensor]]: |
|
"""Retrieve cached state for a given layer, or None if not present""" |
|
return self.inputs_states.get(layer_idx, None) |
|
|
|
def update(self, layer_idx: int, **kwargs): |
|
"""Detach all tensors to avoid retaining computation graphs""" |
|
detached_kwargs = { |
|
k: v.detach() if isinstance(v, torch.Tensor) else v |
|
for k, v in kwargs.items() |
|
} |
|
|
|
if layer_idx in self.inputs_states: |
|
self.inputs_states[layer_idx].update(detached_kwargs) |
|
else: |
|
self.inputs_states[layer_idx] = detached_kwargs |
|
|
|
def reset(self): |
|
"""Clear all cached states and reset the token counter""" |
|
self.inputs_states.clear() |
|
|
|
|
|
class CausalAvgPool1d(nn.Module): |
|
"""Causal sliding window average (uniform, no shape loss along sequence)""" |
|
|
|
def __init__( |
|
self, output_size: int, offsets: tuple[int] = (0, 1, 2), mode: str = "replicate" |
|
): |
|
super().__init__() |
|
self.offsets = offsets |
|
self.mode = mode |
|
self.pool = nn.AdaptiveAvgPool1d(output_size=output_size) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
"""x: [B, S, F] → [B, S, F → output_size]""" |
|
x_ = x.transpose(1, 2) |
|
idxs = torch.tensor(self.offsets, device=x.device) |
|
ksize = idxs.max() - idxs.min() + 1 |
|
w = torch.zeros(ksize, device=x.device, dtype=x.dtype) |
|
w[idxs - idxs.min()] = 1 / len(self.offsets) |
|
kernel = w.repeat(x_.shape[1], 1).reshape(x_.shape[1], 1, ksize) |
|
pad_left = -idxs.min().item() |
|
pad_right = (ksize - 1) - pad_left |
|
x_pad = F.pad(x_, (pad_left, pad_right), mode=self.mode) |
|
y = F.conv1d(x_pad, kernel, groups=x_.shape[1]) |
|
return self.pool(y.transpose(1, 2)) |
|
|
|
|
|
class LinearAttention(nn.Module): |
|
""" |
|
Linear multi-head attention layer: [B, S, D] -> [B, S, D] |
|
Projections + gating + efficient linear attention mechanism (TPTT compatible). |
|
""" |
|
|
|
def __init__( |
|
self, |
|
hidden_dim: int, |
|
num_heads: int, |
|
head_dim: Optional[int] = None, |
|
num_key_value_heads: Optional[int] = None, |
|
num_key_value_groups: Optional[int] = None, |
|
bias: bool = True, |
|
dropout: Optional[float] = None, |
|
linear_precision: torch.dtype = torch.float32, |
|
padding_side: str = "right", |
|
shared_attn: bool = False, |
|
layer_idx: int = 0, |
|
operator_mode: str = "delta_rule", |
|
recurrent_config: Optional[Dict[str, Any]] = None, |
|
linear_cache: Optional[LCache] = None, |
|
max_chunk_size: int = 64, |
|
bidirectional: bool = False, |
|
pooling_config: Optional[Dict[str, Any]] = None, |
|
): |
|
super().__init__() |
|
if pooling_config is None: |
|
pooling_config = { |
|
"offsets": (0, 1, 2), |
|
"mode": "replicate", |
|
} |
|
self.hidden_dim = hidden_dim |
|
self.num_heads = num_heads |
|
self.head_dim = head_dim or hidden_dim // num_heads |
|
self.num_key_value_heads = num_key_value_heads or num_heads |
|
self.num_key_value_groups = num_key_value_groups or ( |
|
num_heads // (num_key_value_heads or num_heads) |
|
) |
|
self.scaling = self.head_dim**-0.5 |
|
self.linear_precision = linear_precision |
|
self.padding_side = padding_side |
|
|
|
self.shared_attn = shared_attn |
|
|
|
if not shared_attn: |
|
self.q_proj = nn.Linear(hidden_dim, num_heads * self.head_dim, bias=bias) |
|
self.k_proj = nn.Linear( |
|
hidden_dim, self.num_key_value_heads * self.head_dim, bias=bias |
|
) |
|
self.v_proj = nn.Linear( |
|
hidden_dim, self.num_key_value_heads * self.head_dim, bias=bias |
|
) |
|
self.out_proj = nn.Linear(num_heads * self.head_dim, hidden_dim, bias=bias) |
|
|
|
self.dropout = nn.Dropout(dropout) if dropout is not None else None |
|
|
|
self.linear_operator = LinearAttentionOp( |
|
layer_idx=layer_idx, |
|
operator_mode=operator_mode, |
|
recurrent_config=recurrent_config, |
|
max_chunk_size=max_chunk_size, |
|
linear_cache=linear_cache, |
|
linear_precision=linear_precision, |
|
) |
|
self.bidirectional = bidirectional |
|
|
|
self.pooling_config = pooling_config |
|
self.pool_g = CausalAvgPool1d( |
|
output_size=self.head_dim * self.num_key_value_heads, **pooling_config |
|
) |
|
|
|
def forward( |
|
self, |
|
x: Union[List[torch.Tensor], torch.Tensor], |
|
attn_mask: Optional[torch.Tensor] = None, |
|
out_proj: Optional[nn.Module] = None, |
|
**kwargs: Any, |
|
) -> torch.Tensor: |
|
""" |
|
Forward pass for linear attention. Input shape: [B, S, D], output [B, S, D]. |
|
""" |
|
|
|
if not self.shared_attn: |
|
hidden_states = x[0] if isinstance(x, (list, tuple)) else x |
|
|
|
q = self.q_proj(hidden_states) |
|
k = self.k_proj(hidden_states) |
|
v = self.v_proj(hidden_states) |
|
out_proj = self.out_proj |
|
else: |
|
|
|
q, k, v = x[0], x[1], x[2] |
|
out_proj = self.out_proj if out_proj is None else out_proj |
|
|
|
|
|
final_dtype, final_device = q.dtype, q.device |
|
|
|
if attn_mask is not None: |
|
v = apply_linear_attention_mask(attn_mask, v, self.padding_side) |
|
|
|
|
|
f_g, w_g = self.pool_g(k), self.pool_g(v) |
|
|
|
|
|
q = rearrange(q, "b n (h d) -> b h n d", h=self.num_heads) |
|
k = rearrange(k, "b n (h d) -> b h n d", h=self.num_key_value_heads) |
|
v = rearrange(v, "b n (h d) -> b h n d", h=self.num_key_value_heads) |
|
|
|
f_g = rearrange(f_g, "b n (h m) -> b h n m", h=self.num_key_value_heads) |
|
w_g = rearrange(w_g, "b n (h m) -> b h n m", h=self.num_key_value_heads) |
|
|
|
|
|
k = k.repeat_interleave(self.num_key_value_groups, dim=1) |
|
v = v.repeat_interleave(self.num_key_value_groups, dim=1) |
|
|
|
f_g = f_g.repeat_interleave(self.num_key_value_groups, dim=1) |
|
w_g = w_g.repeat_interleave(self.num_key_value_groups, dim=1) |
|
|
|
|
|
q = F.normalize(F.silu(q), p=2, dim=-1, eps=1e-6) |
|
k = F.normalize(F.silu(k), p=2, dim=-1, eps=1e-6) |
|
|
|
|
|
v = ensure_stability(v * self.scaling, min_val=-1e4, max_val=1e4) |
