Upload 64 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpt/Others/Shift-GCN/ntu120_xset/ntu120_bone_motion_xset/config.yaml +56 -0
- ckpt/Others/Shift-GCN/ntu120_xset/ntu120_bone_motion_xset/eval_results/best_acc.pkl +3 -0
- ckpt/Others/Shift-GCN/ntu120_xset/ntu120_bone_motion_xset/log.txt +929 -0
- ckpt/Others/Shift-GCN/ntu120_xset/ntu120_bone_motion_xset/shift_gcn.py +216 -0
- ckpt/Others/Shift-GCN/ntu120_xset/ntu120_bone_xset/config.yaml +56 -0
- ckpt/Others/Shift-GCN/ntu120_xset/ntu120_bone_xset/eval_results/best_acc.pkl +3 -0
- ckpt/Others/Shift-GCN/ntu120_xset/ntu120_bone_xset/log.txt +929 -0
- ckpt/Others/Shift-GCN/ntu120_xset/ntu120_bone_xset/shift_gcn.py +216 -0
- ckpt/Others/Shift-GCN/ntu120_xset/ntu120_joint_motion_xset/config.yaml +56 -0
- ckpt/Others/Shift-GCN/ntu120_xset/ntu120_joint_motion_xset/eval_results/best_acc.pkl +3 -0
- ckpt/Others/Shift-GCN/ntu120_xset/ntu120_joint_motion_xset/log.txt +929 -0
- ckpt/Others/Shift-GCN/ntu120_xset/ntu120_joint_motion_xset/shift_gcn.py +216 -0
- ckpt/Others/Shift-GCN/ntu120_xset/ntu120_joint_xset/config.yaml +56 -0
- ckpt/Others/Shift-GCN/ntu120_xset/ntu120_joint_xset/eval_results/best_acc.pkl +3 -0
- ckpt/Others/Shift-GCN/ntu120_xset/ntu120_joint_xset/log.txt +929 -0
- ckpt/Others/Shift-GCN/ntu120_xset/ntu120_joint_xset/shift_gcn.py +216 -0
- ckpt/Others/Shift-GCN/ntu120_xsub/ntu120_bone_motion_xsub/config.yaml +56 -0
- ckpt/Others/Shift-GCN/ntu120_xsub/ntu120_bone_motion_xsub/eval_results/best_acc.pkl +3 -0
- ckpt/Others/Shift-GCN/ntu120_xsub/ntu120_bone_motion_xsub/log.txt +1043 -0
- ckpt/Others/Shift-GCN/ntu120_xsub/ntu120_bone_motion_xsub/shift_gcn.py +216 -0
- ckpt/Others/Shift-GCN/ntu120_xsub/ntu120_bone_xsub/config.yaml +56 -0
- ckpt/Others/Shift-GCN/ntu120_xsub/ntu120_bone_xsub/eval_results/best_acc.pkl +3 -0
- ckpt/Others/Shift-GCN/ntu120_xsub/ntu120_bone_xsub/log.txt +1043 -0
- ckpt/Others/Shift-GCN/ntu120_xsub/ntu120_bone_xsub/shift_gcn.py +216 -0
- ckpt/Others/Shift-GCN/ntu120_xsub/ntu120_joint_motion_xsub/config.yaml +56 -0
- ckpt/Others/Shift-GCN/ntu120_xsub/ntu120_joint_motion_xsub/eval_results/best_acc.pkl +3 -0
- ckpt/Others/Shift-GCN/ntu120_xsub/ntu120_joint_motion_xsub/log.txt +1043 -0
- ckpt/Others/Shift-GCN/ntu120_xsub/ntu120_joint_motion_xsub/shift_gcn.py +216 -0
- ckpt/Others/Shift-GCN/ntu120_xsub/ntu120_joint_xsub/config.yaml +56 -0
- ckpt/Others/Shift-GCN/ntu120_xsub/ntu120_joint_xsub/eval_results/best_acc.pkl +3 -0
- ckpt/Others/Shift-GCN/ntu120_xsub/ntu120_joint_xsub/log.txt +1043 -0
- ckpt/Others/Shift-GCN/ntu120_xsub/ntu120_joint_xsub/shift_gcn.py +216 -0
- ckpt/Others/Shift-GCN/ntu60_xsub/ntu_ShiftGCN_bone_motion_xsub/config.yaml +58 -0
- ckpt/Others/Shift-GCN/ntu60_xsub/ntu_ShiftGCN_bone_motion_xsub/eval_results/best_acc.pkl +3 -0
- ckpt/Others/Shift-GCN/ntu60_xsub/ntu_ShiftGCN_bone_motion_xsub/log.txt +875 -0
- ckpt/Others/Shift-GCN/ntu60_xsub/ntu_ShiftGCN_bone_motion_xsub/shift_gcn.py +216 -0
- ckpt/Others/Shift-GCN/ntu60_xsub/ntu_ShiftGCN_bone_xsub/config.yaml +58 -0
- ckpt/Others/Shift-GCN/ntu60_xsub/ntu_ShiftGCN_bone_xsub/eval_results/best_acc.pkl +3 -0
- ckpt/Others/Shift-GCN/ntu60_xsub/ntu_ShiftGCN_bone_xsub/log.txt +875 -0
- ckpt/Others/Shift-GCN/ntu60_xsub/ntu_ShiftGCN_bone_xsub/shift_gcn.py +216 -0
- ckpt/Others/Shift-GCN/ntu60_xsub/ntu_ShiftGCN_joint_motion_xsub/config.yaml +56 -0
- ckpt/Others/Shift-GCN/ntu60_xsub/ntu_ShiftGCN_joint_motion_xsub/eval_results/best_acc.pkl +3 -0
- ckpt/Others/Shift-GCN/ntu60_xsub/ntu_ShiftGCN_joint_motion_xsub/log.txt +875 -0
- ckpt/Others/Shift-GCN/ntu60_xsub/ntu_ShiftGCN_joint_motion_xsub/shift_gcn.py +216 -0
- ckpt/Others/Shift-GCN/ntu60_xsub/ntu_ShiftGCN_joint_xsub/config.yaml +56 -0
- ckpt/Others/Shift-GCN/ntu60_xsub/ntu_ShiftGCN_joint_xsub/eval_results/best_acc.pkl +3 -0
- ckpt/Others/Shift-GCN/ntu60_xsub/ntu_ShiftGCN_joint_xsub/log.txt +893 -0
- ckpt/Others/Shift-GCN/ntu60_xsub/ntu_ShiftGCN_joint_xsub/shift_gcn.py +216 -0
- ckpt/Others/Shift-GCN/ntu60_xview/ntu_ShiftGCN_bone_motion_xview/config.yaml +56 -0
- ckpt/Others/Shift-GCN/ntu60_xview/ntu_ShiftGCN_bone_motion_xview/eval_results/best_acc.pkl +3 -0
ckpt/Others/Shift-GCN/ntu120_xset/ntu120_bone_motion_xset/config.yaml
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Experiment_name: ntu120_bone_motion_xset
|
2 |
+
base_lr: 0.1
|
3 |
+
batch_size: 64
|
4 |
+
config: ./config/ntu120_xset/train_bone_motion.yaml
|
5 |
+
device:
|
6 |
+
- 2
|
7 |
+
- 3
|
8 |
+
eval_interval: 5
|
9 |
+
feeder: feeders.feeder.Feeder
|
10 |
+
ignore_weights: []
|
11 |
+
log_interval: 100
|
12 |
+
model: model.shift_gcn.Model
|
13 |
+
model_args:
|
14 |
+
graph: graph.ntu_rgb_d.Graph
|
15 |
+
graph_args:
|
16 |
+
labeling_mode: spatial
|
17 |
+
num_class: 120
|
18 |
+
num_person: 2
|
19 |
+
num_point: 25
|
20 |
+
model_saved_name: ./save_models/ntu120_bone_motion_xset
|
21 |
+
nesterov: true
|
22 |
+
num_epoch: 140
|
23 |
+
num_worker: 32
|
24 |
+
only_train_epoch: 1
|
25 |
+
only_train_part: true
|
26 |
+
optimizer: SGD
|
27 |
+
phase: train
|
28 |
+
print_log: true
|
29 |
+
save_interval: 2
|
30 |
+
save_score: false
|
31 |
+
seed: 1
|
32 |
+
show_topk:
|
33 |
+
- 1
|
34 |
+
- 5
|
35 |
+
start_epoch: 0
|
36 |
+
step:
|
37 |
+
- 60
|
38 |
+
- 80
|
39 |
+
- 100
|
40 |
+
test_batch_size: 64
|
41 |
+
test_feeder_args:
|
42 |
+
data_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/val_data_bone_motion.npy
|
43 |
+
label_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/val_label.pkl
|
44 |
+
train_feeder_args:
|
45 |
+
data_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/train_data_bone_motion.npy
|
46 |
+
debug: false
|
47 |
+
label_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/train_label.pkl
|
48 |
+
normalization: false
|
49 |
+
random_choose: false
|
50 |
+
random_move: false
|
51 |
+
random_shift: false
|
52 |
+
window_size: -1
|
53 |
+
warm_up_epoch: 0
|
54 |
+
weight_decay: 0.0001
|
55 |
+
weights: null
|
56 |
+
work_dir: ./work_dir/ntu120_bone_motion_xset
|
ckpt/Others/Shift-GCN/ntu120_xset/ntu120_bone_motion_xset/eval_results/best_acc.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bc835811033c5f5255dff5b60d8f19d5c13216e0c476205e7c28746fb214f412
|
3 |
+
size 34946665
|
ckpt/Others/Shift-GCN/ntu120_xset/ntu120_bone_motion_xset/log.txt
ADDED
@@ -0,0 +1,929 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[ Thu Sep 15 20:53:13 2022 ] Parameters:
|
2 |
+
{'work_dir': './work_dir/ntu120_bone_motion_xset', 'model_saved_name': './save_models/ntu120_bone_motion_xset', 'Experiment_name': 'ntu120_bone_motion_xset', 'config': './config/ntu120_xset/train_bone_motion.yaml', 'phase': 'train', 'save_score': False, 'seed': 1, 'log_interval': 100, 'save_interval': 2, 'eval_interval': 5, 'print_log': True, 'show_topk': [1, 5], 'feeder': 'feeders.feeder.Feeder', 'num_worker': 32, 'train_feeder_args': {'data_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/train_data_bone_motion.npy', 'label_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/train_label.pkl', 'debug': False, 'random_choose': False, 'random_shift': False, 'random_move': False, 'window_size': -1, 'normalization': False}, 'test_feeder_args': {'data_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/val_data_bone_motion.npy', 'label_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/val_label.pkl'}, 'model': 'model.shift_gcn.Model', 'model_args': {'num_class': 120, 'num_point': 25, 'num_person': 2, 'graph': 'graph.ntu_rgb_d.Graph', 'graph_args': {'labeling_mode': 'spatial'}}, 'weights': None, 'ignore_weights': [], 'base_lr': 0.1, 'step': [60, 80, 100], 'device': [2, 3], 'optimizer': 'SGD', 'nesterov': True, 'batch_size': 64, 'test_batch_size': 64, 'start_epoch': 0, 'num_epoch': 140, 'weight_decay': 0.0001, 'only_train_part': True, 'only_train_epoch': 1, 'warm_up_epoch': 0}
|
3 |
+
|
4 |
+
[ Thu Sep 15 20:53:13 2022 ] Training epoch: 1
|
5 |
+
[ Thu Sep 15 20:54:31 2022 ] Batch(99/162) done. Loss: 3.1825 lr:0.100000 network_time: 0.0273
|
6 |
+
[ Thu Sep 15 20:55:16 2022 ] Eval epoch: 1
|
7 |
+
[ Thu Sep 15 20:57:05 2022 ] Mean test loss of 930 batches: 4.908753395080566.
|
8 |
+
[ Thu Sep 15 20:57:05 2022 ] Top1: 9.45%
|
9 |
+
[ Thu Sep 15 20:57:06 2022 ] Top5: 27.60%
|
10 |
+
[ Thu Sep 15 20:57:06 2022 ] Training epoch: 2
|
11 |
+
[ Thu Sep 15 20:57:37 2022 ] Batch(37/162) done. Loss: 2.2182 lr:0.100000 network_time: 0.0279
|
12 |
+
[ Thu Sep 15 20:58:50 2022 ] Batch(137/162) done. Loss: 2.2917 lr:0.100000 network_time: 0.0297
|
13 |
+
[ Thu Sep 15 20:59:07 2022 ] Eval epoch: 2
|
14 |
+
[ Thu Sep 15 21:00:56 2022 ] Mean test loss of 930 batches: 4.822448253631592.
|
15 |
+
[ Thu Sep 15 21:00:57 2022 ] Top1: 14.80%
|
16 |
+
[ Thu Sep 15 21:00:57 2022 ] Top5: 37.31%
|
17 |
+
[ Thu Sep 15 21:00:57 2022 ] Training epoch: 3
|
18 |
+
[ Thu Sep 15 21:01:56 2022 ] Batch(75/162) done. Loss: 2.0696 lr:0.100000 network_time: 0.0258
|
19 |
+
[ Thu Sep 15 21:02:59 2022 ] Eval epoch: 3
|
20 |
+
[ Thu Sep 15 21:04:48 2022 ] Mean test loss of 930 batches: 3.4721670150756836.
|
21 |
+
[ Thu Sep 15 21:04:48 2022 ] Top1: 24.95%
|
22 |
+
[ Thu Sep 15 21:04:49 2022 ] Top5: 50.87%
|
23 |
+
[ Thu Sep 15 21:04:49 2022 ] Training epoch: 4
|
24 |
+
[ Thu Sep 15 21:05:03 2022 ] Batch(13/162) done. Loss: 1.4831 lr:0.100000 network_time: 0.0273
|
25 |
+
[ Thu Sep 15 21:06:15 2022 ] Batch(113/162) done. Loss: 1.6804 lr:0.100000 network_time: 0.0265
|
26 |
+
[ Thu Sep 15 21:06:50 2022 ] Eval epoch: 4
|
27 |
+
[ Thu Sep 15 21:08:39 2022 ] Mean test loss of 930 batches: 3.2496213912963867.
|
28 |
+
[ Thu Sep 15 21:08:39 2022 ] Top1: 28.67%
|
29 |
+
[ Thu Sep 15 21:08:40 2022 ] Top5: 55.53%
|
30 |
+
[ Thu Sep 15 21:08:40 2022 ] Training epoch: 5
|
31 |
+
[ Thu Sep 15 21:09:21 2022 ] Batch(51/162) done. Loss: 1.3771 lr:0.100000 network_time: 0.0268
|
32 |
+
[ Thu Sep 15 21:10:34 2022 ] Batch(151/162) done. Loss: 1.7848 lr:0.100000 network_time: 0.0262
|
33 |
+
[ Thu Sep 15 21:10:41 2022 ] Eval epoch: 5
|
34 |
+
[ Thu Sep 15 21:12:30 2022 ] Mean test loss of 930 batches: 3.401992082595825.
|
35 |
+
[ Thu Sep 15 21:12:31 2022 ] Top1: 28.73%
|
36 |
+
[ Thu Sep 15 21:12:31 2022 ] Top5: 57.81%
|
37 |
+
[ Thu Sep 15 21:12:31 2022 ] Training epoch: 6
|
38 |
+
[ Thu Sep 15 21:13:40 2022 ] Batch(89/162) done. Loss: 1.3649 lr:0.100000 network_time: 0.0261
|
39 |
+
[ Thu Sep 15 21:14:32 2022 ] Eval epoch: 6
|
40 |
+
[ Thu Sep 15 21:16:21 2022 ] Mean test loss of 930 batches: 2.9739701747894287.
|
41 |
+
[ Thu Sep 15 21:16:22 2022 ] Top1: 29.80%
|
42 |
+
[ Thu Sep 15 21:16:22 2022 ] Top5: 62.30%
|
43 |
+
[ Thu Sep 15 21:16:23 2022 ] Training epoch: 7
|
44 |
+
[ Thu Sep 15 21:16:46 2022 ] Batch(27/162) done. Loss: 1.4052 lr:0.100000 network_time: 0.0294
|
45 |
+
[ Thu Sep 15 21:17:59 2022 ] Batch(127/162) done. Loss: 0.7479 lr:0.100000 network_time: 0.0262
|
46 |
+
[ Thu Sep 15 21:18:24 2022 ] Eval epoch: 7
|
47 |
+
[ Thu Sep 15 21:20:13 2022 ] Mean test loss of 930 batches: 2.601893901824951.
|
48 |
+
[ Thu Sep 15 21:20:14 2022 ] Top1: 37.29%
|
49 |
+
[ Thu Sep 15 21:20:14 2022 ] Top5: 69.45%
|
50 |
+
[ Thu Sep 15 21:20:14 2022 ] Training epoch: 8
|
51 |
+
[ Thu Sep 15 21:21:06 2022 ] Batch(65/162) done. Loss: 1.2406 lr:0.100000 network_time: 0.0277
|
52 |
+
[ Thu Sep 15 21:22:16 2022 ] Eval epoch: 8
|
53 |
+
[ Thu Sep 15 21:24:05 2022 ] Mean test loss of 930 batches: 2.694429397583008.
|
54 |
+
[ Thu Sep 15 21:24:05 2022 ] Top1: 38.20%
|
55 |
+
[ Thu Sep 15 21:24:06 2022 ] Top5: 69.74%
|
56 |
+
[ Thu Sep 15 21:24:06 2022 ] Training epoch: 9
|
57 |
+
[ Thu Sep 15 21:24:12 2022 ] Batch(3/162) done. Loss: 0.8463 lr:0.100000 network_time: 0.0294
|
58 |
+
[ Thu Sep 15 21:25:25 2022 ] Batch(103/162) done. Loss: 0.9506 lr:0.100000 network_time: 0.0303
|
59 |
+
[ Thu Sep 15 21:26:07 2022 ] Eval epoch: 9
|
60 |
+
[ Thu Sep 15 21:27:56 2022 ] Mean test loss of 930 batches: 3.4346163272857666.