|
|
|
|
|
f_g = torch.clamp(torch.sigmoid(f_g), min=1e-6, max=1 - 1e-6) |
|
w_g = torch.clamp(torch.sigmoid(w_g), min=1e-6, max=1 - 1e-6) |
|
|
|
|
|
q, k, v, f_g, w_g = ( |
|
x.to(self.linear_precision).contiguous() for x in (q, k, v, f_g, w_g) |
|
) |
|
g = (f_g, w_g) |
|
|
|
|
|
if self.bidirectional: |
|
|
|
out_forward = self.linear_operator(q, k, v, g, **kwargs) |
|
|
|
kwargs_bwd = kwargs.copy() |
|
kwargs_bwd["use_cache"] = False |
|
out_backward = self.linear_operator( |
|
torch.flip(q, dims=[2]), |
|
torch.flip(k, dims=[2]), |
|
torch.flip(v, dims=[2]), |
|
tuple(torch.flip(t, dims=[2]) for t in g), |
|
**kwargs_bwd, |
|
) |
|
|
|
out_backward = torch.flip(out_backward, dims=[2]) |
|
|
|
out = out_forward + out_backward |
|
else: |
|
out = self.linear_operator(q, k, v, g, **kwargs) |
|
|
|
|
|
out = rearrange(out, "b h s d -> b s (h d)") |
|
|
|
out = out / out.pow(2).mean(dim=-1, keepdim=True).add(1e-6).sqrt() |
|
|
|
out = out.to(dtype=final_dtype, device=final_device) |
|
|
|
out = out_proj(out) |
|
out = ensure_stability(out, min_val=-1e4, max_val=1e4) |
|
|
|
if self.dropout is not None: |
|
out = self.dropout(out) |
|
return out |
|
|
|
|
|
class LiZAttention(nn.Module): |
|
"""LiZA Linear Attention module, mixing linear and vanilla attention.""" |
|
|
|
def __init__( |
|
self, |
|
base_attn: nn.Module, |
|
layer_idx: int, |
|
base_config: PretrainedConfig, |
|
linear_cache: Optional[LCache] = None, |
|
operator_mode: str = "delta_rule", |
|
recurrent_config: Optional[Dict[str, Any]] = None, |
|
max_self_attn_length: Optional[int] = None, |
|
base_scale_attn: bool = False, |
|
mag_weight: float = 0.5, |
|
cross_gate: bool = False, |
|
max_chunk_size: int = 64, |
|
linear_precision: Union[str, torch.dtype] = "float32", |
|
padding_side: str = "right", |
|
disable_linear_attn: bool = False, |
|
bidirectional: bool = False, |
|
pooling_config: Optional[Dict[str, Any]] = None, |
|
): |
|
super().__init__() |
|
if isinstance(linear_precision, str): |
|
linear_precision = getattr(torch, linear_precision) |
|
self.linear_precision = linear_precision |
|
self.base_attn: nn.Module = base_attn |
|
self.base_config = base_config |
|
self.layer_idx = layer_idx |
|
self.max_self_attn_length = max_self_attn_length |
|
self.base_scale_attn = base_scale_attn |
|
self.mag_weight = mag_weight |
|
self.cross_gate = cross_gate |
|
self.max_chunk_size = max_chunk_size |
|
self.linear_precision = linear_precision |
|
self.padding_side = padding_side |
|
self.disable_linear_attn = disable_linear_attn |
|
|
|
( |
|
self.num_heads, |
|
self.head_dim, |
|
self.num_key_value_heads, |
|
self.num_key_value_groups, |
|
) = self._get_attention_parameters(base_attn, base_config) |
|
self.scaling = self.head_dim**-0.5 |
|
|
|
self.linear_attn = LinearAttention( |
|
layer_idx=layer_idx, |
|
shared_attn=True, |
|
operator_mode=operator_mode, |
|
recurrent_config=recurrent_config, |
|
hidden_dim=base_config.hidden_size, |
|
num_heads=self.num_heads, |
|
head_dim=self.head_dim, |
|
num_key_value_heads=self.num_key_value_heads, |
|
num_key_value_groups=self.num_key_value_groups, |
|
linear_precision=linear_precision, |
|
linear_cache=linear_cache, |
|
max_chunk_size=max_chunk_size, |
|
padding_side=padding_side, |
|
bidirectional=bidirectional, |
|
pooling_config=pooling_config, |
|
) |
|
|
|
def _get_attention_parameters( |
|
self, base_attn: nn.Module, base_config: PretrainedConfig |
|
) -> Tuple[Optional[int], Optional[int], Optional[int], Optional[int]]: |
|
"""Retrieve the attention parameters from the base attention module.""" |
|
|
|
num_heads = ( |
|
getattr(base_attn, "num_heads", None) |
|
or getattr(base_attn, "num_q_heads", None) |
|
or getattr(base_config, "num_heads", None) |
|
or getattr(base_config, "num_attention_heads", None) |
|
) |
|
head_dim = ( |
|
getattr(base_attn, "head_dim", None) |
|
or getattr(base_attn, "attention_head_size", None) |
|
or getattr(base_config, "head_dim", None) |
|
or ( |
|
getattr(base_config, "hidden_size", None) // num_heads |
|
if num_heads and getattr(base_config, "hidden_size", None) |
|
else None |
|
) |
|
) |
|
num_key_value_heads = ( |
|
getattr(base_attn, "num_kv_heads", None) |
|
or getattr(base_attn, "num_k_heads", None) |
|
or getattr(base_config, "num_key_value_heads", None) |
|
or num_heads |
|
) |
|
num_key_value_groups = getattr(base_attn, "num_key_value_groups", None) or ( |
|
num_heads // num_key_value_heads if num_heads and num_key_value_heads else 1 |
|
) |
|
return ( |
|
num_heads, |
|
head_dim, |
|
num_key_value_heads, |
|
num_key_value_groups, |
|
) |
|
|
|
def _apply_shared_projections( |
|
self, hidden_states: torch.Tensor |
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, nn.Module]: |
|
base_attn = self.base_attn |
|
if hasattr(base_attn, "q_proj"): |
|
|
|
q = base_attn.q_proj(hidden_states) |
|
k = base_attn.k_proj(hidden_states) |
|
v = base_attn.v_proj(hidden_states) |
|
out_proj = base_attn.o_proj |
|
elif hasattr(base_attn, "qkv_proj"): |
|
|
|
qkv = base_attn.qkv_proj(hidden_states) |
|
q, k, v = split_qkv(base_attn, qkv) |
|
out_proj = base_attn.out_proj |
|
elif hasattr(base_attn, "c_attn") and hasattr(base_attn, "c_proj"): |
|
|
|
qkv = base_attn.c_attn(hidden_states) |
|
q, k, v = qkv.chunk(3, dim=-1) |
|
out_proj = base_attn.c_proj |
|
elif all(hasattr(base_attn, n) for n in ["query", "key", "value"]): |
|
|
|
q = base_attn.query(hidden_states) |
|
k = base_attn.key(hidden_states) |
|
v = base_attn.value(hidden_states) |
|
out_proj = getattr(base_attn, "dense", None) |
|
else: |
|
raise ValueError("Unsupported attention module: cannot find projections.") |
|
|
|
q = ensure_stability(q, min_val=-1e4, max_val=1e4) |
|
k = ensure_stability(k, min_val=-1e4, max_val=1e4) |
|
v = ensure_stability(v, min_val=-1e4, max_val=1e4) |
|
return q, k, v, out_proj |
|
|
|
def _process_self_attn( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor], |
|
kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[DynamicCache], int]: |
|
"""Process the self-attention part (with truncation).""" |
|
if self.max_self_attn_length: |
|
hidden_states, attention_mask = truncate_attention_mask( |
|
hidden_states, attention_mask, self.max_self_attn_length |
|
) |
|
|
|
if kwargs.get("position_embeddings", None) is not None: |
|
cos, sin = kwargs["position_embeddings"] |
|
cos = cos[:, -self.max_self_attn_length :] |
|
sin = sin[:, -self.max_self_attn_length :] |
|
kwargs["position_embeddings"] = (cos, sin) |
|
|
|
if isinstance(kwargs.get("past_key_value", None), DynamicCache): |
|
|
|
if ( |
|
len(kwargs["past_key_value"]) > self.layer_idx |
|
and self.layer_idx == 0 |
|
): |
|
kwargs["past_key_value"].crop(self.max_self_attn_length - 1) |
|
|
|
|
|
base_attn_outputs = self.base_attn( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
**kwargs, |
|
) |
|
|
|
if isinstance(base_attn_outputs, tuple): |
|
if len(base_attn_outputs) == 3: |
|
o_base, attn_weights, present_key_value = base_attn_outputs |
|
expected_attn_mode = 3 |
|
elif len(base_attn_outputs) == 2: |
|
o_base, attn_weights = base_attn_outputs |
|
present_key_value, expected_attn_mode = None, 2 |
|
else: |
|
raise ValueError( |
|
f"Unexpected number of outputs from base_attn: {len(base_attn_outputs)}" |
|
) |
|
else: |
|
o_base = base_attn_outputs |
|
attn_weights, present_key_value, expected_attn_mode = None, None, 1 |
|
|
|
o_base = ensure_stability(o_base, min_val=-1e4, max_val=1e4) |
|
return o_base, attn_weights, present_key_value, expected_attn_mode |
|
|
|
def _prepare_attn_mixin( |
|
self, |
|
o_lin: torch.Tensor, |
|
o_base: torch.Tensor, |
|
tensor_dtype: torch.dtype, |
|
eps: float = 1e-5, |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
"""Prepare linear attn for mixing with self attn.""" |
|
|
|
o_lin = o_lin.to(tensor_dtype) |
|
o_base = o_base.to(tensor_dtype) |
|
|
|
if self.base_scale_attn: |
|
scaler = o_base.pow(2).mean(dim=-1, keepdim=True).add(eps).sqrt() |
|
o_lin = scaler * o_lin |
|
return o_lin, o_base |
|
|
|
def _apply_mag( |
|
self, linear_attention: torch.Tensor, softmax_attention: torch.Tensor |
|
) -> torch.Tensor: |
|
"""Apply the MAG strategy""" |
|
|
|
if linear_attention.shape[1] != softmax_attention.shape[1]: |
|
left_trunc = min(linear_attention.shape[1], softmax_attention.shape[1]) |
|
linear_attention, softmax_attention = ( |
|
linear_attention[:, -left_trunc:], |
|
softmax_attention[:, -left_trunc:], |
|
) |
|
|
|
mag_weight = torch.tensor( |
|
self.mag_weight, |
|
dtype=softmax_attention.dtype, |
|
device=softmax_attention.device, |
|
) |
|
softmax_weighted = (1 - mag_weight) * softmax_attention |
|
linear_weighted = mag_weight * linear_attention |
|
if self.cross_gate: |
|
output_attention = ( |
|
softmax_weighted + linear_weighted + softmax_weighted * linear_weighted |
|
) |
|
else: |
|
output_attention = softmax_weighted + linear_weighted |
|
|
|
if torch.allclose(softmax_weighted, output_attention): |
|
logger.info( |
|
"[LOG] layer : %s, softmax_weighted and output_attention are close.", |
|
self.layer_idx, |
|
) |
|
|
|
return ensure_stability(output_attention, min_val=-1e4, max_val=1e4) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
**kwargs, |
|
) -> torch.Tensor: |
|
"""Mix linear and self attention forward""" |
|
device = hidden_states.device |
|
tensor_dtype = hidden_states.dtype |
|
self.base_attn.to(device) |
|
|
|
if self.training: |
|
kwargs.pop("past_key_value", None) |
|
kwargs["use_cache"] = False |
|
elif "use_cache" not in kwargs: |
|
kwargs.pop("past_key_value", None) |
|
kwargs["use_cache"] = False |
|
|
|
kwargs.pop("position_ids", None) |
|
|
|
|
|
q, k, v, out_proj = self._apply_shared_projections(hidden_states) |
|
|
|
|
|
o_lin = self.linear_attn( |
|
x=[q, k, v], attn_mask=attention_mask, out_proj=out_proj, **kwargs |
|
) |
|
|
|
|
|
o_base, attn_weights, present_key_value, expected_attn_mode = ( |
|
self._process_self_attn(hidden_states, attention_mask, kwargs) |
|
) |
|
|
|
|
|
o_lin, o_base = self._prepare_attn_mixin(o_lin, o_base, tensor_dtype, eps=1e-5) |
|
|
|
|
|
out = o_base if self.disable_linear_attn else self._apply_mag(o_lin, o_base) |
|
|
|
|
|
if expected_attn_mode == 3: |
|
return out, attn_weights, present_key_value |
|
if expected_attn_mode == 2: |
|
return out, attn_weights |
|
return out |
|
|
|
|
|
def load_tptt_safetensors( |
|
repo_or_path: str, |
|
model: Union[PreTrainedModel, PeftModel], |
|
subfolder: Optional[str] = None, |
|
token: Optional[str] = None, |
|
) -> Union[PreTrainedModel, PeftModel]: |
|
"""Load Tptt safetensor from LoRA/PEFT weights and adapt keys if needed.""" |
|
|
|
fname = "adapter_model.safetensors" |
|
|
|
if subfolder: |
|
repo_or_path_norm = os.path.normpath(repo_or_path) |
|
subfolder_norm = os.path.normpath(subfolder) |
|
if not repo_or_path_norm.endswith(subfolder_norm): |
|
fname = f"{subfolder}/{fname}" if subfolder else fname |
|
|
|
if os.path.isdir(repo_or_path): |
|
path = os.path.join(repo_or_path, fname) |
|
if not os.path.exists(path): |
|
return model |
|
else: |
|
if fname not in list_repo_files(repo_or_path, token=token): |
|
return model |
|
path = hf_hub_download(repo_or_path, fname, token=token) |
|
|
|
|
|
with safe_open(path, framework="pt") as f: |
|
state_dict = {k: f.get_tensor(k) for k in f.keys()} |
|
|
|
|
|
def adapt_keys(sd, model): |
|
model_keys = list(model.state_dict().keys()) |
|
if any(k.startswith("tptt_model.base_model.") for k in model_keys): |