|
61 |
+
[ Thu Sep 15 21:27:56 2022 ] Top1: 32.62%
|
62 |
+
[ Thu Sep 15 21:27:57 2022 ] Top5: 64.30%
|
63 |
+
[ Thu Sep 15 21:27:57 2022 ] Training epoch: 10
|
64 |
+
[ Thu Sep 15 21:28:31 2022 ] Batch(41/162) done. Loss: 0.6424 lr:0.100000 network_time: 0.0260
|
65 |
+
[ Thu Sep 15 21:29:44 2022 ] Batch(141/162) done. Loss: 0.9037 lr:0.100000 network_time: 0.0271
|
66 |
+
[ Thu Sep 15 21:29:58 2022 ] Eval epoch: 10
|
67 |
+
[ Thu Sep 15 21:31:47 2022 ] Mean test loss of 930 batches: 3.4100637435913086.
|
68 |
+
[ Thu Sep 15 21:31:47 2022 ] Top1: 35.12%
|
69 |
+
[ Thu Sep 15 21:31:48 2022 ] Top5: 65.64%
|
70 |
+
[ Thu Sep 15 21:31:48 2022 ] Training epoch: 11
|
71 |
+
[ Thu Sep 15 21:32:49 2022 ] Batch(79/162) done. Loss: 0.8555 lr:0.100000 network_time: 0.0272
|
72 |
+
[ Thu Sep 15 21:33:49 2022 ] Eval epoch: 11
|
73 |
+
[ Thu Sep 15 21:35:38 2022 ] Mean test loss of 930 batches: 2.7729108333587646.
|
74 |
+
[ Thu Sep 15 21:35:38 2022 ] Top1: 38.37%
|
75 |
+
[ Thu Sep 15 21:35:39 2022 ] Top5: 71.00%
|
76 |
+
[ Thu Sep 15 21:35:39 2022 ] Training epoch: 12
|
77 |
+
[ Thu Sep 15 21:35:55 2022 ] Batch(17/162) done. Loss: 0.9231 lr:0.100000 network_time: 0.0268
|
78 |
+
[ Thu Sep 15 21:37:08 2022 ] Batch(117/162) done. Loss: 1.0566 lr:0.100000 network_time: 0.0222
|
79 |
+
[ Thu Sep 15 21:37:40 2022 ] Eval epoch: 12
|
80 |
+
[ Thu Sep 15 21:39:29 2022 ] Mean test loss of 930 batches: 3.1429965496063232.
|
81 |
+
[ Thu Sep 15 21:39:30 2022 ] Top1: 38.27%
|
82 |
+
[ Thu Sep 15 21:39:30 2022 ] Top5: 70.08%
|
83 |
+
[ Thu Sep 15 21:39:30 2022 ] Training epoch: 13
|
84 |
+
[ Thu Sep 15 21:40:14 2022 ] Batch(55/162) done. Loss: 0.6888 lr:0.100000 network_time: 0.0275
|
85 |
+
[ Thu Sep 15 21:41:27 2022 ] Batch(155/162) done. Loss: 0.8608 lr:0.100000 network_time: 0.0269
|
86 |
+
[ Thu Sep 15 21:41:31 2022 ] Eval epoch: 13
|
87 |
+
[ Thu Sep 15 21:43:20 2022 ] Mean test loss of 930 batches: 2.652634620666504.
|
88 |
+
[ Thu Sep 15 21:43:21 2022 ] Top1: 39.41%
|
89 |
+
[ Thu Sep 15 21:43:21 2022 ] Top5: 72.22%
|
90 |
+
[ Thu Sep 15 21:43:22 2022 ] Training epoch: 14
|
91 |
+
[ Thu Sep 15 21:44:33 2022 ] Batch(93/162) done. Loss: 0.8529 lr:0.100000 network_time: 0.0314
|
92 |
+
[ Thu Sep 15 21:45:23 2022 ] Eval epoch: 14
|
93 |
+
[ Thu Sep 15 21:47:12 2022 ] Mean test loss of 930 batches: 2.584991693496704.
|
94 |
+
[ Thu Sep 15 21:47:12 2022 ] Top1: 39.55%
|
95 |
+
[ Thu Sep 15 21:47:13 2022 ] Top5: 72.15%
|
96 |
+
[ Thu Sep 15 21:47:13 2022 ] Training epoch: 15
|
97 |
+
[ Thu Sep 15 21:47:39 2022 ] Batch(31/162) done. Loss: 0.6209 lr:0.100000 network_time: 0.0335
|
98 |
+
[ Thu Sep 15 21:48:52 2022 ] Batch(131/162) done. Loss: 0.6853 lr:0.100000 network_time: 0.0272
|
99 |
+
[ Thu Sep 15 21:49:14 2022 ] Eval epoch: 15
|
100 |
+
[ Thu Sep 15 21:51:02 2022 ] Mean test loss of 930 batches: 3.4786317348480225.
|
101 |
+
[ Thu Sep 15 21:51:03 2022 ] Top1: 38.24%
|
102 |
+
[ Thu Sep 15 21:51:03 2022 ] Top5: 69.38%
|
103 |
+
[ Thu Sep 15 21:51:04 2022 ] Training epoch: 16
|
104 |
+
[ Thu Sep 15 21:51:58 2022 ] Batch(69/162) done. Loss: 0.7813 lr:0.100000 network_time: 0.0280
|
105 |
+
[ Thu Sep 15 21:53:05 2022 ] Eval epoch: 16
|
106 |
+
[ Thu Sep 15 21:54:54 2022 ] Mean test loss of 930 batches: 3.6086277961730957.
|
107 |
+
[ Thu Sep 15 21:54:54 2022 ] Top1: 35.35%
|
108 |
+
[ Thu Sep 15 21:54:55 2022 ] Top5: 64.75%
|
109 |
+
[ Thu Sep 15 21:54:55 2022 ] Training epoch: 17
|
110 |
+
[ Thu Sep 15 21:55:05 2022 ] Batch(7/162) done. Loss: 0.7263 lr:0.100000 network_time: 0.0273
|
111 |
+
[ Thu Sep 15 21:56:17 2022 ] Batch(107/162) done. Loss: 0.6502 lr:0.100000 network_time: 0.0306
|
112 |
+
[ Thu Sep 15 21:56:57 2022 ] Eval epoch: 17
|
113 |
+
[ Thu Sep 15 21:58:45 2022 ] Mean test loss of 930 batches: 3.275714635848999.
|
114 |
+
[ Thu Sep 15 21:58:46 2022 ] Top1: 40.58%
|
115 |
+
[ Thu Sep 15 21:58:46 2022 ] Top5: 72.06%
|
116 |
+
[ Thu Sep 15 21:58:46 2022 ] Training epoch: 18
|
117 |
+
[ Thu Sep 15 21:59:23 2022 ] Batch(45/162) done. Loss: 0.6945 lr:0.100000 network_time: 0.0292
|
118 |
+
[ Thu Sep 15 22:00:36 2022 ] Batch(145/162) done. Loss: 0.4933 lr:0.100000 network_time: 0.0272
|
119 |
+
[ Thu Sep 15 22:00:48 2022 ] Eval epoch: 18
|
120 |
+
[ Thu Sep 15 22:02:37 2022 ] Mean test loss of 930 batches: 2.9244513511657715.
|
121 |
+
[ Thu Sep 15 22:02:37 2022 ] Top1: 40.86%
|
122 |
+
[ Thu Sep 15 22:02:38 2022 ] Top5: 73.57%
|
123 |
+
[ Thu Sep 15 22:02:38 2022 ] Training epoch: 19
|
124 |
+
[ Thu Sep 15 22:03:42 2022 ] Batch(83/162) done. Loss: 0.3187 lr:0.100000 network_time: 0.0279
|
125 |
+
[ Thu Sep 15 22:04:39 2022 ] Eval epoch: 19
|
126 |
+
[ Thu Sep 15 22:06:28 2022 ] Mean test loss of 930 batches: 3.0369040966033936.
|
127 |
+
[ Thu Sep 15 22:06:29 2022 ] Top1: 40.36%
|
128 |
+
[ Thu Sep 15 22:06:29 2022 ] Top5: 72.71%
|
129 |
+
[ Thu Sep 15 22:06:29 2022 ] Training epoch: 20
|
130 |
+
[ Thu Sep 15 22:06:49 2022 ] Batch(21/162) done. Loss: 0.6907 lr:0.100000 network_time: 0.0270
|
131 |
+
[ Thu Sep 15 22:08:01 2022 ] Batch(121/162) done. Loss: 0.6564 lr:0.100000 network_time: 0.0272
|
132 |
+
[ Thu Sep 15 22:08:31 2022 ] Eval epoch: 20
|
133 |
+
[ Thu Sep 15 22:10:19 2022 ] Mean test loss of 930 batches: 2.658047914505005.
|
134 |
+
[ Thu Sep 15 22:10:20 2022 ] Top1: 41.92%
|
135 |
+
[ Thu Sep 15 22:10:20 2022 ] Top5: 73.82%
|
136 |
+
[ Thu Sep 15 22:10:20 2022 ] Training epoch: 21
|
137 |
+
[ Thu Sep 15 22:11:07 2022 ] Batch(59/162) done. Loss: 0.5150 lr:0.100000 network_time: 0.0284
|
138 |
+
[ Thu Sep 15 22:12:20 2022 ] Batch(159/162) done. Loss: 0.6909 lr:0.100000 network_time: 0.0268
|
139 |
+
[ Thu Sep 15 22:12:22 2022 ] Eval epoch: 21
|
140 |
+
[ Thu Sep 15 22:14:11 2022 ] Mean test loss of 930 batches: 2.6667940616607666.
|
141 |
+
[ Thu Sep 15 22:14:11 2022 ] Top1: 44.15%
|
142 |
+
[ Thu Sep 15 22:14:12 2022 ] Top5: 75.83%
|
143 |
+
[ Thu Sep 15 22:14:12 2022 ] Training epoch: 22
|
144 |
+
[ Thu Sep 15 22:15:26 2022 ] Batch(97/162) done. Loss: 0.5496 lr:0.100000 network_time: 0.0443
|
145 |
+
[ Thu Sep 15 22:16:13 2022 ] Eval epoch: 22
|
146 |
+
[ Thu Sep 15 22:18:02 2022 ] Mean test loss of 930 batches: 3.3101744651794434.
|
147 |
+
[ Thu Sep 15 22:18:03 2022 ] Top1: 38.63%
|
148 |
+
[ Thu Sep 15 22:18:03 2022 ] Top5: 70.21%
|
149 |
+
[ Thu Sep 15 22:18:03 2022 ] Training epoch: 23
|
150 |
+
[ Thu Sep 15 22:18:33 2022 ] Batch(35/162) done. Loss: 0.4830 lr:0.100000 network_time: 0.0309
|
151 |
+
[ Thu Sep 15 22:19:45 2022 ] Batch(135/162) done. Loss: 0.2860 lr:0.100000 network_time: 0.0265
|
152 |
+
[ Thu Sep 15 22:20:05 2022 ] Eval epoch: 23
|
153 |
+
[ Thu Sep 15 22:21:53 2022 ] Mean test loss of 930 batches: 2.9660871028900146.
|
154 |
+
[ Thu Sep 15 22:21:54 2022 ] Top1: 43.51%
|
155 |
+
[ Thu Sep 15 22:21:54 2022 ] Top5: 74.93%
|
156 |
+
[ Thu Sep 15 22:21:54 2022 ] Training epoch: 24
|
157 |
+
[ Thu Sep 15 22:22:51 2022 ] Batch(73/162) done. Loss: 0.4363 lr:0.100000 network_time: 0.0268
|
158 |
+
[ Thu Sep 15 22:23:56 2022 ] Eval epoch: 24
|
159 |
+
[ Thu Sep 15 22:25:44 2022 ] Mean test loss of 930 batches: 3.1512691974639893.
|
160 |
+
[ Thu Sep 15 22:25:45 2022 ] Top1: 42.29%
|
161 |
+
[ Thu Sep 15 22:25:45 2022 ] Top5: 71.11%
|
162 |
+
[ Thu Sep 15 22:25:46 2022 ] Training epoch: 25
|
163 |
+
[ Thu Sep 15 22:25:58 2022 ] Batch(11/162) done. Loss: 0.2536 lr:0.100000 network_time: 0.0271
|
164 |
+
[ Thu Sep 15 22:27:10 2022 ] Batch(111/162) done. Loss: 0.6440 lr:0.100000 network_time: 0.0277
|
165 |
+
[ Thu Sep 15 22:27:47 2022 ] Eval epoch: 25
|
166 |
+
[ Thu Sep 15 22:29:35 2022 ] Mean test loss of 930 batches: 3.2045881748199463.
|
167 |
+
[ Thu Sep 15 22:29:36 2022 ] Top1: 41.34%
|
168 |
+
[ Thu Sep 15 22:29:36 2022 ] Top5: 72.56%
|
169 |
+
[ Thu Sep 15 22:29:36 2022 ] Training epoch: 26
|
170 |
+
[ Thu Sep 15 22:30:16 2022 ] Batch(49/162) done. Loss: 0.3471 lr:0.100000 network_time: 0.0248
|
171 |
+
[ Thu Sep 15 22:31:28 2022 ] Batch(149/162) done. Loss: 0.6179 lr:0.100000 network_time: 0.0265
|
172 |
+
[ Thu Sep 15 22:31:37 2022 ] Eval epoch: 26
|
173 |
+
[ Thu Sep 15 22:33:26 2022 ] Mean test loss of 930 batches: 2.7953853607177734.
|
174 |
+
[ Thu Sep 15 22:33:27 2022 ] Top1: 45.61%
|
175 |
+
[ Thu Sep 15 22:33:27 2022 ] Top5: 75.82%
|
176 |
+
[ Thu Sep 15 22:33:28 2022 ] Training epoch: 27
|
177 |
+
[ Thu Sep 15 22:34:35 2022 ] Batch(87/162) done. Loss: 0.2963 lr:0.100000 network_time: 0.0268
|
178 |
+
[ Thu Sep 15 22:35:29 2022 ] Eval epoch: 27
|
179 |
+
[ Thu Sep 15 22:37:18 2022 ] Mean test loss of 930 batches: 3.8976290225982666.
|
180 |
+
[ Thu Sep 15 22:37:18 2022 ] Top1: 37.02%
|
181 |
+
[ Thu Sep 15 22:37:19 2022 ] Top5: 68.66%
|
182 |
+
[ Thu Sep 15 22:37:19 2022 ] Training epoch: 28
|
183 |
+
[ Thu Sep 15 22:37:41 2022 ] Batch(25/162) done. Loss: 0.2610 lr:0.100000 network_time: 0.0274
|
184 |
+
[ Thu Sep 15 22:38:54 2022 ] Batch(125/162) done. Loss: 0.3643 lr:0.100000 network_time: 0.0256
|
185 |
+
[ Thu Sep 15 22:39:20 2022 ] Eval epoch: 28
|
186 |
+
[ Thu Sep 15 22:41:09 2022 ] Mean test loss of 930 batches: 3.0510149002075195.
|
187 |
+
[ Thu Sep 15 22:41:09 2022 ] Top1: 42.95%
|
188 |
+
[ Thu Sep 15 22:41:10 2022 ] Top5: 71.93%
|
189 |
+
[ Thu Sep 15 22:41:10 2022 ] Training epoch: 29
|
190 |
+
[ Thu Sep 15 22:42:00 2022 ] Batch(63/162) done. Loss: 0.4196 lr:0.100000 network_time: 0.0287
|
191 |
+
[ Thu Sep 15 22:43:11 2022 ] Eval epoch: 29
|
192 |
+
[ Thu Sep 15 22:45:01 2022 ] Mean test loss of 930 batches: 3.3990092277526855.
|
193 |
+
[ Thu Sep 15 22:45:01 2022 ] Top1: 42.01%
|
194 |
+
[ Thu Sep 15 22:45:01 2022 ] Top5: 72.58%
|
195 |
+
[ Thu Sep 15 22:45:02 2022 ] Training epoch: 30
|
196 |
+
[ Thu Sep 15 22:45:07 2022 ] Batch(1/162) done. Loss: 0.4026 lr:0.100000 network_time: 0.0274
|
197 |
+
[ Thu Sep 15 22:46:19 2022 ] Batch(101/162) done. Loss: 0.2621 lr:0.100000 network_time: 0.0259
|
198 |
+
[ Thu Sep 15 22:47:03 2022 ] Eval epoch: 30
|
199 |
+
[ Thu Sep 15 22:48:51 2022 ] Mean test loss of 930 batches: 3.6437642574310303.
|
200 |
+
[ Thu Sep 15 22:48:52 2022 ] Top1: 36.19%
|
201 |
+
[ Thu Sep 15 22:48:52 2022 ] Top5: 69.46%
|
202 |
+
[ Thu Sep 15 22:48:53 2022 ] Training epoch: 31
|
203 |
+
[ Thu Sep 15 22:49:25 2022 ] Batch(39/162) done. Loss: 0.3941 lr:0.100000 network_time: 0.0312
|
204 |
+
[ Thu Sep 15 22:50:38 2022 ] Batch(139/162) done. Loss: 0.3324 lr:0.100000 network_time: 0.0342
|
205 |
+
[ Thu Sep 15 22:50:54 2022 ] Eval epoch: 31
|
206 |
+
[ Thu Sep 15 22:52:43 2022 ] Mean test loss of 930 batches: 2.982487440109253.