|
prefix = "tptt_model.base_model." |
|
elif any(k.startswith("base_model.") for k in model_keys): |
|
prefix = "base_model." |
|
else: |
|
prefix = "" |
|
|
|
has_base_attn = any(".base_attn." in k for k in model_keys) |
|
|
|
def adapt_key(k): |
|
k_ = k if k.startswith(prefix) else prefix + k |
|
|
|
if ".base_attn." in k_ and not has_base_attn: |
|
k_ = k_.replace(".base_attn.", ".") |
|
|
|
if ( |
|
k_.endswith("lora_A.weight") or k_.endswith("lora_B.weight") |
|
) and k_.replace(".weight", ".default.weight") in model_keys: |
|
k_ = k_.replace(".weight", ".default.weight") |
|
return k_ |
|
|
|
return {adapt_key(k): v for k, v in sd.items()} |
|
|
|
state_dict = adapt_keys(state_dict, model) |
|
|
|
|
|
model_state_dict = model.state_dict() |
|
for k, v in state_dict.items(): |
|
if k in model_state_dict: |
|
expected_dtype = model_state_dict[k].dtype |
|
if v.dtype != expected_dtype: |
|
state_dict[k] = v.to(expected_dtype) |
|
|
|
logger.info("Input LoRA/Specific keys: %s", [k for k in state_dict.keys()]) |
|
|
|
|
|
missing, unexpected = model.load_state_dict(state_dict, strict=False, assign=True) |
|
missing_lora = [k for k in missing if "lora" in k] |
|
if missing_lora: |
|
logger.warning("Missing keys: %s", missing_lora) |
|
if unexpected: |
|
logger.warning("Unexpected keys: %s", unexpected) |
|
return model |
|
|
|
|
|
def get_tptt_model( |
|
model: nn.Module, |
|
base_config: PretrainedConfig, |
|
linear_cache: Optional[LCache] = None, |
|
liza_attention: nn.Module = LiZAttention, |
|
target_modules_names: Optional[list[str]] = None, |
|
operator_mode: str = "delta_rule", |
|
recurrent_config: Optional[Dict[str, Any]] = None, |
|
base_scale_attn: bool = False, |
|
mag_weight: float = 0.5, |
|
cross_gate: bool = False, |
|
max_chunk_size: int = 64, |
|
linear_precision: torch.dtype = torch.float32, |
|
max_self_attn_length: Optional[int] = None, |
|
padding_side: str = "right", |
|
bidirectional: bool = False, |
|
pooling_config: Optional[Dict[str, Any]] = None, |
|
**kwargs, |
|
) -> Tuple[PreTrainedModel, LCache]: |
|
"""Replace target modules in a model with LiZAttention.""" |
|
if target_modules_names is None: |
|
target_modules_names = ["attn", "self_attn", "attention"] |
|
|
|
target_modules_names = [ |
|
name |
|
for name, _ in model.named_modules() |
|
if any(name.endswith(suffix) for suffix in target_modules_names) |
|
and not any(f".{suffix}." in name for suffix in target_modules_names) |
|
] |
|
if not target_modules_names: |
|
raise ValueError( |
|
f"Target modules '{target_modules_names}' not found in the model." |
|
) |
|
|
|
linear_cache = linear_cache or LCache() |
|
|
|
for name, _ in model.named_modules(): |
|
if name in target_modules_names: |
|
parent = model |
|
*path, last = name.split(".") |
|
for p in path: |
|
parent = getattr(parent, p) |
|
layer_idx = extract_layer_idx(name) |
|
setattr( |
|
parent, |
|
last, |
|
liza_attention( |
|
getattr(parent, last), |
|
layer_idx=layer_idx, |
|
base_config=base_config, |
|
linear_cache=linear_cache, |
|
operator_mode=operator_mode, |
|
recurrent_config=recurrent_config, |
|
max_self_attn_length=max_self_attn_length, |
|
base_scale_attn=base_scale_attn, |
|
mag_weight=mag_weight, |
|
cross_gate=cross_gate, |
|
max_chunk_size=max_chunk_size, |
|
linear_precision=linear_precision, |
|
padding_side=padding_side, |
|
bidirectional=bidirectional, |
|
pooling_config=pooling_config, |
|
), |
|
) |
|
return model, linear_cache |
|
|
|
|
|
def save_tptt_safetensors(model, path: str, name: str = "adapter_model.safetensors"): |
|
"""Save trainable LoRA/Specific weights and adapting key names""" |
|
|
|
all_sd = model.state_dict() |
|
|
|
|
|
trainable_keys = [ |
|
name for name, param in model.named_parameters() if param.requires_grad |
|
] |
|
|
|
|
|
to_save = { |
|
k.replace("tptt_model.", "").replace("base_model.", ""): all_sd[k] |
|
for k in trainable_keys |
|
} |
|
|
|
|
|
if to_save: |
|
os.makedirs(os.path.dirname(path), exist_ok=True) |
|
|
|
save_file(to_save, os.path.join(path, name)) |
|
|
|
|
|
class TpttModel(PreTrainedModel): |
|
""" |
|
TPTT model wrapper with linear attention (LiZA) and LoRA support. |
|
Handles only architecture and weights. |
|
""" |
|
|
|
config_class = TpttConfig |
|
|
|
def __init__( |
|
self, |
|
config: TpttConfig, |
|
**kwargs, |
|
): |
|
""" |
|
Initialize TpttModel with a given config and backbone. |
|
Injects LiZA attention modules into the backbone. |
|
""" |
|
super().__init__(config, **kwargs) |
|
repo_or_path = getattr(config, "_base_path", None) or config._name_or_path |
|
|
|
|
|
kwargs_bb = kwargs.copy() |
|
if config.base_model_subfolder is not None: |
|
kwargs_bb["subfolder"] = config.base_model_subfolder |
|
else: |
|
kwargs_bb.pop("subfolder", None) |
|
tptt_model = AutoModelForCausalLM.from_pretrained( |
|
config.base_model_name, **kwargs_bb |
|
) |
|
|
|
|
|
self.linear_cache = LCache() |
|
tptt_model, self.linear_cache = get_tptt_model( |
|
tptt_model, config, self.linear_cache, **config.to_dict() |
|
) |
|
|
|
|
|
if config.lora_config is not None: |
|
lora_config_obj = LoraConfig(**config.lora_config) |
|
tptt_model = get_peft_model(tptt_model, lora_config_obj) |
|
else: |
|
tptt_model = set_trainable_parameters(tptt_model) |
|
|
|
|
|
if repo_or_path: |
|
tptt_model = load_tptt_safetensors( |
|
repo_or_path, |
|
tptt_model, |
|
subfolder=kwargs.get("subfolder", None), |
|
token=kwargs.get("token", None), |
|
) |
|
self.tptt_model = tptt_model |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
**kwargs, |
|
): |
|
"""Forward pass. All arguments are passed to the underlying base model.""" |
|
if self.training: |
|
kwargs["use_cache"] = False |
|
kwargs.pop("num_items_in_batch", None) |
|
elif "use_cache" not in kwargs: |
|
kwargs.pop("num_items_in_batch", None) |
|
kwargs["use_cache"] = False |
|
return self.tptt_model( |
|
input_ids=input_ids, attention_mask=attention_mask, labels=labels, **kwargs |
|
) |
|
|
|
def generate(self, *args, **kwargs): |
|
"""Delegate the generate call to the backbone model, which supports generation""" |
|
return self.tptt_model.generate(*args, **kwargs) |
|
|
|
def save_pretrained(self, path: str, **kwargs): |
|
"""Save model weights, config, and source code to the given path.""" |
|
|
|
super().save_pretrained(path, **kwargs) |
|
self._adjust_save_strategy(path, **kwargs) |
|
|
|
save_tptt_safetensors(self, path) |
|
|
|
self._copy_source_files(path, **kwargs) |
|
|
|
def _adjust_save_strategy(self, path: str, **kwargs): |
|
"""Re-adapt/remove the weight safetensor and saved adapter config""" |
|
if isinstance(self.tptt_model, PeftModel): |
|
self.tptt_model.save_pretrained(path, **kwargs) |
|
safetensor_path = os.path.join(path, "model.safetensors") |
|
if os.path.exists(safetensor_path): |
|
os.remove(safetensor_path) |
|
adapter_path = os.path.join(path, "adapter_config.json") |
|
if os.path.exists(adapter_path): |
|
os.remove(adapter_path) |
|
|
|
def _copy_source_files(self, target_path: str, **kwargs): |
|
"""Copy all .py files from package directory for trust_remote_code.""" |
|
src_dir = os.path.dirname(os.path.abspath(__file__)) |
|
dst_dir = ( |
|
f"./{str(Path(target_path).parts[0])}" |
|
if kwargs.get("subfolder", False) |
|
else target_path |
|
) |
|
for fname in os.listdir(src_dir): |
|
if fname.endswith(".py"): |
|
src = os.path.join(src_dir, fname) |
|
dst = os.path.join(dst_dir, fname) |
|
shutil.copy2(src, dst) |
|
|
|
def retie_lm_after_load(self, **kwargs): |
|
"""Re-link lm_head after loading external weights.""" |
|
embed_lm = find_embedding_lm(self.tptt_model) |
|
if embed_lm is not None and hasattr(self.tptt_model, "lm_head"): |
|
if self.tptt_model.lm_head is None: |
|
self.tptt_model.lm_head = nn.Linear( |
|
embed_lm.weight.shape[1], embed_lm.weight.shape[0], bias=False |
|
) |
|
if kwargs.get("tie_word_embeddings", True): |
|
self.tptt_model.lm_head.weight = embed_lm.weight |
|
logger.info("Weights of lm_head have been shared with embedding.") |
|
else: |
|
self.tptt_model.lm_head.weight = nn.Parameter(embed_lm.weight.clone()) |
|
logger.info("Weights of lm_head have been cloned from the embedding.") |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path=None, *model_args, **kwargs): |
|
"""Custom from_pretrained that accepts the standard positional argument""" |
|
config = kwargs.pop("config", None) |
|
repo_or_path = ( |
|
pretrained_model_name_or_path |
|
or kwargs.pop("pretrained_model_name_or_path", None) |
|
or kwargs.pop("repo_or_path", None) |
|
or (getattr(config, "_base_path", None) if config else None) |
|
or (getattr(config, "_name_or_path", None) if config else None) |
|
) |
|
|
|
if config is None and repo_or_path is not None: |
|
config = AutoConfig.from_pretrained(repo_or_path, **kwargs) |
|
model = cls(config, *model_args, **kwargs) |
|
model.retie_lm_after_load(**kwargs) |
|
return model |
|
|
|
|
|
TpttModel.register_for_auto_class("AutoModelForCausalLM") |
|
|
|
|
|
class LinearAttentionOp(nn.Module): |
|
"""Base class for linear attention operators.""" |
|
|
|
def __init__( |
|
self, |
|
layer_idx: int, |
|
operator_mode: str = "delta_rule", |
|
recurrent_config: Optional[dict] = None, |
|
max_chunk_size: int = 64, |
|
linear_cache: Optional[LCache] = None, |
|
linear_precision: torch.dtype = torch.float32, |
|
): |
|
super().__init__() |
|
self.layer_idx = layer_idx |
|
if recurrent_config is None: |
|
operator_mode = "delta_rule" |
|
recurrent_config = { |
|
"order": 1, |
|
"gate_type": "k", |
|
"linear": True, |
|
"trick": "derivative", |
|
} |
|
self.operator_mode = operator_mode |
|
self.order = recurrent_config["order"] |
|
self.gate_type = recurrent_config["gate_type"] |
|
self.linear = recurrent_config["linear"] |
|
self.trick = recurrent_config["trick"] |
|
|
|
self.max_chunk_size = max_chunk_size |
|
self.linear_cache = linear_cache or LCache() |
|
self.linear_precision = linear_precision |
|
|
|
def compute_gate(self, beta: Tuple[torch.Tensor]) -> torch.Tensor: |
|
""" |
|
Compute the gating tensor according to the gate_type. |
|
""" |
|
if self.gate_type == "k": |
|
return torch.clamp(beta[0], min=1e-6, max=1 - 1e-6) |
|
if self.gate_type == "v": |
|
return torch.clamp(beta[1], min=1e-6, max=1 - 1e-6) |
|
if self.gate_type == "kv": |
|
return torch.clamp(beta[0] * beta[1], min=1e-6, max=1 - 1e-6) |
|
raise ValueError(f"Unsupported gate_type: {self.gate_type}") |
|
|
|
def get_cache(self, use_cache: bool) -> Tuple[ |
|
Optional[torch.Tensor], |
|
Optional[Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]], |
|
]: |
|
""" |
|
Retrieve recurrent state and qkv buffers from the cache. |
|
""" |
|
if not use_cache: |
|
return None, None |
|
last_state = self.linear_cache[self.layer_idx] |
|
if last_state is not None: |
|
recurrent_state = last_state.get("recurrent_state", None) |
|
qkv_buffers = last_state.get("qkv", None) |
|
else: |
|
recurrent_state = None |
|
qkv_buffers = None |
|
return recurrent_state, qkv_buffers |
|
|
|
def save_cache( |
|
self, |
|
use_cache: bool, |
|
q: torch.Tensor, |
|
k: torch.Tensor, |
|
v: torch.Tensor, |
|
gate: torch.Tensor, |
|
state: torch.Tensor, |
|
) -> None: |
|
""" |
|
Save the recurrent state and qkv buffers to the cache. |
|
""" |
|
if not use_cache: |
|
return |
|
if self.order > 1: |
|
qkv_buffers = ( |
|
q[:, :, -(self.order - 1) :, :], |
|
k[:, :, -(self.order - 1) :, :], |
|
v[:, :, -(self.order - 1) :, :], |
|
gate[:, :, -(self.order - 1) :, :], |
|