|
207 |
+
[ Thu Sep 15 22:52:43 2022 ] Top1: 43.66%
|
208 |
+
[ Thu Sep 15 22:52:44 2022 ] Top5: 75.18%
|
209 |
+
[ Thu Sep 15 22:52:44 2022 ] Training epoch: 32
|
210 |
+
[ Thu Sep 15 22:53:44 2022 ] Batch(77/162) done. Loss: 0.3935 lr:0.100000 network_time: 0.0261
|
211 |
+
[ Thu Sep 15 22:54:45 2022 ] Eval epoch: 32
|
212 |
+
[ Thu Sep 15 22:56:33 2022 ] Mean test loss of 930 batches: 3.3070483207702637.
|
213 |
+
[ Thu Sep 15 22:56:34 2022 ] Top1: 44.26%
|
214 |
+
[ Thu Sep 15 22:56:34 2022 ] Top5: 73.42%
|
215 |
+
[ Thu Sep 15 22:56:35 2022 ] Training epoch: 33
|
216 |
+
[ Thu Sep 15 22:56:49 2022 ] Batch(15/162) done. Loss: 0.2932 lr:0.100000 network_time: 0.0268
|
217 |
+
[ Thu Sep 15 22:58:02 2022 ] Batch(115/162) done. Loss: 0.7155 lr:0.100000 network_time: 0.0276
|
218 |
+
[ Thu Sep 15 22:58:36 2022 ] Eval epoch: 33
|
219 |
+
[ Thu Sep 15 23:00:24 2022 ] Mean test loss of 930 batches: 3.00728440284729.
|
220 |
+
[ Thu Sep 15 23:00:25 2022 ] Top1: 46.30%
|
221 |
+
[ Thu Sep 15 23:00:25 2022 ] Top5: 76.53%
|
222 |
+
[ Thu Sep 15 23:00:26 2022 ] Training epoch: 34
|
223 |
+
[ Thu Sep 15 23:01:08 2022 ] Batch(53/162) done. Loss: 0.4351 lr:0.100000 network_time: 0.0272
|
224 |
+
[ Thu Sep 15 23:02:21 2022 ] Batch(153/162) done. Loss: 0.2856 lr:0.100000 network_time: 0.0261
|
225 |
+
[ Thu Sep 15 23:02:27 2022 ] Eval epoch: 34
|
226 |
+
[ Thu Sep 15 23:04:15 2022 ] Mean test loss of 930 batches: 3.851074695587158.
|
227 |
+
[ Thu Sep 15 23:04:16 2022 ] Top1: 39.96%
|
228 |
+
[ Thu Sep 15 23:04:16 2022 ] Top5: 68.37%
|
229 |
+
[ Thu Sep 15 23:04:16 2022 ] Training epoch: 35
|
230 |
+
[ Thu Sep 15 23:05:27 2022 ] Batch(91/162) done. Loss: 0.3399 lr:0.100000 network_time: 0.0322
|
231 |
+
[ Thu Sep 15 23:06:18 2022 ] Eval epoch: 35
|
232 |
+
[ Thu Sep 15 23:08:07 2022 ] Mean test loss of 930 batches: 3.4936296939849854.
|
233 |
+
[ Thu Sep 15 23:08:07 2022 ] Top1: 39.69%
|
234 |
+
[ Thu Sep 15 23:08:07 2022 ] Top5: 69.64%
|
235 |
+
[ Thu Sep 15 23:08:08 2022 ] Training epoch: 36
|
236 |
+
[ Thu Sep 15 23:08:33 2022 ] Batch(29/162) done. Loss: 0.2299 lr:0.100000 network_time: 0.0319
|
237 |
+
[ Thu Sep 15 23:09:46 2022 ] Batch(129/162) done. Loss: 0.3337 lr:0.100000 network_time: 0.0254
|
238 |
+
[ Thu Sep 15 23:10:09 2022 ] Eval epoch: 36
|
239 |
+
[ Thu Sep 15 23:11:58 2022 ] Mean test loss of 930 batches: 3.194895029067993.
|
240 |
+
[ Thu Sep 15 23:11:58 2022 ] Top1: 43.84%
|
241 |
+
[ Thu Sep 15 23:11:59 2022 ] Top5: 73.81%
|
242 |
+
[ Thu Sep 15 23:11:59 2022 ] Training epoch: 37
|
243 |
+
[ Thu Sep 15 23:12:51 2022 ] Batch(67/162) done. Loss: 0.2560 lr:0.100000 network_time: 0.0271
|
244 |
+
[ Thu Sep 15 23:14:00 2022 ] Eval epoch: 37
|
245 |
+
[ Thu Sep 15 23:15:49 2022 ] Mean test loss of 930 batches: 3.691544771194458.
|
246 |
+
[ Thu Sep 15 23:15:49 2022 ] Top1: 40.55%
|
247 |
+
[ Thu Sep 15 23:15:50 2022 ] Top5: 71.71%
|
248 |
+
[ Thu Sep 15 23:15:50 2022 ] Training epoch: 38
|
249 |
+
[ Thu Sep 15 23:15:57 2022 ] Batch(5/162) done. Loss: 0.3489 lr:0.100000 network_time: 0.0265
|
250 |
+
[ Thu Sep 15 23:17:10 2022 ] Batch(105/162) done. Loss: 0.2590 lr:0.100000 network_time: 0.0269
|
251 |
+
[ Thu Sep 15 23:17:51 2022 ] Eval epoch: 38
|
252 |
+
[ Thu Sep 15 23:19:40 2022 ] Mean test loss of 930 batches: 3.0611417293548584.
|
253 |
+
[ Thu Sep 15 23:19:40 2022 ] Top1: 41.27%
|
254 |
+
[ Thu Sep 15 23:19:41 2022 ] Top5: 72.73%
|
255 |
+
[ Thu Sep 15 23:19:41 2022 ] Training epoch: 39
|
256 |
+
[ Thu Sep 15 23:20:17 2022 ] Batch(43/162) done. Loss: 0.1300 lr:0.100000 network_time: 0.0293
|
257 |
+
[ Thu Sep 15 23:21:29 2022 ] Batch(143/162) done. Loss: 0.2533 lr:0.100000 network_time: 0.0261
|
258 |
+
[ Thu Sep 15 23:21:42 2022 ] Eval epoch: 39
|
259 |
+
[ Thu Sep 15 23:23:32 2022 ] Mean test loss of 930 batches: 2.9703688621520996.
|
260 |
+
[ Thu Sep 15 23:23:32 2022 ] Top1: 44.27%
|
261 |
+
[ Thu Sep 15 23:23:32 2022 ] Top5: 74.68%
|
262 |
+
[ Thu Sep 15 23:23:33 2022 ] Training epoch: 40
|
263 |
+
[ Thu Sep 15 23:24:35 2022 ] Batch(81/162) done. Loss: 0.3066 lr:0.100000 network_time: 0.0266
|
264 |
+
[ Thu Sep 15 23:25:34 2022 ] Eval epoch: 40
|
265 |
+
[ Thu Sep 15 23:27:23 2022 ] Mean test loss of 930 batches: 3.1744678020477295.
|
266 |
+
[ Thu Sep 15 23:27:24 2022 ] Top1: 47.07%
|
267 |
+
[ Thu Sep 15 23:27:24 2022 ] Top5: 75.50%
|
268 |
+
[ Thu Sep 15 23:27:25 2022 ] Training epoch: 41
|
269 |
+
[ Thu Sep 15 23:27:42 2022 ] Batch(19/162) done. Loss: 0.2931 lr:0.100000 network_time: 0.0363
|
270 |
+
[ Thu Sep 15 23:28:55 2022 ] Batch(119/162) done. Loss: 0.5136 lr:0.100000 network_time: 0.0293
|
271 |
+
[ Thu Sep 15 23:29:26 2022 ] Eval epoch: 41
|
272 |
+
[ Thu Sep 15 23:31:15 2022 ] Mean test loss of 930 batches: 3.718257427215576.
|
273 |
+
[ Thu Sep 15 23:31:15 2022 ] Top1: 37.00%
|
274 |
+
[ Thu Sep 15 23:31:15 2022 ] Top5: 69.65%
|
275 |
+
[ Thu Sep 15 23:31:16 2022 ] Training epoch: 42
|
276 |
+
[ Thu Sep 15 23:32:01 2022 ] Batch(57/162) done. Loss: 0.2064 lr:0.100000 network_time: 0.0269
|
277 |
+
[ Thu Sep 15 23:33:13 2022 ] Batch(157/162) done. Loss: 0.2419 lr:0.100000 network_time: 0.0330
|
278 |
+
[ Thu Sep 15 23:33:17 2022 ] Eval epoch: 42
|
279 |
+
[ Thu Sep 15 23:35:06 2022 ] Mean test loss of 930 batches: 2.983041524887085.
|
280 |
+
[ Thu Sep 15 23:35:06 2022 ] Top1: 46.51%
|
281 |
+
[ Thu Sep 15 23:35:06 2022 ] Top5: 75.47%
|
282 |
+
[ Thu Sep 15 23:35:07 2022 ] Training epoch: 43
|
283 |
+
[ Thu Sep 15 23:36:20 2022 ] Batch(95/162) done. Loss: 0.3565 lr:0.100000 network_time: 0.0271
|
284 |
+
[ Thu Sep 15 23:37:08 2022 ] Eval epoch: 43
|
285 |
+
[ Thu Sep 15 23:38:57 2022 ] Mean test loss of 930 batches: 3.6973397731781006.
|
286 |
+
[ Thu Sep 15 23:38:57 2022 ] Top1: 38.11%
|
287 |
+
[ Thu Sep 15 23:38:57 2022 ] Top5: 70.05%
|
288 |
+
[ Thu Sep 15 23:38:58 2022 ] Training epoch: 44
|
289 |
+
[ Thu Sep 15 23:39:26 2022 ] Batch(33/162) done. Loss: 0.2877 lr:0.100000 network_time: 0.0264
|
290 |
+
[ Thu Sep 15 23:40:38 2022 ] Batch(133/162) done. Loss: 0.3982 lr:0.100000 network_time: 0.0310
|
291 |
+
[ Thu Sep 15 23:40:59 2022 ] Eval epoch: 44
|
292 |
+
[ Thu Sep 15 23:42:48 2022 ] Mean test loss of 930 batches: 3.175381660461426.
|
293 |
+
[ Thu Sep 15 23:42:48 2022 ] Top1: 40.97%
|
294 |
+
[ Thu Sep 15 23:42:48 2022 ] Top5: 73.30%
|
295 |
+
[ Thu Sep 15 23:42:49 2022 ] Training epoch: 45
|
296 |
+
[ Thu Sep 15 23:43:44 2022 ] Batch(71/162) done. Loss: 0.1432 lr:0.100000 network_time: 0.0272
|
297 |
+
[ Thu Sep 15 23:44:50 2022 ] Eval epoch: 45
|
298 |
+
[ Thu Sep 15 23:46:38 2022 ] Mean test loss of 930 batches: 3.595310688018799.
|
299 |
+
[ Thu Sep 15 23:46:39 2022 ] Top1: 41.20%
|
300 |
+
[ Thu Sep 15 23:46:39 2022 ] Top5: 71.01%
|
301 |
+
[ Thu Sep 15 23:46:40 2022 ] Training epoch: 46
|
302 |
+
[ Thu Sep 15 23:46:50 2022 ] Batch(9/162) done. Loss: 0.1890 lr:0.100000 network_time: 0.0291
|
303 |
+
[ Thu Sep 15 23:48:03 2022 ] Batch(109/162) done. Loss: 0.2266 lr:0.100000 network_time: 0.0320
|
304 |
+
[ Thu Sep 15 23:48:41 2022 ] Eval epoch: 46
|
305 |
+
[ Thu Sep 15 23:50:30 2022 ] Mean test loss of 930 batches: 2.9090216159820557.
|
306 |
+
[ Thu Sep 15 23:50:30 2022 ] Top1: 46.62%
|
307 |
+
[ Thu Sep 15 23:50:31 2022 ] Top5: 76.53%
|
308 |
+
[ Thu Sep 15 23:50:31 2022 ] Training epoch: 47
|
309 |
+
[ Thu Sep 15 23:51:09 2022 ] Batch(47/162) done. Loss: 0.0817 lr:0.100000 network_time: 0.0278
|
310 |
+
[ Thu Sep 15 23:52:22 2022 ] Batch(147/162) done. Loss: 0.2669 lr:0.100000 network_time: 0.0342
|
311 |
+
[ Thu Sep 15 23:52:32 2022 ] Eval epoch: 47
|
312 |
+
[ Thu Sep 15 23:54:20 2022 ] Mean test loss of 930 batches: 3.4526474475860596.
|
313 |
+
[ Thu Sep 15 23:54:21 2022 ] Top1: 42.55%
|
314 |
+
[ Thu Sep 15 23:54:21 2022 ] Top5: 72.60%
|
315 |
+
[ Thu Sep 15 23:54:22 2022 ] Training epoch: 48
|
316 |
+
[ Thu Sep 15 23:55:27 2022 ] Batch(85/162) done. Loss: 0.2879 lr:0.100000 network_time: 0.0278
|
317 |
+
[ Thu Sep 15 23:56:23 2022 ] Eval epoch: 48
|
318 |
+
[ Thu Sep 15 23:58:11 2022 ] Mean test loss of 930 batches: 3.220905065536499.
|
319 |
+
[ Thu Sep 15 23:58:12 2022 ] Top1: 45.22%
|
320 |
+
[ Thu Sep 15 23:58:12 2022 ] Top5: 73.68%
|
321 |
+
[ Thu Sep 15 23:58:12 2022 ] Training epoch: 49
|
322 |
+
[ Thu Sep 15 23:58:33 2022 ] Batch(23/162) done. Loss: 0.1667 lr:0.100000 network_time: 0.0278
|
323 |
+
[ Thu Sep 15 23:59:46 2022 ] Batch(123/162) done. Loss: 0.1133 lr:0.100000 network_time: 0.0319
|
324 |
+
[ Fri Sep 16 00:00:13 2022 ] Eval epoch: 49
|
325 |
+
[ Fri Sep 16 00:02:02 2022 ] Mean test loss of 930 batches: 3.258099317550659.
|
326 |
+
[ Fri Sep 16 00:02:02 2022 ] Top1: 44.87%
|
327 |
+
[ Fri Sep 16 00:02:03 2022 ] Top5: 74.91%
|
328 |
+
[ Fri Sep 16 00:02:03 2022 ] Training epoch: 50
|
329 |
+
[ Fri Sep 16 00:02:51 2022 ] Batch(61/162) done. Loss: 0.1385 lr:0.100000 network_time: 0.0285
|
330 |
+
[ Fri Sep 16 00:04:04 2022 ] Batch(161/162) done. Loss: 0.2105 lr:0.100000 network_time: 0.0310
|
331 |
+
[ Fri Sep 16 00:04:04 2022 ] Eval epoch: 50
|
332 |
+
[ Fri Sep 16 00:05:53 2022 ] Mean test loss of 930 batches: 3.1035125255584717.
|
333 |
+
[ Fri Sep 16 00:05:54 2022 ] Top1: 46.88%
|
334 |
+
[ Fri Sep 16 00:05:54 2022 ] Top5: 77.57%
|
335 |
+
[ Fri Sep 16 00:05:54 2022 ] Training epoch: 51
|
336 |
+
[ Fri Sep 16 00:07:10 2022 ] Batch(99/162) done. Loss: 0.2091 lr:0.100000 network_time: 0.0273
|
337 |
+
[ Fri Sep 16 00:07:55 2022 ] Eval epoch: 51
|
338 |
+
[ Fri Sep 16 00:09:44 2022 ] Mean test loss of 930 batches: 2.9262797832489014.
|
339 |
+
[ Fri Sep 16 00:09:45 2022 ] Top1: 47.21%
|
340 |
+
[ Fri Sep 16 00:09:45 2022 ] Top5: 76.63%
|
341 |
+
[ Fri Sep 16 00:09:45 2022 ] Training epoch: 52
|
342 |
+
[ Fri Sep 16 00:10:16 2022 ] Batch(37/162) done. Loss: 0.2059 lr:0.100000 network_time: 0.0318
|
343 |
+
[ Fri Sep 16 00:11:29 2022 ] Batch(137/162) done. Loss: 0.2774 lr:0.100000 network_time: 0.0283
|
344 |
+
[ Fri Sep 16 00:11:46 2022 ] Eval epoch: 52
|
345 |
+
[ Fri Sep 16 00:13:35 2022 ] Mean test loss of 930 batches: 3.9441447257995605.
|
346 |
+
[ Fri Sep 16 00:13:36 2022 ] Top1: 39.44%
|
347 |
+
[ Fri Sep 16 00:13:36 2022 ] Top5: 69.58%
|
348 |
+
[ Fri Sep 16 00:13:36 2022 ] Training epoch: 53
|
349 |
+
[ Fri Sep 16 00:14:35 2022 ] Batch(75/162) done. Loss: 0.2692 lr:0.100000 network_time: 0.0272
|
350 |
+
[ Fri Sep 16 00:15:37 2022 ] Eval epoch: 53
|
351 |
+
[ Fri Sep 16 00:17:26 2022 ] Mean test loss of 930 batches: 3.2309017181396484.
|
352 |
+
[ Fri Sep 16 00:17:26 2022 ] Top1: 46.12%
|
353 |
+
[ Fri Sep 16 00:17:27 2022 ] Top5: 75.79%
|
354 |
+
[ Fri Sep 16 00:17:27 2022 ] Training epoch: 54
|
355 |
+
[ Fri Sep 16 00:17:40 2022 ] Batch(13/162) done. Loss: 0.1146 lr:0.100000 network_time: 0.0309
|
356 |
+
[ Fri Sep 16 00:18:53 2022 ] Batch(113/162) done. Loss: 0.2228 lr:0.100000 network_time: 0.0282
|
357 |
+
[ Fri Sep 16 00:19:28 2022 ] Eval epoch: 54
|
358 |
+
[ Fri Sep 16 00:21:17 2022 ] Mean test loss of 930 batches: 2.87821364402771.
|
359 |
+
[ Fri Sep 16 00:21:17 2022 ] Top1: 47.83%
|
360 |
+
[ Fri Sep 16 00:21:18 2022 ] Top5: 76.74%
|
361 |
+
[ Fri Sep 16 00:21:18 2022 ] Training epoch: 55
|
362 |
+
[ Fri Sep 16 00:21:59 2022 ] Batch(51/162) done. Loss: 0.2163 lr:0.100000 network_time: 0.0272
|
363 |
+
[ Fri Sep 16 00:23:12 2022 ] Batch(151/162) done. Loss: 0.1489 lr:0.100000 network_time: 0.0260
|
364 |
+
[ Fri Sep 16 00:23:19 2022 ] Eval epoch: 55
|
365 |
+
[ Fri Sep 16 00:25:08 2022 ] Mean test loss of 930 batches: 3.5154900550842285.
|
366 |
+
[ Fri Sep 16 00:25:08 2022 ] Top1: 43.40%
|
367 |
+
[ Fri Sep 16 00:25:08 2022 ] Top5: 71.89%
|
368 |
+
[ Fri Sep 16 00:25:09 2022 ] Training epoch: 56
|
369 |
+
[ Fri Sep 16 00:26:17 2022 ] Batch(89/162) done. Loss: 0.0506 lr:0.100000 network_time: 0.0277
|
370 |
+
[ Fri Sep 16 00:27:10 2022 ] Eval epoch: 56
|
371 |
+
[ Fri Sep 16 00:28:59 2022 ] Mean test loss of 930 batches: 2.9366331100463867.
|
372 |
+
[ Fri Sep 16 00:29:00 2022 ] Top1: 48.54%
|
373 |
+
[ Fri Sep 16 00:29:00 2022 ] Top5: 77.41%
|
374 |
+
[ Fri Sep 16 00:29:00 2022 ] Training epoch: 57
|
375 |
+
[ Fri Sep 16 00:29:24 2022 ] Batch(27/162) done. Loss: 0.1010 lr:0.100000 network_time: 0.0288
|
376 |
+
[ Fri Sep 16 00:30:37 2022 ] Batch(127/162) done. Loss: 0.1355 lr:0.100000 network_time: 0.0316
|
377 |
+
[ Fri Sep 16 00:31:01 2022 ] Eval epoch: 57
|
378 |
+
[ Fri Sep 16 00:32:50 2022 ] Mean test loss of 930 batches: 2.7375779151916504.
|
379 |
+
[ Fri Sep 16 00:32:51 2022 ] Top1: 49.76%
|
380 |
+
[ Fri Sep 16 00:32:51 2022 ] Top5: 77.95%
|
381 |
+
[ Fri Sep 16 00:32:51 2022 ] Training epoch: 58
|
382 |
+
[ Fri Sep 16 00:33:43 2022 ] Batch(65/162) done. Loss: 0.1278 lr:0.100000 network_time: 0.0278
|
383 |
+
[ Fri Sep 16 00:34:53 2022 ] Eval epoch: 58
|
384 |
+
[ Fri Sep 16 00:36:42 2022 ] Mean test loss of 930 batches: 3.172297239303589.
|
385 |
+
[ Fri Sep 16 00:36:42 2022 ] Top1: 47.46%
|
386 |
+
[ Fri Sep 16 00:36:42 2022 ] Top5: 75.36%
|
387 |
+
[ Fri Sep 16 00:36:43 2022 ] Training epoch: 59
|
388 |
+
[ Fri Sep 16 00:36:49 2022 ] Batch(3/162) done. Loss: 0.0779 lr:0.100000 network_time: 0.0329
|
389 |
+
[ Fri Sep 16 00:38:01 2022 ] Batch(103/162) done. Loss: 0.1418 lr:0.100000 network_time: 0.0267
|
390 |
+
[ Fri Sep 16 00:38:44 2022 ] Eval epoch: 59
|
391 |
+
[ Fri Sep 16 00:40:32 2022 ] Mean test loss of 930 batches: 2.990083694458008.
|
392 |
+
[ Fri Sep 16 00:40:33 2022 ] Top1: 47.78%
|
393 |
+
[ Fri Sep 16 00:40:33 2022 ] Top5: 76.48%
|
394 |
+
[ Fri Sep 16 00:40:33 2022 ] Training epoch: 60
|
395 |
+
[ Fri Sep 16 00:41:07 2022 ] Batch(41/162) done. Loss: 0.2073 lr:0.100000 network_time: 0.0301
|
396 |
+
[ Fri Sep 16 00:42:20 2022 ] Batch(141/162) done. Loss: 0.0576 lr:0.100000 network_time: 0.0277
|
397 |
+
[ Fri Sep 16 00:42:34 2022 ] Eval epoch: 60
|
398 |
+
[ Fri Sep 16 00:44:23 2022 ] Mean test loss of 930 batches: 2.775873899459839.
|
399 |
+
[ Fri Sep 16 00:44:24 2022 ] Top1: 50.88%
|
400 |
+
[ Fri Sep 16 00:44:24 2022 ] Top5: 78.18%
|
401 |
+
[ Fri Sep 16 00:44:25 2022 ] Training epoch: 61
|
402 |
+
[ Fri Sep 16 00:45:26 2022 ] Batch(79/162) done. Loss: 0.0945 lr:0.010000 network_time: 0.0278
|
403 |
+
[ Fri Sep 16 00:46:26 2022 ] Eval epoch: 61
|
404 |
+
[ Fri Sep 16 00:48:14 2022 ] Mean test loss of 930 batches: 2.546633243560791.
|
405 |
+
[ Fri Sep 16 00:48:15 2022 ] Top1: 53.51%
|
406 |
+
[ Fri Sep 16 00:48:15 2022 ] Top5: 81.01%
|
407 |
+
[ Fri Sep 16 00:48:16 2022 ] Training epoch: 62
|
408 |
+
[ Fri Sep 16 00:48:32 2022 ] Batch(17/162) done. Loss: 0.0171 lr:0.010000 network_time: 0.0321
|
409 |
+
[ Fri Sep 16 00:49:44 2022 ] Batch(117/162) done. Loss: 0.0262 lr:0.010000 network_time: 0.0321
|
410 |
+
[ Fri Sep 16 00:50:16 2022 ] Eval epoch: 62
|
411 |
+
[ Fri Sep 16 00:52:06 2022 ] Mean test loss of 930 batches: 2.4446537494659424.
|
412 |
+
[ Fri Sep 16 00:52:06 2022 ] Top1: 55.29%
|
413 |
+
[ Fri Sep 16 00:52:07 2022 ] Top5: 81.98%
|
414 |
+
[ Fri Sep 16 00:52:07 2022 ] Training epoch: 63
|
415 |
+
[ Fri Sep 16 00:52:51 2022 ] Batch(55/162) done. Loss: 0.0085 lr:0.010000 network_time: 0.0275
|
416 |
+
[ Fri Sep 16 00:54:03 2022 ] Batch(155/162) done. Loss: 0.0210 lr:0.010000 network_time: 0.0270
|
417 |
+
[ Fri Sep 16 00:54:08 2022 ] Eval epoch: 63
|
418 |
+
[ Fri Sep 16 00:55:57 2022 ] Mean test loss of 930 batches: 2.4653677940368652.
|
419 |
+
[ Fri Sep 16 00:55:57 2022 ] Top1: 55.56%
|
420 |
+
[ Fri Sep 16 00:55:58 2022 ] Top5: 82.16%
|
421 |
+
[ Fri Sep 16 00:55:58 2022 ] Training epoch: 64
|
422 |
+
[ Fri Sep 16 00:57:10 2022 ] Batch(93/162) done. Loss: 0.0419 lr:0.010000 network_time: 0.0277
|
423 |
+
[ Fri Sep 16 00:57:59 2022 ] Eval epoch: 64
|
424 |
+
[ Fri Sep 16 00:59:48 2022 ] Mean test loss of 930 batches: 2.5171265602111816.
|
425 |
+
[ Fri Sep 16 00:59:48 2022 ] Top1: 54.31%
|
426 |
+
[ Fri Sep 16 00:59:49 2022 ] Top5: 81.78%
|
427 |
+
[ Fri Sep 16 00:59:49 2022 ] Training epoch: 65
|
428 |
+
[ Fri Sep 16 01:00:15 2022 ] Batch(31/162) done. Loss: 0.0102 lr:0.010000 network_time: 0.0266
|
429 |
+
[ Fri Sep 16 01:01:28 2022 ] Batch(131/162) done. Loss: 0.0297 lr:0.010000 network_time: 0.0288
|
430 |
+
[ Fri Sep 16 01:01:50 2022 ] Eval epoch: 65
|
431 |
+
[ Fri Sep 16 01:03:39 2022 ] Mean test loss of 930 batches: 2.46934175491333.
|
432 |
+
[ Fri Sep 16 01:03:39 2022 ] Top1: 55.12%
|
433 |
+
[ Fri Sep 16 01:03:40 2022 ] Top5: 81.94%
|
434 |
+
[ Fri Sep 16 01:03:40 2022 ] Training epoch: 66
|
435 |
+
[ Fri Sep 16 01:04:34 2022 ] Batch(69/162) done. Loss: 0.0395 lr:0.010000 network_time: 0.0301
|
436 |
+
[ Fri Sep 16 01:05:41 2022 ] Eval epoch: 66
|
437 |
+
[ Fri Sep 16 01:07:31 2022 ] Mean test loss of 930 batches: 2.5224382877349854.
|
438 |
+
[ Fri Sep 16 01:07:31 2022 ] Top1: 55.47%
|
439 |
+
[ Fri Sep 16 01:07:32 2022 ] Top5: 81.80%
|
440 |
+
[ Fri Sep 16 01:07:32 2022 ] Training epoch: 67
|
441 |
+
[ Fri Sep 16 01:07:41 2022 ] Batch(7/162) done. Loss: 0.0076 lr:0.010000 network_time: 0.0296
|
442 |
+
[ Fri Sep 16 01:08:54 2022 ] Batch(107/162) done. Loss: 0.0097 lr:0.010000 network_time: 0.0279
|
443 |
+
[ Fri Sep 16 01:09:33 2022 ] Eval epoch: 67
|
444 |
+
[ Fri Sep 16 01:11:22 2022 ] Mean test loss of 930 batches: 2.4902591705322266.
|
445 |
+
[ Fri Sep 16 01:11:22 2022 ] Top1: 55.35%
|
446 |
+
[ Fri Sep 16 01:11:23 2022 ] Top5: 81.95%
|
447 |
+
[ Fri Sep 16 01:11:23 2022 ] Training epoch: 68
|
448 |
+
[ Fri Sep 16 01:12:00 2022 ] Batch(45/162) done. Loss: 0.0064 lr:0.010000 network_time: 0.0280
|
449 |
+
[ Fri Sep 16 01:13:12 2022 ] Batch(145/162) done. Loss: 0.0057 lr:0.010000 network_time: 0.0269
|
450 |
+
[ Fri Sep 16 01:13:24 2022 ] Eval epoch: 68
|
451 |
+
[ Fri Sep 16 01:15:13 2022 ] Mean test loss of 930 batches: 2.47910737991333.
|
452 |
+
[ Fri Sep 16 01:15:13 2022 ] Top1: 55.58%
|
453 |
+
[ Fri Sep 16 01:15:14 2022 ] Top5: 82.24%
|
454 |
+
[ Fri Sep 16 01:15:14 2022 ] Training epoch: 69
|
455 |
+
[ Fri Sep 16 01:16:18 2022 ] Batch(83/162) done. Loss: 0.0091 lr:0.010000 network_time: 0.0289
|
456 |
+
[ Fri Sep 16 01:17:15 2022 ] Eval epoch: 69
|
457 |
+
[ Fri Sep 16 01:19:04 2022 ] Mean test loss of 930 batches: 2.5265135765075684.
|
458 |
+
[ Fri Sep 16 01:19:04 2022 ] Top1: 54.84%
|
459 |
+
[ Fri Sep 16 01:19:05 2022 ] Top5: 81.86%
|
460 |
+
[ Fri Sep 16 01:19:05 2022 ] Training epoch: 70
|
461 |
+
[ Fri Sep 16 01:19:25 2022 ] Batch(21/162) done. Loss: 0.0230 lr:0.010000 network_time: 0.0311
|
462 |
+
[ Fri Sep 16 01:20:37 2022 ] Batch(121/162) done. Loss: 0.0078 lr:0.010000 network_time: 0.0326
|
463 |
+
[ Fri Sep 16 01:21:06 2022 ] Eval epoch: 70
|
464 |
+
[ Fri Sep 16 01:22:55 2022 ] Mean test loss of 930 batches: 2.474184036254883.
|
465 |
+
[ Fri Sep 16 01:22:55 2022 ] Top1: 55.45%
|
466 |
+
[ Fri Sep 16 01:22:56 2022 ] Top5: 82.10%
|
467 |
+
[ Fri Sep 16 01:22:56 2022 ] Training epoch: 71
|
468 |
+
[ Fri Sep 16 01:23:43 2022 ] Batch(59/162) done. Loss: 0.0104 lr:0.010000 network_time: 0.0270
|
469 |
+
[ Fri Sep 16 01:24:55 2022 ] Batch(159/162) done. Loss: 0.0061 lr:0.010000 network_time: 0.0309
|
470 |
+
[ Fri Sep 16 01:24:57 2022 ] Eval epoch: 71
|
471 |
+
[ Fri Sep 16 01:26:46 2022 ] Mean test loss of 930 batches: 2.546384572982788.
|
472 |
+
[ Fri Sep 16 01:26:47 2022 ] Top1: 54.93%
|
473 |
+
[ Fri Sep 16 01:26:47 2022 ] Top5: 81.87%
|
474 |
+
[ Fri Sep 16 01:26:47 2022 ] Training epoch: 72
|
475 |
+
[ Fri Sep 16 01:28:02 2022 ] Batch(97/162) done. Loss: 0.0070 lr:0.010000 network_time: 0.0311
|
476 |
+
[ Fri Sep 16 01:28:48 2022 ] Eval epoch: 72
|
477 |
+
[ Fri Sep 16 01:30:38 2022 ] Mean test loss of 930 batches: 2.5100717544555664.
|
478 |
+
[ Fri Sep 16 01:30:38 2022 ] Top1: 55.77%
|
479 |
+
[ Fri Sep 16 01:30:38 2022 ] Top5: 82.31%
|
480 |
+
[ Fri Sep 16 01:30:39 2022 ] Training epoch: 73
|
481 |
+
[ Fri Sep 16 01:31:08 2022 ] Batch(35/162) done. Loss: 0.0055 lr:0.010000 network_time: 0.0316
|
482 |
+
[ Fri Sep 16 01:32:21 2022 ] Batch(135/162) done. Loss: 0.0062 lr:0.010000 network_time: 0.0302
|
483 |
+
[ Fri Sep 16 01:32:40 2022 ] Eval epoch: 73
|
484 |
+
[ Fri Sep 16 01:34:28 2022 ] Mean test loss of 930 batches: 2.4956727027893066.
|
485 |
+
[ Fri Sep 16 01:34:29 2022 ] Top1: 56.07%
|
486 |
+
[ Fri Sep 16 01:34:29 2022 ] Top5: 82.33%
|
487 |
+
[ Fri Sep 16 01:34:29 2022 ] Training epoch: 74
|
488 |
+
[ Fri Sep 16 01:35:26 2022 ] Batch(73/162) done. Loss: 0.0058 lr:0.010000 network_time: 0.0304
|
489 |
+
[ Fri Sep 16 01:36:30 2022 ] Eval epoch: 74
|
490 |
+
[ Fri Sep 16 01:38:19 2022 ] Mean test loss of 930 batches: 2.4992711544036865.
|
491 |
+
[ Fri Sep 16 01:38:19 2022 ] Top1: 55.49%
|
492 |
+
[ Fri Sep 16 01:38:19 2022 ] Top5: 82.19%
|
493 |
+
[ Fri Sep 16 01:38:20 2022 ] Training epoch: 75
|
494 |
+
[ Fri Sep 16 01:38:32 2022 ] Batch(11/162) done. Loss: 0.0068 lr:0.010000 network_time: 0.0274
|
495 |
+
[ Fri Sep 16 01:39:44 2022 ] Batch(111/162) done. Loss: 0.0088 lr:0.010000 network_time: 0.0283
|
496 |
+
[ Fri Sep 16 01:40:21 2022 ] Eval epoch: 75
|
497 |
+
[ Fri Sep 16 01:42:09 2022 ] Mean test loss of 930 batches: 2.5417563915252686.
|
498 |
+
[ Fri Sep 16 01:42:10 2022 ] Top1: 54.24%
|
499 |
+
[ Fri Sep 16 01:42:10 2022 ] Top5: 81.63%
|
500 |
+
[ Fri Sep 16 01:42:10 2022 ] Training epoch: 76
|
501 |
+
[ Fri Sep 16 01:42:50 2022 ] Batch(49/162) done. Loss: 0.0113 lr:0.010000 network_time: 0.0317
|
502 |
+
[ Fri Sep 16 01:44:02 2022 ] Batch(149/162) done. Loss: 0.0099 lr:0.010000 network_time: 0.0267
|
503 |
+
[ Fri Sep 16 01:44:11 2022 ] Eval epoch: 76
|
504 |
+
[ Fri Sep 16 01:46:00 2022 ] Mean test loss of 930 batches: 2.5105996131896973.