) |
|
else: |
|
qkv_buffers = None |
|
self.linear_cache.update(self.layer_idx, recurrent_state=state, qkv=qkv_buffers) |
|
|
|
def forward( |
|
self, |
|
q: torch.Tensor, |
|
k: torch.Tensor, |
|
v: torch.Tensor, |
|
beta: Union[Tuple[torch.Tensor], torch.Tensor], |
|
**kwargs, |
|
) -> torch.Tensor: |
|
""" |
|
Forward pass for the attention operator. |
|
""" |
|
|
|
q, k, v = [x.to(self.linear_precision) for x in (q, k, v)] |
|
if isinstance(beta, (tuple, list)): |
|
beta = tuple(b.to(self.linear_precision) for b in beta) |
|
else: |
|
beta = beta.to(self.linear_precision) |
|
|
|
gate = self.compute_gate(beta) |
|
|
|
|
|
use_cache = kwargs.get("use_cache", False) |
|
recurrent_state, qkvb = self.get_cache(use_cache) |
|
|
|
if qkvb is not None and qkvb[0].shape == q.shape: |
|
q = torch.cat([qkvb[0].to(q.device), q], dim=2).to(self.linear_precision) |
|
k = torch.cat([qkvb[1].to(q.device), k], dim=2).to(self.linear_precision) |
|
v = torch.cat([qkvb[2].to(q.device), v], dim=2).to(self.linear_precision) |
|
gate = torch.cat([qkvb[3].to(q.device), gate], dim=2).to( |
|
self.linear_precision |
|
) |
|
|
|
output, state = self.chunk_delta_product_forward( |
|
q, |
|
k, |
|
v, |
|
gate, |
|
self.max_chunk_size, |
|
n=self.order, |
|
trick=self.trick, |
|
linear=self.linear, |
|
initial_state=recurrent_state, |
|
use_checkpoint=not (use_cache), |
|
linear_precision=self.linear_precision, |
|
) |
|
|
|
|
|
self.save_cache(use_cache, q, k, v, gate, state) |
|
|
|
return output |
|
|
|
@staticmethod |
|
def chunk_delta_product_forward( |
|
query: torch.Tensor, |
|
key: torch.Tensor, |
|
value: torch.Tensor, |
|
beta_gate: torch.Tensor, |
|
chunk_size: int, |
|
n: int = 1, |
|
trick: str = "derivative", |
|
linear: bool = True, |
|
initial_state: Optional[torch.Tensor] = None, |
|
use_checkpoint: bool = True, |
|
linear_precision: torch.dtype = torch.float32, |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
""" |
|
Chunkwise parallel implementation https://arxiv.org/abs/2406.06484 |
|
For each chunk, processes chunk_size * n_orders steps (virtual tokens) in order. |
|
""" |
|
|
|
|
|
|
|
batch_size, num_heads, seq_len, head_dim = query.shape |
|
chunk_size = get_valid_chunk_size(seq_len, chunk_size) |
|
num_chunks = seq_len // chunk_size |
|
|
|
query_n = query if n == 1 else expand_virtual_tokens(query, n, trick) |
|
key_n = key if n == 1 else expand_virtual_tokens(key, n, trick) |
|
value_n = value if n == 1 else expand_virtual_tokens(value, n, trick) |
|
beta_n = beta_gate if n == 1 else expand_virtual_tokens(beta_gate, n, trick) |
|
|
|
q_chunks = chunk_sequence(query_n, num_chunks, chunk_size * n) |
|
k_chunks = chunk_sequence(key_n, num_chunks, chunk_size * n) |
|
v_chunks = chunk_sequence(value_n, num_chunks, chunk_size * n) |
|
beta_chunks = chunk_sequence(beta_n, num_chunks, chunk_size * n) |
|
|
|
k_beta = k_chunks * beta_chunks |
|
v_beta = v_chunks * beta_chunks |
|
|
|
householder = -(k_beta @ k_chunks.transpose(-2, -1)).tril(-1) |
|
householder = ensure_stability(householder, min_val=-1e4, max_val=1e4) |
|
|
|
|
|
inv_hh = fast_invert_matrix(householder, dtype=linear_precision) |
|
|
|
w = ensure_stability(torch.matmul(inv_hh, k_beta), min_val=-1e4, max_val=1e4) |
|
u = ensure_stability(torch.matmul(inv_hh, v_beta), min_val=-1e4, max_val=1e4) |
|
|
|
state_shape = (batch_size, num_heads, n, head_dim, head_dim) |
|
if initial_state is not None and initial_state.shape == state_shape: |
|
state = initial_state.to(device=query.device, dtype=linear_precision) |
|
else: |
|
state = torch.full( |
|
state_shape, |
|
fill_value=1e-6, |
|
device=query.device, |
|
dtype=linear_precision, |
|
) |
|
|
|
output, final_state = sequential_delta_product_scan( |
|
q_chunks.to(dtype=linear_precision), |
|
w.to(dtype=linear_precision), |
|
u.to(dtype=linear_precision), |
|
n, |
|
linear, |
|
chunk_size, |
|
state.to(dtype=linear_precision), |
|
linear_precision=linear_precision, |
|
use_checkpoint=use_checkpoint, |
|
) |
|
|
|
idx_last_order = torch.arange(chunk_size, device=output.device) * n + (n - 1) |
|
output = output[:, :, :, idx_last_order, :] |
|
output = output.reshape(batch_size, num_heads, seq_len, head_dim) |
|
|
|
return output.to(dtype=linear_precision), final_state.to(dtype=linear_precision) |
|
|
|
|
|
def sequential_delta_product_scan( |
|
q_chunks: torch.Tensor, |
|
w: torch.Tensor, |
|
u: torch.Tensor, |
|
n_orders: int, |
|
linear_activation: bool, |
|
current_chunk_size: int, |
|
initial_recurrent_state: torch.Tensor, |
|
linear_precision: torch.dtype, |
|
use_checkpoint: bool, |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
""" |
|
DeltaProduct implementation https://arxiv.org/abs/2502.10297 |
|
Implements the per-token Householder state updates. |
|
""" |
|
batch, head, num_chunks_inner, chunk_n_total, dim = q_chunks.shape |
|
output_inner = torch.empty_like(q_chunks) |
|
|
|
h_0_base = initial_recurrent_state[:, :, -1, :, :].clone() |
|
|
|
def process_one_chunk( |
|
q_chunk_params: torch.Tensor, |
|
w_chunk_params: torch.Tensor, |
|
u_chunk_params: torch.Tensor, |
|
h_0_base: torch.Tensor, |
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: |
|
""" |
|
Process a single chunk (with per-token state for n_orders > 1). |
|
""" |
|
o_intra_current_chunk = torch.zeros( |
|
batch, |
|
head, |
|
chunk_n_total, |
|
dim, |
|
device=q_chunk_params.device, |
|
dtype=linear_precision, |
|
) |
|
o_inter_current_chunk = torch.zeros_like(o_intra_current_chunk) |
|
current_accumulated_state_per_token = ( |
|
h_0_base.unsqueeze(2).expand(-1, -1, current_chunk_size, -1, -1).clone() |
|
) |
|
|
|
for step in range(n_orders): |
|
idx_virtual_tokens = ( |
|
torch.arange(current_chunk_size, device=q_chunk_params.device) |
|
* n_orders |
|
+ step |
|
) |
|
q_s = q_chunk_params[:, :, idx_virtual_tokens, :] |
|
w_s = w_chunk_params[:, :, idx_virtual_tokens, :] |
|
u_s = u_chunk_params[:, :, idx_virtual_tokens, :] |
|
|
|
state_input_for_this_step = current_accumulated_state_per_token |
|
|
|
|
|
k_trans_h_old = ( |
|
torch.matmul( |
|
w_s.unsqueeze(-2), |
|
state_input_for_this_step, |
|
) |
|
.squeeze(-2) |
|
.to(dtype=linear_precision) |
|
) |
|
|
|
u_val = u_s - k_trans_h_old |
|
|
|
o_inter_current_chunk[:, :, idx_virtual_tokens, :] = ( |
|
torch.matmul(q_s.unsqueeze(-2), state_input_for_this_step) |
|
.squeeze(-2) |
|
.to(dtype=linear_precision) |
|
) |
|
|
|
|
|
o_intra_current_chunk[:, :, idx_virtual_tokens, :] = (q_s * u_val).to( |
|
dtype=linear_precision |
|
) |
|
|
|
outer_product_term = torch.matmul(w_s.unsqueeze(-1), u_val.unsqueeze(-2)) |
|
new_state_i_per_token = state_input_for_this_step + outer_product_term |
|
new_state_i_per_token = ensure_stability( |
|
new_state_i_per_token, min_val=-1e4, max_val=1e4 |
|
) |
|
current_accumulated_state_per_token = new_state_i_per_token.to( |
|
dtype=linear_precision |
|
) |
|
|
|
return ( |
|
o_intra_current_chunk, |
|
o_inter_current_chunk, |
|
current_accumulated_state_per_token[:, :, -1, :, :], |
|
) |
|
|
|
for chunk_idx_inner in range(num_chunks_inner): |
|
q_chunk_params = q_chunks[:, :, chunk_idx_inner] |
|
w_chunk_params = w[:, :, chunk_idx_inner] |
|
u_chunk_params = u[:, :, chunk_idx_inner] |
|
|
|
|
|
call = ( |
|
partial(checkpoint, use_reentrant=False) |
|
if use_checkpoint |
|
else lambda f, *a: f(*a) |
|
) |
|
o_intra, o_inter, h_0_base = call( |
|
process_one_chunk, |
|
q_chunk_params, |
|
w_chunk_params, |
|
u_chunk_params, |
|
h_0_base, |
|
) |
|
if not linear_activation: |
|
h_0_base = unlinear_activation(h_0_base).to(dtype=linear_precision) |
|
output_inner[:, :, chunk_idx_inner] = o_intra + o_inter |
|
|
|
return output_inner, h_0_base |
|
|
|
|
|
def unlinear_activation(x: torch.Tensor, scale: float = 2.0) -> torch.Tensor: |
|
"""Unlinear activation between chunk""" |
|
x_n = x.norm(p=2, dim=-1, keepdim=True) + 1e-6 |
|
x_gelu = F.gelu(scale * x / x_n, approximate="tanh") |
|
return (x / scale) * x_gelu |
|
|
|
|
|
def chunk_sequence(x: torch.Tensor, num_chunks: int, chunk_size: int) -> torch.Tensor: |
|
"""Splits [B, H, S, D] to [B, H, num_chunks, chunk_size, D]""" |
|
batch_size, num_heads, _, head_dim = x.shape |
|
return x.reshape(batch_size, num_heads, num_chunks, chunk_size, head_dim) |
|
|
|
|
|
def expand_virtual_tokens( |
|
x: torch.Tensor, n: int, mode: str = "derivative" |
|
) -> torch.Tensor: |
|
"""Expand tokens into 'n' virtual tokens using the selected trick.""" |
|
batch_size, num_heads, seq_len, head_dim = x.shape |
|
device, dtype = x.device, x.dtype |
|
|
|
def derivative_expand(x: torch.Tensor) -> torch.Tensor: |
|
"""Expand tokens using the derivative trick.""" |
|
x_pad = torch.cat( |
|
[ |
|
torch.zeros( |
|
batch_size, num_heads, n - 1, head_dim, device=device, dtype=dtype |
|
), |
|
x, |
|
], |
|
dim=2, |
|
) |
|
coeffs = torch.tensor( |
|
[(-1) ** k * math.comb(n - 1, k) for k in range(n)], |
|
device=device, |
|
dtype=dtype, |
|
) |
|
coeffs /= coeffs.norm(p=1) |
|
return ( |
|
(x_pad.unfold(2, n, 1) * coeffs.view(1, 1, 1, 1, n)) |
|
.flip(-1) |
|
.permute(0, 1, 2, 4, 3) |
|
.reshape(batch_size, num_heads, seq_len * n, head_dim) |
|
) |
|
|
|
def rotative_expand(x: torch.Tensor) -> torch.Tensor: |
|
"""Expand tokens using the rotative trick.""" |
|
d_parity = head_dim // 2 |
|
angles = torch.arange(n, device=device, dtype=dtype) * (2 * math.pi / n) |
|
cos = torch.cos(angles).view(1, 1, 1, n, 1) |
|
sin = torch.sin(angles).view(1, 1, 1, n, 1) |
|
if head_dim % 2: |
|
x_pairs = x[..., :-1].view(batch_size, num_heads, seq_len, d_parity, 2) |
|
else: |
|
x_pairs = x.view(batch_size, num_heads, seq_len, d_parity, 2) |
|
x_pairs = x_pairs.unsqueeze(3).expand( |
|
batch_size, num_heads, seq_len, n, d_parity, 2 |
|
) |
|
x0, x1 = x_pairs[..., 0], x_pairs[..., 1] |
|
x0r = x0 * cos - x1 * sin |
|
x1r = x0 * sin + x1 * cos |
|
rot = torch.stack([x0r, x1r], -1).reshape( |
|
batch_size, num_heads, seq_len, n, d_parity * 2 |
|
) |
|
if head_dim % 2: |
|
last = ( |
|
x[..., -1] |
|
.unsqueeze(-1) |
|
.unsqueeze(3) |
|
.expand(batch_size, num_heads, seq_len, n, 1) |
|
) |
|
rot = torch.cat([rot, last], -1) |
|
return rot.reshape(batch_size, num_heads, seq_len * n, head_dim) |
|
|
|
if mode == "derivative": |
|
return derivative_expand(x) |
|
if mode == "rotative": |
|
return rotative_expand(x) |
|
if mode == "combined": |
|
return (derivative_expand(x) + rotative_expand(x)) / 2 |
|
raise ValueError(f"Unknown mode: {mode}") |
|
|
|
|
|
def extract_layer_idx(module_name: str) -> int: |
|
"""Extract the layer index from a module name string.""" |
|
match = re.search(r"\.(\d+)\.", module_name) |
|
if match: |
|
return int(match.group(1)) |
|
return -1 |
|
|
|
|
|
def find_embedding_lm(module: nn.Module) -> Optional[nn.Module]: |
|
"""Find the embedding weight in a model module.""" |
|
for _, child in module.named_modules(): |
|
if hasattr(child, "embed_tokens") and hasattr(child.embed_tokens, "weight"): |
|
return child.embed_tokens |
|
if hasattr(child, "token_embeddings") and hasattr( |
|
child.token_embeddings, "weight" |
|
): |
|
return child.token_embeddings |
|
return None |
|
|
|
|
|
def set_trainable_parameters( |
|
model: PreTrainedModel, trainable_patterns: List[str] = None |
|
) -> PreTrainedModel: |
|
"""Freeze model parameters except trainable_patterns.""" |
|
if trainable_patterns is None: |
|
trainable_patterns = [ |
|
"q_proj", |
|
"k_proj", |
|
"v_proj", |
|
"o_proj", |
|
"qkv_proj", |
|
"out_proj", |
|
"c_attn", |
|