|
505 |
+
[ Fri Sep 16 01:46:00 2022 ] Top1: 55.93%
|
506 |
+
[ Fri Sep 16 01:46:01 2022 ] Top5: 82.12%
|
507 |
+
[ Fri Sep 16 01:46:01 2022 ] Training epoch: 77
|
508 |
+
[ Fri Sep 16 01:47:08 2022 ] Batch(87/162) done. Loss: 0.0104 lr:0.010000 network_time: 0.0266
|
509 |
+
[ Fri Sep 16 01:48:02 2022 ] Eval epoch: 77
|
510 |
+
[ Fri Sep 16 01:49:50 2022 ] Mean test loss of 930 batches: 2.4512035846710205.
|
511 |
+
[ Fri Sep 16 01:49:51 2022 ] Top1: 55.85%
|
512 |
+
[ Fri Sep 16 01:49:51 2022 ] Top5: 82.47%
|
513 |
+
[ Fri Sep 16 01:49:51 2022 ] Training epoch: 78
|
514 |
+
[ Fri Sep 16 01:50:14 2022 ] Batch(25/162) done. Loss: 0.0062 lr:0.010000 network_time: 0.0299
|
515 |
+
[ Fri Sep 16 01:51:26 2022 ] Batch(125/162) done. Loss: 0.0035 lr:0.010000 network_time: 0.0276
|
516 |
+
[ Fri Sep 16 01:51:53 2022 ] Eval epoch: 78
|
517 |
+
[ Fri Sep 16 01:53:42 2022 ] Mean test loss of 930 batches: 2.4763002395629883.
|
518 |
+
[ Fri Sep 16 01:53:42 2022 ] Top1: 55.33%
|
519 |
+
[ Fri Sep 16 01:53:43 2022 ] Top5: 82.01%
|
520 |
+
[ Fri Sep 16 01:53:43 2022 ] Training epoch: 79
|
521 |
+
[ Fri Sep 16 01:54:33 2022 ] Batch(63/162) done. Loss: 0.0081 lr:0.010000 network_time: 0.0294
|
522 |
+
[ Fri Sep 16 01:55:44 2022 ] Eval epoch: 79
|
523 |
+
[ Fri Sep 16 01:57:33 2022 ] Mean test loss of 930 batches: 2.486677646636963.
|
524 |
+
[ Fri Sep 16 01:57:33 2022 ] Top1: 55.50%
|
525 |
+
[ Fri Sep 16 01:57:34 2022 ] Top5: 82.13%
|
526 |
+
[ Fri Sep 16 01:57:34 2022 ] Training epoch: 80
|
527 |
+
[ Fri Sep 16 01:57:39 2022 ] Batch(1/162) done. Loss: 0.0030 lr:0.010000 network_time: 0.0301
|
528 |
+
[ Fri Sep 16 01:58:51 2022 ] Batch(101/162) done. Loss: 0.0107 lr:0.010000 network_time: 0.0270
|
529 |
+
[ Fri Sep 16 01:59:35 2022 ] Eval epoch: 80
|
530 |
+
[ Fri Sep 16 02:01:24 2022 ] Mean test loss of 930 batches: 2.5012757778167725.
|
531 |
+
[ Fri Sep 16 02:01:24 2022 ] Top1: 55.39%
|
532 |
+
[ Fri Sep 16 02:01:25 2022 ] Top5: 82.13%
|
533 |
+
[ Fri Sep 16 02:01:25 2022 ] Training epoch: 81
|
534 |
+
[ Fri Sep 16 02:01:57 2022 ] Batch(39/162) done. Loss: 0.0049 lr:0.001000 network_time: 0.0252
|
535 |
+
[ Fri Sep 16 02:03:10 2022 ] Batch(139/162) done. Loss: 0.0029 lr:0.001000 network_time: 0.0298
|
536 |
+
[ Fri Sep 16 02:03:26 2022 ] Eval epoch: 81
|
537 |
+
[ Fri Sep 16 02:05:14 2022 ] Mean test loss of 930 batches: 2.506415843963623.
|
538 |
+
[ Fri Sep 16 02:05:14 2022 ] Top1: 55.65%
|
539 |
+
[ Fri Sep 16 02:05:15 2022 ] Top5: 82.03%
|
540 |
+
[ Fri Sep 16 02:05:15 2022 ] Training epoch: 82
|
541 |
+
[ Fri Sep 16 02:06:15 2022 ] Batch(77/162) done. Loss: 0.0062 lr:0.001000 network_time: 0.0330
|
542 |
+
[ Fri Sep 16 02:07:16 2022 ] Eval epoch: 82
|
543 |
+
[ Fri Sep 16 02:09:05 2022 ] Mean test loss of 930 batches: 2.457895278930664.
|
544 |
+
[ Fri Sep 16 02:09:05 2022 ] Top1: 56.04%
|
545 |
+
[ Fri Sep 16 02:09:06 2022 ] Top5: 82.38%
|
546 |
+
[ Fri Sep 16 02:09:06 2022 ] Training epoch: 83
|
547 |
+
[ Fri Sep 16 02:09:21 2022 ] Batch(15/162) done. Loss: 0.0077 lr:0.001000 network_time: 0.0274
|
548 |
+
[ Fri Sep 16 02:10:33 2022 ] Batch(115/162) done. Loss: 0.0077 lr:0.001000 network_time: 0.0297
|
549 |
+
[ Fri Sep 16 02:11:07 2022 ] Eval epoch: 83
|
550 |
+
[ Fri Sep 16 02:12:55 2022 ] Mean test loss of 930 batches: 2.492645025253296.
|
551 |
+
[ Fri Sep 16 02:12:56 2022 ] Top1: 55.22%
|
552 |
+
[ Fri Sep 16 02:12:56 2022 ] Top5: 82.08%
|
553 |
+
[ Fri Sep 16 02:12:57 2022 ] Training epoch: 84
|
554 |
+
[ Fri Sep 16 02:13:39 2022 ] Batch(53/162) done. Loss: 0.0060 lr:0.001000 network_time: 0.0295
|
555 |
+
[ Fri Sep 16 02:14:52 2022 ] Batch(153/162) done. Loss: 0.0130 lr:0.001000 network_time: 0.0274
|
556 |
+
[ Fri Sep 16 02:14:58 2022 ] Eval epoch: 84
|
557 |
+
[ Fri Sep 16 02:16:47 2022 ] Mean test loss of 930 batches: 2.51953125.
|
558 |
+
[ Fri Sep 16 02:16:47 2022 ] Top1: 56.11%
|
559 |
+
[ Fri Sep 16 02:16:48 2022 ] Top5: 82.06%
|
560 |
+
[ Fri Sep 16 02:16:48 2022 ] Training epoch: 85
|
561 |
+
[ Fri Sep 16 02:17:58 2022 ] Batch(91/162) done. Loss: 0.0052 lr:0.001000 network_time: 0.0278
|
562 |
+
[ Fri Sep 16 02:18:49 2022 ] Eval epoch: 85
|
563 |
+
[ Fri Sep 16 02:20:38 2022 ] Mean test loss of 930 batches: 2.5209572315216064.
|
564 |
+
[ Fri Sep 16 02:20:39 2022 ] Top1: 55.48%
|
565 |
+
[ Fri Sep 16 02:20:39 2022 ] Top5: 82.19%
|
566 |
+
[ Fri Sep 16 02:20:40 2022 ] Training epoch: 86
|
567 |
+
[ Fri Sep 16 02:21:05 2022 ] Batch(29/162) done. Loss: 0.0048 lr:0.001000 network_time: 0.0270
|
568 |
+
[ Fri Sep 16 02:22:17 2022 ] Batch(129/162) done. Loss: 0.0119 lr:0.001000 network_time: 0.0269
|
569 |
+
[ Fri Sep 16 02:22:41 2022 ] Eval epoch: 86
|
570 |
+
[ Fri Sep 16 02:24:30 2022 ] Mean test loss of 930 batches: 2.516221523284912.
|
571 |
+
[ Fri Sep 16 02:24:30 2022 ] Top1: 54.71%
|
572 |
+
[ Fri Sep 16 02:24:31 2022 ] Top5: 81.78%
|
573 |
+
[ Fri Sep 16 02:24:31 2022 ] Training epoch: 87
|
574 |
+
[ Fri Sep 16 02:25:24 2022 ] Batch(67/162) done. Loss: 0.0088 lr:0.001000 network_time: 0.0544
|
575 |
+
[ Fri Sep 16 02:26:32 2022 ] Eval epoch: 87
|
576 |
+
[ Fri Sep 16 02:28:21 2022 ] Mean test loss of 930 batches: 2.474106550216675.
|
577 |
+
[ Fri Sep 16 02:28:21 2022 ] Top1: 56.02%
|
578 |
+
[ Fri Sep 16 02:28:22 2022 ] Top5: 82.42%
|
579 |
+
[ Fri Sep 16 02:28:22 2022 ] Training epoch: 88
|
580 |
+
[ Fri Sep 16 02:28:29 2022 ] Batch(5/162) done. Loss: 0.0110 lr:0.001000 network_time: 0.0265
|
581 |
+
[ Fri Sep 16 02:29:42 2022 ] Batch(105/162) done. Loss: 0.0054 lr:0.001000 network_time: 0.0281
|
582 |
+
[ Fri Sep 16 02:30:23 2022 ] Eval epoch: 88
|
583 |
+
[ Fri Sep 16 02:32:11 2022 ] Mean test loss of 930 batches: 2.4749226570129395.
|
584 |
+
[ Fri Sep 16 02:32:12 2022 ] Top1: 55.66%
|
585 |
+
[ Fri Sep 16 02:32:12 2022 ] Top5: 82.22%
|
586 |
+
[ Fri Sep 16 02:32:13 2022 ] Training epoch: 89
|
587 |
+
[ Fri Sep 16 02:32:48 2022 ] Batch(43/162) done. Loss: 0.0048 lr:0.001000 network_time: 0.0293
|
588 |
+
[ Fri Sep 16 02:34:00 2022 ] Batch(143/162) done. Loss: 0.0074 lr:0.001000 network_time: 0.0271
|
589 |
+
[ Fri Sep 16 02:34:14 2022 ] Eval epoch: 89
|
590 |
+
[ Fri Sep 16 02:36:02 2022 ] Mean test loss of 930 batches: 2.5148983001708984.
|
591 |
+
[ Fri Sep 16 02:36:02 2022 ] Top1: 54.74%
|
592 |
+
[ Fri Sep 16 02:36:03 2022 ] Top5: 82.05%
|
593 |
+
[ Fri Sep 16 02:36:03 2022 ] Training epoch: 90
|
594 |
+
[ Fri Sep 16 02:37:06 2022 ] Batch(81/162) done. Loss: 0.0063 lr:0.001000 network_time: 0.0316
|
595 |
+
[ Fri Sep 16 02:38:04 2022 ] Eval epoch: 90
|
596 |
+
[ Fri Sep 16 02:39:53 2022 ] Mean test loss of 930 batches: 2.497434616088867.
|
597 |
+
[ Fri Sep 16 02:39:53 2022 ] Top1: 55.47%
|
598 |
+
[ Fri Sep 16 02:39:53 2022 ] Top5: 82.13%
|
599 |
+
[ Fri Sep 16 02:39:54 2022 ] Training epoch: 91
|
600 |
+
[ Fri Sep 16 02:40:12 2022 ] Batch(19/162) done. Loss: 0.0053 lr:0.001000 network_time: 0.0273
|
601 |
+
[ Fri Sep 16 02:41:24 2022 ] Batch(119/162) done. Loss: 0.0271 lr:0.001000 network_time: 0.0275
|
602 |
+
[ Fri Sep 16 02:41:55 2022 ] Eval epoch: 91
|
603 |
+
[ Fri Sep 16 02:43:43 2022 ] Mean test loss of 930 batches: 2.519994020462036.
|
604 |
+
[ Fri Sep 16 02:43:44 2022 ] Top1: 55.82%
|
605 |
+
[ Fri Sep 16 02:43:44 2022 ] Top5: 82.46%
|
606 |
+
[ Fri Sep 16 02:43:44 2022 ] Training epoch: 92
|
607 |
+
[ Fri Sep 16 02:44:30 2022 ] Batch(57/162) done. Loss: 0.0090 lr:0.001000 network_time: 0.0321
|
608 |
+
[ Fri Sep 16 02:45:42 2022 ] Batch(157/162) done. Loss: 0.0116 lr:0.001000 network_time: 0.0258
|
609 |
+
[ Fri Sep 16 02:45:45 2022 ] Eval epoch: 92
|
610 |
+
[ Fri Sep 16 02:47:34 2022 ] Mean test loss of 930 batches: 2.5442798137664795.
|
611 |
+
[ Fri Sep 16 02:47:34 2022 ] Top1: 54.29%
|
612 |
+
[ Fri Sep 16 02:47:35 2022 ] Top5: 81.77%
|
613 |
+
[ Fri Sep 16 02:47:35 2022 ] Training epoch: 93
|
614 |
+
[ Fri Sep 16 02:48:48 2022 ] Batch(95/162) done. Loss: 0.0067 lr:0.001000 network_time: 0.0278
|
615 |
+
[ Fri Sep 16 02:49:36 2022 ] Eval epoch: 93
|
616 |
+
[ Fri Sep 16 02:51:24 2022 ] Mean test loss of 930 batches: 2.500120162963867.
|
617 |
+
[ Fri Sep 16 02:51:25 2022 ] Top1: 55.30%
|
618 |
+
[ Fri Sep 16 02:51:25 2022 ] Top5: 82.14%
|
619 |
+
[ Fri Sep 16 02:51:25 2022 ] Training epoch: 94
|
620 |
+
[ Fri Sep 16 02:51:54 2022 ] Batch(33/162) done. Loss: 0.0062 lr:0.001000 network_time: 0.0301
|
621 |
+
[ Fri Sep 16 02:53:06 2022 ] Batch(133/162) done. Loss: 0.0076 lr:0.001000 network_time: 0.0275
|
622 |
+
[ Fri Sep 16 02:53:27 2022 ] Eval epoch: 94
|
623 |
+
[ Fri Sep 16 02:55:16 2022 ] Mean test loss of 930 batches: 2.46699595451355.
|
624 |
+
[ Fri Sep 16 02:55:16 2022 ] Top1: 56.12%
|
625 |
+
[ Fri Sep 16 02:55:17 2022 ] Top5: 82.52%
|
626 |
+
[ Fri Sep 16 02:55:17 2022 ] Training epoch: 95
|
627 |
+
[ Fri Sep 16 02:56:12 2022 ] Batch(71/162) done. Loss: 0.0181 lr:0.001000 network_time: 0.0295
|
628 |
+
[ Fri Sep 16 02:57:18 2022 ] Eval epoch: 95
|
629 |
+
[ Fri Sep 16 02:59:07 2022 ] Mean test loss of 930 batches: 2.488225221633911.
|
630 |
+
[ Fri Sep 16 02:59:07 2022 ] Top1: 55.72%
|
631 |
+
[ Fri Sep 16 02:59:07 2022 ] Top5: 82.19%
|
632 |
+
[ Fri Sep 16 02:59:08 2022 ] Training epoch: 96
|
633 |
+
[ Fri Sep 16 02:59:18 2022 ] Batch(9/162) done. Loss: 0.0066 lr:0.001000 network_time: 0.0255
|
634 |
+
[ Fri Sep 16 03:00:31 2022 ] Batch(109/162) done. Loss: 0.0051 lr:0.001000 network_time: 0.0260
|
635 |
+
[ Fri Sep 16 03:01:09 2022 ] Eval epoch: 96
|
636 |
+
[ Fri Sep 16 03:02:57 2022 ] Mean test loss of 930 batches: 2.567333936691284.
|
637 |
+
[ Fri Sep 16 03:02:58 2022 ] Top1: 53.87%
|
638 |
+
[ Fri Sep 16 03:02:58 2022 ] Top5: 81.54%
|
639 |
+
[ Fri Sep 16 03:02:59 2022 ] Training epoch: 97
|
640 |
+
[ Fri Sep 16 03:03:36 2022 ] Batch(47/162) done. Loss: 0.0046 lr:0.001000 network_time: 0.0237
|
641 |
+
[ Fri Sep 16 03:04:49 2022 ] Batch(147/162) done. Loss: 0.0059 lr:0.001000 network_time: 0.0283
|
642 |
+
[ Fri Sep 16 03:04:59 2022 ] Eval epoch: 97
|
643 |
+
[ Fri Sep 16 03:06:48 2022 ] Mean test loss of 930 batches: 2.4648122787475586.
|
644 |
+
[ Fri Sep 16 03:06:48 2022 ] Top1: 55.67%
|
645 |
+
[ Fri Sep 16 03:06:49 2022 ] Top5: 82.32%
|
646 |
+
[ Fri Sep 16 03:06:49 2022 ] Training epoch: 98
|
647 |
+
[ Fri Sep 16 03:07:55 2022 ] Batch(85/162) done. Loss: 0.0076 lr:0.001000 network_time: 0.0262
|
648 |
+
[ Fri Sep 16 03:08:50 2022 ] Eval epoch: 98
|
649 |
+
[ Fri Sep 16 03:10:38 2022 ] Mean test loss of 930 batches: 2.4949991703033447.
|
650 |
+
[ Fri Sep 16 03:10:39 2022 ] Top1: 55.13%
|
651 |
+
[ Fri Sep 16 03:10:39 2022 ] Top5: 82.00%
|
652 |
+
[ Fri Sep 16 03:10:40 2022 ] Training epoch: 99
|
653 |
+
[ Fri Sep 16 03:11:00 2022 ] Batch(23/162) done. Loss: 0.0024 lr:0.001000 network_time: 0.0289
|
654 |
+
[ Fri Sep 16 03:12:13 2022 ] Batch(123/162) done. Loss: 0.0083 lr:0.001000 network_time: 0.0261
|
655 |
+
[ Fri Sep 16 03:12:41 2022 ] Eval epoch: 99
|
656 |
+
[ Fri Sep 16 03:14:29 2022 ] Mean test loss of 930 batches: 2.5010464191436768.