"c_proj", |
|
"query", |
|
"key", |
|
"value", |
|
] |
|
|
|
for name, param in model.named_parameters(): |
|
param.requires_grad = any(pattern in name for pattern in trainable_patterns) |
|
|
|
trainable_layers = [n for n, p in model.named_parameters() if p.requires_grad] |
|
logger.info("Trainable parameters after freeze: %s", trainable_layers) |
|
return model |
|
|
|
|
|
def ensure_stability( |
|
tensor: torch.Tensor, min_val: float = -1e4, max_val: float = 1e4 |
|
) -> torch.Tensor: |
|
"""stability forcing""" |
|
dtype = tensor.dtype |
|
center = (max_val + min_val) / 2 |
|
tensor = torch.clamp(tensor, min=min_val, max=max_val) |
|
tensor = torch.nan_to_num(tensor, nan=center, posinf=max_val, neginf=min_val) |
|
return tensor.to(dtype=dtype) |
|
|
|
|
|
def apply_linear_attention_mask( |
|
attention_mask: torch.Tensor, v: torch.Tensor, padding_side: str = "right" |
|
) -> torch.Tensor: |
|
"""Extract if padding --> [B,S]""" |
|
if attention_mask.dim() == 4 and attention_mask.shape[1] == 1: |
|
mask = attention_mask.diagonal(dim1=-2, dim2=-1).squeeze(1) |
|
else: |
|
mask = attention_mask.squeeze( |
|
dim=tuple( |
|
i |
|
for i in range(1, attention_mask.dim()) |
|
if attention_mask.shape[i] == 1 |
|
) |
|
) |
|
|
|
if not ( |
|
mask.dtype == torch.bool |
|
or ( |
|
mask.dtype in [torch.uint8, torch.int32, torch.int64] |
|
and mask.max() <= 1 |
|
and mask.min() >= 0 |
|
) |
|
): |
|
mask = (mask >= 0).to(v.dtype) |
|
else: |
|
mask = mask.to(v.dtype) |
|
|
|
if padding_side == "left": |
|
mask = mask[:, -v.shape[-2] :][(...,) + (None,) * (v.dim() - 2)] |
|
else: |
|
mask = mask[:, : v.shape[-2]][(...,) + (None,) * (v.dim() - 2)] |
|
return v * mask |
|
|
|
|
|
def truncate_attention_mask( |
|
hidden_states: torch.Tensor, attention_mask: torch.Tensor, max_length: int |
|
) -> tuple[torch.Tensor, torch.Tensor]: |
|
"""Truncate hidden_states and attention_mask to the last window of size max_length""" |
|
seq_dim = 1 |
|
seq_len = hidden_states.shape[seq_dim] |
|
if seq_len > max_length: |
|
hidden_states = hidden_states.narrow(seq_dim, seq_len - max_length, max_length) |
|
if attention_mask is not None: |
|
|
|
if attention_mask.dim() == 2: |
|
attention_mask = attention_mask[:, -max_length:] |
|
|
|
elif attention_mask.dim() == 3: |
|
attention_mask = attention_mask[:, -max_length:, -max_length:] |
|
|
|
elif attention_mask.dim() == 4 and attention_mask.shape[1] == 1: |
|
attention_mask = attention_mask[:, :, -max_length:, -max_length:] |
|
else: |
|
raise ValueError( |
|
"No dimension in attention_mask matches sequence length of hidden_states." |
|
) |
|
return hidden_states, attention_mask |
|
|
|
|
|
def fast_invert_matrix( |
|
tri_tensor: torch.Tensor, dtype: torch.dtype = torch.float32 |
|
) -> torch.Tensor: |
|
"""Equivalent to vectorized forward substitution applied to the identity matrix.""" |
|
tri_tensor = tri_tensor.to(dtype=dtype).clone() |
|
chunk_size = tri_tensor.shape[-1] |
|
|
|
for i in range(1, chunk_size): |
|
tri_tensor[..., i, :i] = tri_tensor[..., i, :i] + ( |
|
tri_tensor[..., i, :, None].clone() * tri_tensor[..., :, :i].clone() |
|
).sum(-2) |
|
|
|
tri_tensor = tri_tensor + torch.eye( |
|
chunk_size, dtype=dtype, device=tri_tensor.device |
|
) |
|
return tri_tensor.to(dtype=dtype) |
|
|
|
|
|
def get_valid_chunk_size(total_l: int, chunk_size: int) -> int: |
|
"""Return the largest chunk_size <= chunk_size that divides total_l.""" |
|
for c in range(min(chunk_size, total_l), 0, -1): |
|
if total_l % c == 0: |
|
return c |
|
return 1 |
|
|
|
|
|
|
|
def split_qkv( |
|
base_attn: nn.Module, qkv: torch.Tensor |
|
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]: |
|
"""Split the QKV tensor into separate Q, K, and V tensors.""" |
|
num_q_heads = getattr(base_attn, "num_q_heads", None) |
|
num_k_heads = getattr(base_attn, "num_k_heads", None) |
|
num_v_heads = getattr(base_attn, "num_v_heads", None) |
|
head_dim = getattr(base_attn, "head_dim", None) |
|
|
|
if num_q_heads is None or num_k_heads is None or num_v_heads is None: |
|
raise ValueError( |
|
"Base attention must have num_q_heads, num_k_heads, and num_v_heads defined." |
|
) |
|
|
|
q_len = num_q_heads * head_dim |
|
k_len = num_k_heads * head_dim |
|
v_len = num_v_heads * head_dim |
|
|
|
q, k, v = torch.split(qkv, [q_len, k_len, v_len], dim=-1) |
|
return q, k, v |
|
|
|
|
|
|
|
def match_dim(x: torch.Tensor, dim: int, target_size: int) -> torch.Tensor: |
|
"""Match the size of tensor x along dimension dim to target_size by interpolation""" |
|
src_size = x.shape[dim] |
|
if src_size == target_size: |
|
return x |
|
x = torch.moveaxis(x, dim, -1) |
|
shape = x.shape |
|
if src_size < target_size: |
|
x = x.reshape(-1, 1, src_size) |
|
x = F.interpolate(x, size=target_size, mode="linear", align_corners=False) |
|
x = x.reshape(*shape[:-1], target_size) |
|
else: |
|
eye = torch.eye(target_size, src_size, device=x.device, dtype=x.dtype) |
|
x = F.linear(x, eye) |
|
x = torch.moveaxis(x, -1, dim) |
|
return x |
|
|
|
|
|
def soft_clamp( |
|
x: torch.Tensor, min_val: float = 1e-6, max_val: float = 1 - 1e-6 |
|
) -> torch.Tensor: |
|
"""Differentiable clamping for stability""" |
|
dtype = x.dtype |
|
scale = (max_val - min_val) / 2 |
|
center = (max_val + min_val) / 2 |
|
return (torch.tanh((x - center) / scale) * scale + center).to(dtype=dtype) |
|
|
|
|
|
def describe(x: torch.Tensor, name="tensor") -> None: |
|
"""Prints the shape, min, max, mean, and std of a tensor.""" |
|
stats = (x.min(), x.max(), x.mean(), x.std()) |
|
print( |
|
f"{name} shape: {tuple(x.shape)}, " |
|
+ f"min: {stats[0]:.4g}, max: {stats[1]:.4g}, " |
|
+ f"mean: {stats[2]:.4g}, std: {stats[3]:.4g}, " |
|
+ f"dtype: {x.dtype}, device: {x.device}" |
|
) |
|
|