|
657 |
+
[ Fri Sep 16 03:14:29 2022 ] Top1: 54.66%
|
658 |
+
[ Fri Sep 16 03:14:30 2022 ] Top5: 81.95%
|
659 |
+
[ Fri Sep 16 03:14:30 2022 ] Training epoch: 100
|
660 |
+
[ Fri Sep 16 03:15:18 2022 ] Batch(61/162) done. Loss: 0.0057 lr:0.001000 network_time: 0.0331
|
661 |
+
[ Fri Sep 16 03:16:31 2022 ] Batch(161/162) done. Loss: 0.0055 lr:0.001000 network_time: 0.0280
|
662 |
+
[ Fri Sep 16 03:16:31 2022 ] Eval epoch: 100
|
663 |
+
[ Fri Sep 16 03:18:20 2022 ] Mean test loss of 930 batches: 2.5131969451904297.
|
664 |
+
[ Fri Sep 16 03:18:20 2022 ] Top1: 55.20%
|
665 |
+
[ Fri Sep 16 03:18:21 2022 ] Top5: 81.94%
|
666 |
+
[ Fri Sep 16 03:18:21 2022 ] Training epoch: 101
|
667 |
+
[ Fri Sep 16 03:19:37 2022 ] Batch(99/162) done. Loss: 0.0046 lr:0.000100 network_time: 0.0303
|
668 |
+
[ Fri Sep 16 03:20:22 2022 ] Eval epoch: 101
|
669 |
+
[ Fri Sep 16 03:22:11 2022 ] Mean test loss of 930 batches: 2.4665334224700928.
|
670 |
+
[ Fri Sep 16 03:22:11 2022 ] Top1: 55.54%
|
671 |
+
[ Fri Sep 16 03:22:12 2022 ] Top5: 82.38%
|
672 |
+
[ Fri Sep 16 03:22:12 2022 ] Training epoch: 102
|
673 |
+
[ Fri Sep 16 03:22:43 2022 ] Batch(37/162) done. Loss: 0.0060 lr:0.000100 network_time: 0.0228
|
674 |
+
[ Fri Sep 16 03:23:55 2022 ] Batch(137/162) done. Loss: 0.0044 lr:0.000100 network_time: 0.0312
|
675 |
+
[ Fri Sep 16 03:24:13 2022 ] Eval epoch: 102
|
676 |
+
[ Fri Sep 16 03:26:01 2022 ] Mean test loss of 930 batches: 2.4502739906311035.
|
677 |
+
[ Fri Sep 16 03:26:02 2022 ] Top1: 55.90%
|
678 |
+
[ Fri Sep 16 03:26:02 2022 ] Top5: 82.50%
|
679 |
+
[ Fri Sep 16 03:26:02 2022 ] Training epoch: 103
|
680 |
+
[ Fri Sep 16 03:27:01 2022 ] Batch(75/162) done. Loss: 0.0103 lr:0.000100 network_time: 0.0273
|
681 |
+
[ Fri Sep 16 03:28:04 2022 ] Eval epoch: 103
|
682 |
+
[ Fri Sep 16 03:29:53 2022 ] Mean test loss of 930 batches: 2.5235326290130615.
|
683 |
+
[ Fri Sep 16 03:29:53 2022 ] Top1: 55.81%
|
684 |
+
[ Fri Sep 16 03:29:54 2022 ] Top5: 82.14%
|
685 |
+
[ Fri Sep 16 03:29:54 2022 ] Training epoch: 104
|
686 |
+
[ Fri Sep 16 03:30:07 2022 ] Batch(13/162) done. Loss: 0.0055 lr:0.000100 network_time: 0.0256
|
687 |
+
[ Fri Sep 16 03:31:20 2022 ] Batch(113/162) done. Loss: 0.0029 lr:0.000100 network_time: 0.0274
|
688 |
+
[ Fri Sep 16 03:31:55 2022 ] Eval epoch: 104
|
689 |
+
[ Fri Sep 16 03:33:43 2022 ] Mean test loss of 930 batches: 2.4924840927124023.
|
690 |
+
[ Fri Sep 16 03:33:44 2022 ] Top1: 55.46%
|
691 |
+
[ Fri Sep 16 03:33:44 2022 ] Top5: 82.16%
|
692 |
+
[ Fri Sep 16 03:33:45 2022 ] Training epoch: 105
|
693 |
+
[ Fri Sep 16 03:34:26 2022 ] Batch(51/162) done. Loss: 0.0061 lr:0.000100 network_time: 0.0315
|
694 |
+
[ Fri Sep 16 03:35:38 2022 ] Batch(151/162) done. Loss: 0.0072 lr:0.000100 network_time: 0.0268
|
695 |
+
[ Fri Sep 16 03:35:46 2022 ] Eval epoch: 105
|
696 |
+
[ Fri Sep 16 03:37:34 2022 ] Mean test loss of 930 batches: 2.515953302383423.
|
697 |
+
[ Fri Sep 16 03:37:35 2022 ] Top1: 55.07%
|
698 |
+
[ Fri Sep 16 03:37:35 2022 ] Top5: 82.06%
|
699 |
+
[ Fri Sep 16 03:37:35 2022 ] Training epoch: 106
|
700 |
+
[ Fri Sep 16 03:38:44 2022 ] Batch(89/162) done. Loss: 0.0054 lr:0.000100 network_time: 0.0260
|
701 |
+
[ Fri Sep 16 03:39:36 2022 ] Eval epoch: 106
|
702 |
+
[ Fri Sep 16 03:41:25 2022 ] Mean test loss of 930 batches: 2.479599714279175.
|
703 |
+
[ Fri Sep 16 03:41:25 2022 ] Top1: 56.04%
|
704 |
+
[ Fri Sep 16 03:41:26 2022 ] Top5: 82.38%
|
705 |
+
[ Fri Sep 16 03:41:26 2022 ] Training epoch: 107
|
706 |
+
[ Fri Sep 16 03:41:49 2022 ] Batch(27/162) done. Loss: 0.0047 lr:0.000100 network_time: 0.0290
|
707 |
+
[ Fri Sep 16 03:43:02 2022 ] Batch(127/162) done. Loss: 0.0053 lr:0.000100 network_time: 0.0265
|
708 |
+
[ Fri Sep 16 03:43:27 2022 ] Eval epoch: 107
|
709 |
+
[ Fri Sep 16 03:45:15 2022 ] Mean test loss of 930 batches: 2.5122196674346924.
|
710 |
+
[ Fri Sep 16 03:45:15 2022 ] Top1: 55.54%
|
711 |
+
[ Fri Sep 16 03:45:16 2022 ] Top5: 82.23%
|
712 |
+
[ Fri Sep 16 03:45:16 2022 ] Training epoch: 108
|
713 |
+
[ Fri Sep 16 03:46:07 2022 ] Batch(65/162) done. Loss: 0.0042 lr:0.000100 network_time: 0.0276
|
714 |
+
[ Fri Sep 16 03:47:17 2022 ] Eval epoch: 108
|
715 |
+
[ Fri Sep 16 03:49:06 2022 ] Mean test loss of 930 batches: 2.4967191219329834.
|
716 |
+
[ Fri Sep 16 03:49:06 2022 ] Top1: 55.90%
|
717 |
+
[ Fri Sep 16 03:49:07 2022 ] Top5: 82.29%
|
718 |
+
[ Fri Sep 16 03:49:07 2022 ] Training epoch: 109
|
719 |
+
[ Fri Sep 16 03:49:13 2022 ] Batch(3/162) done. Loss: 0.0055 lr:0.000100 network_time: 0.0331
|
720 |
+
[ Fri Sep 16 03:50:26 2022 ] Batch(103/162) done. Loss: 0.0072 lr:0.000100 network_time: 0.0273
|
721 |
+
[ Fri Sep 16 03:51:08 2022 ] Eval epoch: 109
|
722 |
+
[ Fri Sep 16 03:52:56 2022 ] Mean test loss of 930 batches: 2.4798450469970703.
|
723 |
+
[ Fri Sep 16 03:52:57 2022 ] Top1: 55.22%
|
724 |
+
[ Fri Sep 16 03:52:57 2022 ] Top5: 82.04%
|
725 |
+
[ Fri Sep 16 03:52:58 2022 ] Training epoch: 110
|
726 |
+
[ Fri Sep 16 03:53:31 2022 ] Batch(41/162) done. Loss: 0.0102 lr:0.000100 network_time: 0.0264
|
727 |
+
[ Fri Sep 16 03:54:44 2022 ] Batch(141/162) done. Loss: 0.0033 lr:0.000100 network_time: 0.0272
|
728 |
+
[ Fri Sep 16 03:54:58 2022 ] Eval epoch: 110
|
729 |
+
[ Fri Sep 16 03:56:47 2022 ] Mean test loss of 930 batches: 2.487183094024658.
|
730 |
+
[ Fri Sep 16 03:56:47 2022 ] Top1: 55.46%
|
731 |
+
[ Fri Sep 16 03:56:48 2022 ] Top5: 82.16%
|
732 |
+
[ Fri Sep 16 03:56:48 2022 ] Training epoch: 111
|
733 |
+
[ Fri Sep 16 03:57:49 2022 ] Batch(79/162) done. Loss: 0.0044 lr:0.000100 network_time: 0.0267
|
734 |
+
[ Fri Sep 16 03:58:49 2022 ] Eval epoch: 111
|
735 |
+
[ Fri Sep 16 04:00:37 2022 ] Mean test loss of 930 batches: 2.580383539199829.
|
736 |
+
[ Fri Sep 16 04:00:38 2022 ] Top1: 54.04%
|
737 |
+
[ Fri Sep 16 04:00:38 2022 ] Top5: 81.62%
|
738 |
+
[ Fri Sep 16 04:00:39 2022 ] Training epoch: 112
|
739 |
+
[ Fri Sep 16 04:00:55 2022 ] Batch(17/162) done. Loss: 0.0042 lr:0.000100 network_time: 0.0292
|
740 |
+
[ Fri Sep 16 04:02:08 2022 ] Batch(117/162) done. Loss: 0.0080 lr:0.000100 network_time: 0.0281
|
741 |
+
[ Fri Sep 16 04:02:40 2022 ] Eval epoch: 112
|
742 |
+
[ Fri Sep 16 04:04:28 2022 ] Mean test loss of 930 batches: 2.472482442855835.
|
743 |
+
[ Fri Sep 16 04:04:29 2022 ] Top1: 56.17%
|
744 |
+
[ Fri Sep 16 04:04:29 2022 ] Top5: 82.30%
|
745 |
+
[ Fri Sep 16 04:04:29 2022 ] Training epoch: 113
|
746 |
+
[ Fri Sep 16 04:05:13 2022 ] Batch(55/162) done. Loss: 0.0036 lr:0.000100 network_time: 0.0282
|
747 |
+
[ Fri Sep 16 04:06:26 2022 ] Batch(155/162) done. Loss: 0.0104 lr:0.000100 network_time: 0.0279
|
748 |
+
[ Fri Sep 16 04:06:31 2022 ] Eval epoch: 113
|
749 |
+
[ Fri Sep 16 04:08:19 2022 ] Mean test loss of 930 batches: 2.5517749786376953.
|
750 |
+
[ Fri Sep 16 04:08:20 2022 ] Top1: 54.01%
|
751 |
+
[ Fri Sep 16 04:08:20 2022 ] Top5: 81.42%
|
752 |
+
[ Fri Sep 16 04:08:21 2022 ] Training epoch: 114
|
753 |
+
[ Fri Sep 16 04:09:32 2022 ] Batch(93/162) done. Loss: 0.0054 lr:0.000100 network_time: 0.0269
|
754 |
+
[ Fri Sep 16 04:10:22 2022 ] Eval epoch: 114
|
755 |
+
[ Fri Sep 16 04:12:10 2022 ] Mean test loss of 930 batches: 2.4713258743286133.
|
756 |
+
[ Fri Sep 16 04:12:10 2022 ] Top1: 55.90%
|
757 |
+
[ Fri Sep 16 04:12:11 2022 ] Top5: 82.37%
|
758 |
+
[ Fri Sep 16 04:12:11 2022 ] Training epoch: 115
|
759 |
+
[ Fri Sep 16 04:12:38 2022 ] Batch(31/162) done. Loss: 0.0062 lr:0.000100 network_time: 0.0263
|
760 |
+
[ Fri Sep 16 04:13:50 2022 ] Batch(131/162) done. Loss: 0.0058 lr:0.000100 network_time: 0.0277
|
761 |
+
[ Fri Sep 16 04:14:12 2022 ] Eval epoch: 115
|
762 |
+
[ Fri Sep 16 04:16:01 2022 ] Mean test loss of 930 batches: 2.5101470947265625.
|
763 |
+
[ Fri Sep 16 04:16:02 2022 ] Top1: 54.96%
|
764 |
+
[ Fri Sep 16 04:16:02 2022 ] Top5: 81.76%
|
765 |
+
[ Fri Sep 16 04:16:02 2022 ] Training epoch: 116
|
766 |
+
[ Fri Sep 16 04:16:57 2022 ] Batch(69/162) done. Loss: 0.0025 lr:0.000100 network_time: 0.0270
|
767 |
+
[ Fri Sep 16 04:18:04 2022 ] Eval epoch: 116
|
768 |
+
[ Fri Sep 16 04:19:52 2022 ] Mean test loss of 930 batches: 2.466994047164917.
|
769 |
+
[ Fri Sep 16 04:19:52 2022 ] Top1: 55.87%
|
770 |
+
[ Fri Sep 16 04:19:53 2022 ] Top5: 82.43%
|
771 |
+
[ Fri Sep 16 04:19:53 2022 ] Training epoch: 117
|
772 |
+
[ Fri Sep 16 04:20:02 2022 ] Batch(7/162) done. Loss: 0.0102 lr:0.000100 network_time: 0.0335
|
773 |
+
[ Fri Sep 16 04:21:14 2022 ] Batch(107/162) done. Loss: 0.0040 lr:0.000100 network_time: 0.0267
|
774 |
+
[ Fri Sep 16 04:21:54 2022 ] Eval epoch: 117
|
775 |
+
[ Fri Sep 16 04:23:42 2022 ] Mean test loss of 930 batches: 2.4645636081695557.
|
776 |
+
[ Fri Sep 16 04:23:43 2022 ] Top1: 56.02%
|
777 |
+
[ Fri Sep 16 04:23:43 2022 ] Top5: 82.30%
|
778 |
+
[ Fri Sep 16 04:23:43 2022 ] Training epoch: 118
|
779 |
+
[ Fri Sep 16 04:24:20 2022 ] Batch(45/162) done. Loss: 0.0073 lr:0.000100 network_time: 0.0287
|
780 |
+
[ Fri Sep 16 04:25:33 2022 ] Batch(145/162) done. Loss: 0.0072 lr:0.000100 network_time: 0.0273
|
781 |
+
[ Fri Sep 16 04:25:44 2022 ] Eval epoch: 118
|
782 |
+
[ Fri Sep 16 04:27:33 2022 ] Mean test loss of 930 batches: 2.5144882202148438.
|
783 |
+
[ Fri Sep 16 04:27:34 2022 ] Top1: 55.68%
|
784 |
+
[ Fri Sep 16 04:27:34 2022 ] Top5: 82.14%
|
785 |
+
[ Fri Sep 16 04:27:34 2022 ] Training epoch: 119
|
786 |
+
[ Fri Sep 16 04:28:38 2022 ] Batch(83/162) done. Loss: 0.0052 lr:0.000100 network_time: 0.0334
|
787 |
+
[ Fri Sep 16 04:29:35 2022 ] Eval epoch: 119
|
788 |
+
[ Fri Sep 16 04:31:24 2022 ] Mean test loss of 930 batches: 2.436511993408203.
|
789 |
+
[ Fri Sep 16 04:31:25 2022 ] Top1: 56.25%
|
790 |
+
[ Fri Sep 16 04:31:25 2022 ] Top5: 82.43%
|
791 |
+
[ Fri Sep 16 04:31:25 2022 ] Training epoch: 120
|
792 |
+
[ Fri Sep 16 04:31:45 2022 ] Batch(21/162) done. Loss: 0.0137 lr:0.000100 network_time: 0.0301
|
793 |
+
[ Fri Sep 16 04:32:57 2022 ] Batch(121/162) done. Loss: 0.0038 lr:0.000100 network_time: 0.0281
|
794 |
+
[ Fri Sep 16 04:33:26 2022 ] Eval epoch: 120
|
795 |
+
[ Fri Sep 16 04:35:15 2022 ] Mean test loss of 930 batches: 2.4610888957977295.
|
796 |
+
[ Fri Sep 16 04:35:15 2022 ] Top1: 55.96%
|
797 |
+
[ Fri Sep 16 04:35:16 2022 ] Top5: 82.46%
|
798 |
+
[ Fri Sep 16 04:35:16 2022 ] Training epoch: 121
|
799 |
+
[ Fri Sep 16 04:36:03 2022 ] Batch(59/162) done. Loss: 0.0081 lr:0.000100 network_time: 0.0287
|
800 |
+
[ Fri Sep 16 04:37:16 2022 ] Batch(159/162) done. Loss: 0.0052 lr:0.000100 network_time: 0.0276
|
801 |
+
[ Fri Sep 16 04:37:17 2022 ] Eval epoch: 121
|
802 |
+
[ Fri Sep 16 04:39:06 2022 ] Mean test loss of 930 batches: 2.50304913520813.
|
803 |
+
[ Fri Sep 16 04:39:06 2022 ] Top1: 55.96%
|
804 |
+
[ Fri Sep 16 04:39:07 2022 ] Top5: 82.19%
|
805 |
+
[ Fri Sep 16 04:39:07 2022 ] Training epoch: 122
|
806 |
+
[ Fri Sep 16 04:40:21 2022 ] Batch(97/162) done. Loss: 0.0044 lr:0.000100 network_time: 0.0331
|
807 |
+
[ Fri Sep 16 04:41:08 2022 ] Eval epoch: 122
|
808 |
+
[ Fri Sep 16 04:42:57 2022 ] Mean test loss of 930 batches: 2.4955897331237793.
|
809 |
+
[ Fri Sep 16 04:42:57 2022 ] Top1: 55.60%
|
810 |
+
[ Fri Sep 16 04:42:58 2022 ] Top5: 82.18%
|
811 |
+
[ Fri Sep 16 04:42:58 2022 ] Training epoch: 123
|
812 |
+
[ Fri Sep 16 04:43:27 2022 ] Batch(35/162) done. Loss: 0.0118 lr:0.000100 network_time: 0.0309
|
813 |
+
[ Fri Sep 16 04:44:40 2022 ] Batch(135/162) done. Loss: 0.0049 lr:0.000100 network_time: 0.0266
|
814 |
+
[ Fri Sep 16 04:44:59 2022 ] Eval epoch: 123
|
815 |
+
[ Fri Sep 16 04:46:47 2022 ] Mean test loss of 930 batches: 2.523346185684204.
|
816 |
+
[ Fri Sep 16 04:46:48 2022 ] Top1: 54.91%
|
817 |
+
[ Fri Sep 16 04:46:48 2022 ] Top5: 81.91%
|
818 |
+
[ Fri Sep 16 04:46:48 2022 ] Training epoch: 124
|
819 |
+
[ Fri Sep 16 04:47:45 2022 ] Batch(73/162) done. Loss: 0.0091 lr:0.000100 network_time: 0.0302
|
820 |
+
[ Fri Sep 16 04:48:50 2022 ] Eval epoch: 124
|
821 |
+
[ Fri Sep 16 04:50:39 2022 ] Mean test loss of 930 batches: 2.455005168914795.
|
822 |
+
[ Fri Sep 16 04:50:40 2022 ] Top1: 56.26%
|
823 |
+
[ Fri Sep 16 04:50:40 2022 ] Top5: 82.41%
|
824 |
+
[ Fri Sep 16 04:50:40 2022 ] Training epoch: 125
|
825 |
+
[ Fri Sep 16 04:50:52 2022 ] Batch(11/162) done. Loss: 0.0039 lr:0.000100 network_time: 0.0295
|
826 |
+
[ Fri Sep 16 04:52:05 2022 ] Batch(111/162) done. Loss: 0.0035 lr:0.000100 network_time: 0.0289
|
827 |
+
[ Fri Sep 16 04:52:42 2022 ] Eval epoch: 125
|
828 |
+
[ Fri Sep 16 04:54:30 2022 ] Mean test loss of 930 batches: 2.5138392448425293.
|
829 |
+
[ Fri Sep 16 04:54:30 2022 ] Top1: 55.17%
|
830 |
+
[ Fri Sep 16 04:54:31 2022 ] Top5: 82.06%
|
831 |
+
[ Fri Sep 16 04:54:31 2022 ] Training epoch: 126
|
832 |
+
[ Fri Sep 16 04:55:11 2022 ] Batch(49/162) done. Loss: 0.0060 lr:0.000100 network_time: 0.0278
|
833 |
+
[ Fri Sep 16 04:56:23 2022 ] Batch(149/162) done. Loss: 0.0061 lr:0.000100 network_time: 0.0257
|
834 |
+
[ Fri Sep 16 04:56:32 2022 ] Eval epoch: 126
|
835 |
+
[ Fri Sep 16 04:58:20 2022 ] Mean test loss of 930 batches: 2.4895901679992676.
|
836 |
+
[ Fri Sep 16 04:58:21 2022 ] Top1: 55.15%
|
837 |
+
[ Fri Sep 16 04:58:21 2022 ] Top5: 82.06%
|
838 |
+
[ Fri Sep 16 04:58:22 2022 ] Training epoch: 127
|
839 |
+
[ Fri Sep 16 04:59:29 2022 ] Batch(87/162) done. Loss: 0.0051 lr:0.000100 network_time: 0.0358
|
840 |
+
[ Fri Sep 16 05:00:22 2022 ] Eval epoch: 127
|
841 |
+
[ Fri Sep 16 05:02:11 2022 ] Mean test loss of 930 batches: 2.492002010345459.
|
842 |
+
[ Fri Sep 16 05:02:11 2022 ] Top1: 55.78%
|
843 |
+
[ Fri Sep 16 05:02:12 2022 ] Top5: 82.30%
|
844 |
+
[ Fri Sep 16 05:02:12 2022 ] Training epoch: 128
|
845 |
+
[ Fri Sep 16 05:02:34 2022 ] Batch(25/162) done. Loss: 0.0043 lr:0.000100 network_time: 0.0336
|
846 |
+
[ Fri Sep 16 05:03:47 2022 ] Batch(125/162) done. Loss: 0.0035 lr:0.000100 network_time: 0.0265
|
847 |
+
[ Fri Sep 16 05:04:13 2022 ] Eval epoch: 128
|
848 |
+
[ Fri Sep 16 05:06:02 2022 ] Mean test loss of 930 batches: 2.4913203716278076.
|
849 |
+
[ Fri Sep 16 05:06:02 2022 ] Top1: 55.61%
|
850 |
+
[ Fri Sep 16 05:06:02 2022 ] Top5: 82.05%
|
851 |
+
[ Fri Sep 16 05:06:03 2022 ] Training epoch: 129
|
852 |
+
[ Fri Sep 16 05:06:53 2022 ] Batch(63/162) done. Loss: 0.0023 lr:0.000100 network_time: 0.0286
|
853 |
+
[ Fri Sep 16 05:08:04 2022 ] Eval epoch: 129
|
854 |
+
[ Fri Sep 16 05:09:52 2022 ] Mean test loss of 930 batches: 2.4635448455810547.
|
855 |
+
[ Fri Sep 16 05:09:53 2022 ] Top1: 55.69%
|
856 |
+
[ Fri Sep 16 05:09:53 2022 ] Top5: 82.30%
|
857 |
+
[ Fri Sep 16 05:09:53 2022 ] Training epoch: 130
|
858 |
+
[ Fri Sep 16 05:09:58 2022 ] Batch(1/162) done. Loss: 0.0034 lr:0.000100 network_time: 0.0330
|
859 |
+
[ Fri Sep 16 05:11:11 2022 ] Batch(101/162) done. Loss: 0.0111 lr:0.000100 network_time: 0.0464
|
860 |
+
[ Fri Sep 16 05:11:55 2022 ] Eval epoch: 130
|
861 |
+
[ Fri Sep 16 05:13:43 2022 ] Mean test loss of 930 batches: 2.4768619537353516.
|
862 |
+
[ Fri Sep 16 05:13:44 2022 ] Top1: 56.12%
|
863 |
+
[ Fri Sep 16 05:13:44 2022 ] Top5: 82.42%
|
864 |
+
[ Fri Sep 16 05:13:44 2022 ] Training epoch: 131
|
865 |
+
[ Fri Sep 16 05:14:17 2022 ] Batch(39/162) done. Loss: 0.0049 lr:0.000100 network_time: 0.0280
|
866 |
+
[ Fri Sep 16 05:15:29 2022 ] Batch(139/162) done. Loss: 0.0040 lr:0.000100 network_time: 0.0272
|
867 |
+
[ Fri Sep 16 05:15:46 2022 ] Eval epoch: 131
|
868 |
+
[ Fri Sep 16 05:17:34 2022 ] Mean test loss of 930 batches: 2.473442554473877.
|
869 |
+
[ Fri Sep 16 05:17:34 2022 ] Top1: 56.14%
|
870 |
+
[ Fri Sep 16 05:17:35 2022 ] Top5: 82.52%
|
871 |
+
[ Fri Sep 16 05:17:35 2022 ] Training epoch: 132
|
872 |
+
[ Fri Sep 16 05:18:35 2022 ] Batch(77/162) done. Loss: 0.0044 lr:0.000100 network_time: 0.0265
|
873 |
+
[ Fri Sep 16 05:19:36 2022 ] Eval epoch: 132
|
874 |
+
[ Fri Sep 16 05:21:24 2022 ] Mean test loss of 930 batches: 2.4647676944732666.
|
875 |
+
[ Fri Sep 16 05:21:25 2022 ] Top1: 55.30%
|
876 |
+
[ Fri Sep 16 05:21:25 2022 ] Top5: 82.25%
|
877 |
+
[ Fri Sep 16 05:21:26 2022 ] Training epoch: 133
|
878 |
+
[ Fri Sep 16 05:21:40 2022 ] Batch(15/162) done. Loss: 0.0071 lr:0.000100 network_time: 0.0346
|
879 |
+
[ Fri Sep 16 05:22:53 2022 ] Batch(115/162) done. Loss: 0.0053 lr:0.000100 network_time: 0.0266
|
880 |
+
[ Fri Sep 16 05:23:27 2022 ] Eval epoch: 133
|
881 |
+
[ Fri Sep 16 05:25:15 2022 ] Mean test loss of 930 batches: 2.603180408477783.
|
882 |
+
[ Fri Sep 16 05:25:16 2022 ] Top1: 53.21%
|
883 |
+
[ Fri Sep 16 05:25:16 2022 ] Top5: 81.03%
|
884 |
+
[ Fri Sep 16 05:25:16 2022 ] Training epoch: 134
|
885 |
+
[ Fri Sep 16 05:25:59 2022 ] Batch(53/162) done. Loss: 0.0043 lr:0.000100 network_time: 0.0274
|
886 |
+
[ Fri Sep 16 05:27:12 2022 ] Batch(153/162) done. Loss: 0.0059 lr:0.000100 network_time: 0.0275
|
887 |
+
[ Fri Sep 16 05:27:18 2022 ] Eval epoch: 134
|
888 |
+
[ Fri Sep 16 05:29:06 2022 ] Mean test loss of 930 batches: 2.610170364379883.
|
889 |
+
[ Fri Sep 16 05:29:06 2022 ] Top1: 53.38%
|
890 |
+
[ Fri Sep 16 05:29:07 2022 ] Top5: 81.18%
|
891 |
+
[ Fri Sep 16 05:29:07 2022 ] Training epoch: 135
|
892 |
+
[ Fri Sep 16 05:30:17 2022 ] Batch(91/162) done. Loss: 0.0038 lr:0.000100 network_time: 0.0276
|
893 |
+
[ Fri Sep 16 05:31:08 2022 ] Eval epoch: 135
|
894 |
+
[ Fri Sep 16 05:32:57 2022 ] Mean test loss of 930 batches: 2.456367254257202.
|
895 |
+
[ Fri Sep 16 05:32:57 2022 ] Top1: 55.63%
|
896 |
+
[ Fri Sep 16 05:32:58 2022 ] Top5: 82.31%
|
897 |
+
[ Fri Sep 16 05:32:58 2022 ] Training epoch: 136
|
898 |
+
[ Fri Sep 16 05:33:23 2022 ] Batch(29/162) done. Loss: 0.0082 lr:0.000100 network_time: 0.0315
|
899 |
+
[ Fri Sep 16 05:34:36 2022 ] Batch(129/162) done. Loss: 0.0039 lr:0.000100 network_time: 0.0327
|
900 |
+
[ Fri Sep 16 05:34:59 2022 ] Eval epoch: 136
|
901 |
+
[ Fri Sep 16 05:36:48 2022 ] Mean test loss of 930 batches: 2.4485137462615967.
|
902 |
+
[ Fri Sep 16 05:36:48 2022 ] Top1: 56.15%
|
903 |
+
[ Fri Sep 16 05:36:49 2022 ] Top5: 82.54%
|
904 |
+
[ Fri Sep 16 05:36:49 2022 ] Training epoch: 137
|
905 |
+
[ Fri Sep 16 05:37:42 2022 ] Batch(67/162) done. Loss: 0.0027 lr:0.000100 network_time: 0.0256
|
906 |
+
[ Fri Sep 16 05:38:50 2022 ] Eval epoch: 137
|
907 |
+
[ Fri Sep 16 05:40:39 2022 ] Mean test loss of 930 batches: 2.4866716861724854.
|
908 |
+
[ Fri Sep 16 05:40:40 2022 ] Top1: 55.65%
|
909 |
+
[ Fri Sep 16 05:40:40 2022 ] Top5: 82.24%
|
910 |
+
[ Fri Sep 16 05:40:41 2022 ] Training epoch: 138
|
911 |
+
[ Fri Sep 16 05:40:48 2022 ] Batch(5/162) done. Loss: 0.0039 lr:0.000100 network_time: 0.0279
|
912 |
+
[ Fri Sep 16 05:42:01 2022 ] Batch(105/162) done. Loss: 0.0069 lr:0.000100 network_time: 0.0314
|
913 |
+
[ Fri Sep 16 05:42:42 2022 ] Eval epoch: 138
|
914 |
+
[ Fri Sep 16 05:44:30 2022 ] Mean test loss of 930 batches: 2.444272518157959.
|
915 |
+
[ Fri Sep 16 05:44:31 2022 ] Top1: 56.21%
|
916 |
+
[ Fri Sep 16 05:44:31 2022 ] Top5: 82.68%
|
917 |
+
[ Fri Sep 16 05:44:31 2022 ] Training epoch: 139
|
918 |
+
[ Fri Sep 16 05:45:07 2022 ] Batch(43/162) done. Loss: 0.0072 lr:0.000100 network_time: 0.0277
|
919 |
+
[ Fri Sep 16 05:46:19 2022 ] Batch(143/162) done. Loss: 0.0030 lr:0.000100 network_time: 0.0275
|
920 |
+
[ Fri Sep 16 05:46:33 2022 ] Eval epoch: 139
|
921 |
+
[ Fri Sep 16 05:48:21 2022 ] Mean test loss of 930 batches: 2.5009186267852783.
|
922 |
+
[ Fri Sep 16 05:48:22 2022 ] Top1: 55.14%
|
923 |
+
[ Fri Sep 16 05:48:22 2022 ] Top5: 81.98%
|
924 |
+
[ Fri Sep 16 05:48:22 2022 ] Training epoch: 140
|
925 |
+
[ Fri Sep 16 05:49:25 2022 ] Batch(81/162) done. Loss: 0.0030 lr:0.000100 network_time: 0.0236
|
926 |
+
[ Fri Sep 16 05:50:24 2022 ] Eval epoch: 140
|
927 |
+
[ Fri Sep 16 05:52:12 2022 ] Mean test loss of 930 batches: 2.492652177810669.
|
928 |
+
[ Fri Sep 16 05:52:13 2022 ] Top1: 55.05%
|
929 |
+
[ Fri Sep 16 05:52:13 2022 ] Top5: 81.94%
|
ckpt/Others/Shift-GCN/ntu120_xset/ntu120_bone_motion_xset/shift_gcn.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torch.autograd import Variable
|
5 |
+
import numpy as np
|
6 |
+
import math
|
7 |
+
|
8 |
+
import sys
|
9 |
+
sys.path.append("./model/Temporal_shift/")
|
10 |
+
|
11 |
+
from cuda.shift import Shift
|
12 |
+
|
13 |
+
|
14 |
+
def import_class(name):
|
15 |
+
components = name.split('.')
|
16 |
+
mod = __import__(components[0])
|
17 |
+
for comp in components[1:]:
|
18 |
+
mod = getattr(mod, comp)
|
19 |
+
return mod
|
20 |
+
|
21 |
+
def conv_init(conv):
|
22 |
+
nn.init.kaiming_normal(conv.weight, mode='fan_out')
|
23 |
+
nn.init.constant(conv.bias, 0)
|
24 |
+
|
25 |
+
|
26 |
+
def bn_init(bn, scale):
|
27 |
+
nn.init.constant(bn.weight, scale)
|
28 |
+
nn.init.constant(bn.bias, 0)
|
29 |
+
|
30 |
+
|
31 |
+
class tcn(nn.Module):
|
32 |
+
def __init__(self, in_channels, out_channels, kernel_size=9, stride=1):
|
33 |
+
super(tcn, self).__init__()
|
34 |
+
pad = int((kernel_size - 1) / 2)
|
35 |
+
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=(kernel_size, 1), padding=(pad, 0),
|
36 |
+
stride=(stride, 1))
|
37 |
+
|
38 |
+
self.bn = nn.BatchNorm2d(out_channels)
|
39 |
+
self.relu = nn.ReLU()
|
40 |
+
conv_init(self.conv)
|
41 |
+
bn_init(self.bn, 1)
|
42 |
+
|
43 |
+
def forward(self, x):
|
44 |
+
x = self.bn(self.conv(x))
|
45 |
+
return x
|
46 |
+
|
47 |
+
|
48 |
+
class Shift_tcn(nn.Module):
|
49 |
+
def __init__(self, in_channels, out_channels, kernel_size=9, stride=1):
|
50 |
+
super(Shift_tcn, self).__init__()
|
51 |
+
|
52 |
+
self.in_channels = in_channels
|
53 |
+
self.out_channels = out_channels
|
54 |
+
|
55 |
+
self.bn = nn.BatchNorm2d(in_channels)
|
56 |
+
self.bn2 = nn.BatchNorm2d(in_channels)
|
57 |
+
bn_init(self.bn2, 1)
|
58 |
+
self.relu = nn.ReLU(inplace=True)
|
59 |
+
self.shift_in = Shift(channel=in_channels, stride=1, init_scale=1)
|
60 |
+
self.shift_out = Shift(channel=out_channels, stride=stride, init_scale=1)
|
61 |
+
|
62 |
+
self.temporal_linear = nn.Conv2d(in_channels, out_channels, 1)
|
63 |
+
nn.init.kaiming_normal(self.temporal_linear.weight, mode='fan_out')
|
64 |
+
|
65 |
+
def forward(self, x):
|
66 |
+
x = self.bn(x)
|
67 |
+
# shift1
|
68 |
+
x = self.shift_in(x)
|
69 |
+
x = self.temporal_linear(x)
|
70 |
+
x = self.relu(x)
|
71 |
+
# shift2
|
72 |
+
x = self.shift_out(x)
|
73 |
+
x = self.bn2(x)
|
74 |
+
return x
|
75 |
+
|
76 |
+
|
77 |
+
class Shift_gcn(nn.Module):
|
78 |
+
def __init__(self, in_channels, out_channels, A, coff_embedding=4, num_subset=3):
|
79 |
+
super(Shift_gcn, self).__init__()
|
80 |
+
self.in_channels = in_channels
|
81 |
+
self.out_channels = out_channels
|
82 |
+
if in_channels != out_channels:
|
83 |
+
self.down = nn.Sequential(
|
84 |
+
nn.Conv2d(in_channels, out_channels, 1),
|
85 |
+
nn.BatchNorm2d(out_channels)
|
86 |
+
)
|
87 |
+
else:
|
88 |
+
self.down = lambda x: x
|
89 |
+
|
90 |
+
self.Linear_weight = nn.Parameter(torch.zeros(in_channels, out_channels, requires_grad=True, device='cuda'), requires_grad=True)
|
91 |
+
nn.init.normal_(self.Linear_weight, 0,math.sqrt(1.0/out_channels))
|
92 |
+
|
93 |
+
self.Linear_bias = nn.Parameter(torch.zeros(1,1,out_channels,requires_grad=True,device='cuda'),requires_grad=True)
|
94 |
+
nn.init.constant(self.Linear_bias, 0)
|
95 |
+
|
96 |
+
self.Feature_Mask = nn.Parameter(torch.ones(1,25,in_channels, requires_grad=True,device='cuda'),requires_grad=True)
|
97 |
+
nn.init.constant(self.Feature_Mask, 0)
|
98 |
+
|
99 |
+
self.bn = nn.BatchNorm1d(25*out_channels)
|
100 |
+
self.relu = nn.ReLU()
|
101 |
+
|
102 |
+
for m in self.modules():
|
103 |
+
if isinstance(m, nn.Conv2d):
|
104 |
+
conv_init(m)
|
105 |
+
elif isinstance(m, nn.BatchNorm2d):
|
106 |
+
bn_init(m, 1)
|
107 |
+
|
108 |
+
index_array = np.empty(25*in_channels).astype(np.int)
|
109 |
+
for i in range(25):
|
110 |
+
for j in range(in_channels):
|
111 |
+
index_array[i*in_channels + j] = (i*in_channels + j + j*in_channels)%(in_channels*25)
|
112 |
+
self.shift_in = nn.Parameter(torch.from_numpy(index_array),requires_grad=False)
|
113 |
+
|
114 |
+
index_array = np.empty(25*out_channels).astype(np.int)
|
115 |
+
for i in range(25):
|
116 |
+
for j in range(out_channels):
|
117 |
+
index_array[i*out_channels + j] = (i*out_channels + j - j*out_channels)%(out_channels*25)
|
118 |
+
self.shift_out = nn.Parameter(torch.from_numpy(index_array),requires_grad=False)
|
119 |
+
|
120 |
+
|
121 |
+
def forward(self, x0):
|
122 |
+
n, c, t, v = x0.size()
|
123 |
+
x = x0.permute(0,2,3,1).contiguous()
|
124 |
+
|
125 |
+
# shift1
|
126 |
+
x = x.view(n*t,v*c)
|
127 |
+
x = torch.index_select(x, 1, self.shift_in)
|
128 |
+
x = x.view(n*t,v,c)
|
129 |
+
x = x * (torch.tanh(self.Feature_Mask)+1)
|
130 |
+
|
131 |
+
x = torch.einsum('nwc,cd->nwd', (x, self.Linear_weight)).contiguous() # nt,v,c
|
132 |
+
x = x + self.Linear_bias
|
133 |
+
|
134 |
+
# shift2
|
135 |
+
x = x.view(n*t,-1)
|
136 |
+
x = torch.index_select(x, 1, self.shift_out)
|
137 |
+
x = self.bn(x)
|
138 |
+
x = x.view(n,t,v,self.out_channels).permute(0,3,1,2) # n,c,t,v
|
139 |
+
|
140 |
+
x = x + self.down(x0)
|
141 |
+
x = self.relu(x)
|
142 |
+
return x
|
143 |
+
|
144 |
+
|
145 |
+
class TCN_GCN_unit(nn.Module):
|
146 |
+
def __init__(self, in_channels, out_channels, A, stride=1, residual=True):
|
147 |
+
super(TCN_GCN_unit, self).__init__()
|
148 |
+
self.gcn1 = Shift_gcn(in_channels, out_channels, A)
|
149 |
+
self.tcn1 = Shift_tcn(out_channels, out_channels, stride=stride)
|
150 |
+
self.relu = nn.ReLU()
|
151 |
+
|
152 |
+
if not residual:
|
153 |
+
self.residual = lambda x: 0
|
154 |
+
|
155 |
+
elif (in_channels == out_channels) and (stride == 1):
|
156 |
+
self.residual = lambda x: x
|
157 |
+
else:
|
158 |
+
self.residual = tcn(in_channels, out_channels, kernel_size=1, stride=stride)
|
159 |
+
|
160 |
+
def forward(self, x):
|
161 |
+
x = self.tcn1(self.gcn1(x)) + self.residual(x)
|
162 |
+
return self.relu(x)
|
163 |
+
|
164 |
+
|
165 |
+
class Model(nn.Module):
|
166 |
+
def __init__(self, num_class=60, num_point=25, num_person=2, graph=None, graph_args=dict(), in_channels=3):
|
167 |
+
super(Model, self).__init__()
|
168 |
+
|
169 |
+
if graph is None:
|
170 |
+
raise ValueError()
|
171 |
+
else:
|
172 |
+
Graph = import_class(graph)
|
173 |
+
self.graph = Graph(**graph_args)
|
174 |
+
|
175 |
+
A = self.graph.A
|
176 |
+
self.data_bn = nn.BatchNorm1d(num_person * in_channels * num_point)
|
177 |
+
|
178 |
+
self.l1 = TCN_GCN_unit(3, 64, A, residual=False)
|
179 |
+
self.l2 = TCN_GCN_unit(64, 64, A)
|
180 |
+
self.l3 = TCN_GCN_unit(64, 64, A)
|
181 |
+
self.l4 = TCN_GCN_unit(64, 64, A)
|
182 |
+
self.l5 = TCN_GCN_unit(64, 128, A, stride=2)
|
183 |
+
self.l6 = TCN_GCN_unit(128, 128, A)
|
184 |
+
self.l7 = TCN_GCN_unit(128, 128, A)
|
185 |
+
self.l8 = TCN_GCN_unit(128, 256, A, stride=2)
|
186 |
+
self.l9 = TCN_GCN_unit(256, 256, A)
|
187 |
+
self.l10 = TCN_GCN_unit(256, 256, A)
|
188 |
+
|
189 |
+
self.fc = nn.Linear(256, num_class)
|
190 |
+
nn.init.normal(self.fc.weight, 0, math.sqrt(2. / num_class))
|
191 |
+
bn_init(self.data_bn, 1)
|
192 |
+
|
193 |
+
def forward(self, x):
|
194 |
+
N, C, T, V, M = x.size()
|
195 |
+
|
196 |
+
x = x.permute(0, 4, 3, 1, 2).contiguous().view(N, M * V * C, T)
|
197 |
+
x = self.data_bn(x)
|
198 |
+
x = x.view(N, M, V, C, T).permute(0, 1, 3, 4, 2).contiguous().view(N * M, C, T, V)
|
199 |
+
|
200 |
+
x = self.l1(x)
|
201 |
+
x = self.l2(x)
|
202 |
+
x = self.l3(x)
|
203 |
+
x = self.l4(x)
|
204 |
+
x = self.l5(x)
|
205 |
+
x = self.l6(x)
|
206 |
+
x = self.l7(x)
|
207 |
+
x = self.l8(x)
|
208 |
+
x = self.l9(x)
|
209 |
+
x = self.l10(x)
|
210 |
+
|
211 |
+
# N*M,C,T,V
|
212 |
+
c_new = x.size(1)
|
213 |
+
x = x.view(N, M, c_new, -1)
|
214 |
+
x = x.mean(3).mean(1)
|
215 |
+
|
216 |
+
return self.fc(x)
|
ckpt/Others/Shift-GCN/ntu120_xset/ntu120_bone_xset/config.yaml
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Experiment_name: ntu120_bone_xset
|
2 |
+
base_lr: 0.1
|
3 |
+
batch_size: 64
|
4 |
+
config: ./config/ntu120_xset/train_bone.yaml
|
5 |
+
device:
|
6 |
+
- 0
|
7 |
+
- 1
|
8 |
+
eval_interval: 5
|
9 |
+
feeder: feeders.feeder.Feeder
|
10 |
+
ignore_weights: []
|
11 |
+
log_interval: 100
|
12 |
+
model: model.shift_gcn.Model
|
13 |
+
model_args:
|
14 |
+
graph: graph.ntu_rgb_d.Graph
|
15 |
+
graph_args:
|
16 |
+
labeling_mode: spatial
|
17 |
+
num_class: 120
|
18 |
+
num_person: 2
|
19 |
+
num_point: 25
|
20 |
+
model_saved_name: ./save_models/ntu120_bone_xset
|
21 |
+
nesterov: true
|
22 |
+
num_epoch: 140
|
23 |
+
num_worker: 32
|
24 |
+
only_train_epoch: 1
|
25 |
+
only_train_part: true
|
26 |
+
optimizer: SGD
|
27 |
+
phase: train
|
28 |
+
print_log: true
|
29 |
+
save_interval: 2
|
30 |
+
save_score: false
|
31 |
+
seed: 1
|
32 |
+
show_topk:
|
33 |
+
- 1
|
34 |
+
- 5
|
35 |
+
start_epoch: 0
|
36 |
+
step:
|
37 |
+
- 60
|
38 |
+
- 80
|
39 |
+
- 100
|
40 |
+
test_batch_size: 64
|
41 |
+
test_feeder_args:
|
42 |
+
data_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/val_data_bone.npy
|
43 |
+
label_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/val_label.pkl
|
44 |
+
train_feeder_args:
|
45 |
+
data_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/train_data_bone.npy
|
46 |
+
debug: false
|
47 |
+
label_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/train_label.pkl
|
48 |
+
normalization: false
|
49 |
+
random_choose: false
|
50 |
+
random_move: false
|
51 |
+
random_shift: false
|
52 |
+
window_size: -1
|
53 |
+
warm_up_epoch: 0
|
54 |
+
weight_decay: 0.0001
|
55 |
+
weights: null
|
56 |
+
work_dir: ./work_dir/ntu120_bone_xset
|
ckpt/Others/Shift-GCN/ntu120_xset/ntu120_bone_xset/eval_results/best_acc.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f590d1de630391236ee05c1526ce6353bd0452854b5fdfb3a58563be9687d31
|
3 |
+
size 34946665
|
ckpt/Others/Shift-GCN/ntu120_xset/ntu120_bone_xset/log.txt
ADDED
@@ -0,0 +1,929 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[ Thu Sep 15 20:53:09 2022 ] Parameters:
|
2 |
+
{'work_dir': './work_dir/ntu120_bone_xset', 'model_saved_name': './save_models/ntu120_bone_xset', 'Experiment_name': 'ntu120_bone_xset', 'config': './config/ntu120_xset/train_bone.yaml', 'phase': 'train', 'save_score': False, 'seed': 1, 'log_interval': 100, 'save_interval': 2, 'eval_interval': 5, 'print_log': True, 'show_topk': [1, 5], 'feeder': 'feeders.feeder.Feeder', 'num_worker': 32, 'train_feeder_args': {'data_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/train_data_bone.npy', 'label_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/train_label.pkl', 'debug': False, 'random_choose': False, 'random_shift': False, 'random_move': False, 'window_size': -1, 'normalization': False}, 'test_feeder_args': {'data_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/val_data_bone.npy', 'label_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/val_label.pkl'}, 'model': 'model.shift_gcn.Model', 'model_args': {'num_class': 120, 'num_point': 25, 'num_person': 2, 'graph': 'graph.ntu_rgb_d.Graph', 'graph_args': {'labeling_mode': 'spatial'}}, 'weights': None, 'ignore_weights': [], 'base_lr': 0.1, 'step': [60, 80, 100], 'device': [0, 1], 'optimizer': 'SGD', 'nesterov': True, 'batch_size': 64, 'test_batch_size': 64, 'start_epoch': 0, 'num_epoch': 140, 'weight_decay': 0.0001, 'only_train_part': True, 'only_train_epoch': 1, 'warm_up_epoch': 0}
|
3 |
+
|
4 |
+
[ Thu Sep 15 20:53:09 2022 ] Training epoch: 1
|
5 |
+
[ Thu Sep 15 20:54:27 2022 ] Batch(99/162) done. Loss: 3.1745 lr:0.100000 network_time: 0.0269
|
6 |
+
[ Thu Sep 15 20:55:12 2022 ] Eval epoch: 1
|
7 |
+
[ Thu Sep 15 20:57:02 2022 ] Mean test loss of 930 batches: 5.054730415344238.
|
8 |
+
[ Thu Sep 15 20:57:03 2022 ] Top1: 7.17%
|
9 |
+
[ Thu Sep 15 20:57:03 2022 ] Top5: 25.35%
|
10 |
+
[ Thu Sep 15 20:57:03 2022 ] Training epoch: 2
|
11 |
+
[ Thu Sep 15 20:57:34 2022 ] Batch(37/162) done. Loss: 2.2364 lr:0.100000 network_time: 0.0296
|
12 |
+
[ Thu Sep 15 20:58:47 2022 ] Batch(137/162) done. Loss: 2.4230 lr:0.100000 network_time: 0.0264
|
13 |
+
[ Thu Sep 15 20:59:04 2022 ] Eval epoch: 2
|
14 |
+
[ Thu Sep 15 21:00:55 2022 ] Mean test loss of 930 batches: 4.307687282562256.
|
15 |
+
[ Thu Sep 15 21:00:55 2022 ] Top1: 13.88%
|
16 |
+
[ Thu Sep 15 21:00:56 2022 ] Top5: 35.46%
|
17 |
+
[ Thu Sep 15 21:00:56 2022 ] Training epoch: 3
|
18 |
+
[ Thu Sep 15 21:01:54 2022 ] Batch(75/162) done. Loss: 2.3808 lr:0.100000 network_time: 0.0324
|
19 |
+
[ Thu Sep 15 21:02:57 2022 ] Eval epoch: 3
|
20 |
+
[ Thu Sep 15 21:04:47 2022 ] Mean test loss of 930 batches: 3.7918362617492676.
|
21 |
+
[ Thu Sep 15 21:04:47 2022 ] Top1: 19.66%
|
22 |
+
[ Thu Sep 15 21:04:48 2022 ] Top5: 44.34%
|
23 |
+
[ Thu Sep 15 21:04:48 2022 ] Training epoch: 4
|
24 |
+
[ Thu Sep 15 21:05:01 2022 ] Batch(13/162) done. Loss: 1.9126 lr:0.100000 network_time: 0.0397
|
25 |
+
[ Thu Sep 15 21:06:14 2022 ] Batch(113/162) done. Loss: 1.7151 lr:0.100000 network_time: 0.0259
|
26 |
+
[ Thu Sep 15 21:06:49 2022 ] Eval epoch: 4
|
27 |
+
[ Thu Sep 15 21:08:38 2022 ] Mean test loss of 930 batches: 3.3427066802978516.
|
28 |
+
[ Thu Sep 15 21:08:39 2022 ] Top1: 23.91%
|
29 |
+
[ Thu Sep 15 21:08:39 2022 ] Top5: 49.61%
|
30 |
+
[ Thu Sep 15 21:08:40 2022 ] Training epoch: 5
|
31 |
+
[ Thu Sep 15 21:09:20 2022 ] Batch(51/162) done. Loss: 1.5963 lr:0.100000 network_time: 0.0277
|
32 |
+
[ Thu Sep 15 21:10:33 2022 ] Batch(151/162) done. Loss: 2.0971 lr:0.100000 network_time: 0.0262
|
33 |
+
[ Thu Sep 15 21:10:40 2022 ] Eval epoch: 5
|
34 |
+
[ Thu Sep 15 21:12:30 2022 ] Mean test loss of 930 batches: 3.069018602371216.
|
35 |
+
[ Thu Sep 15 21:12:31 2022 ] Top1: 28.82%
|
36 |
+
[ Thu Sep 15 21:12:31 2022 ] Top5: 57.04%
|
37 |
+
[ Thu Sep 15 21:12:31 2022 ] Training epoch: 6
|
38 |
+
[ Thu Sep 15 21:13:40 2022 ] Batch(89/162) done. Loss: 1.6986 lr:0.100000 network_time: 0.0322
|
39 |
+
[ Thu Sep 15 21:14:32 2022 ] Eval epoch: 6
|
40 |
+
[ Thu Sep 15 21:16:23 2022 ] Mean test loss of 930 batches: 2.9965245723724365.
|
41 |
+
[ Thu Sep 15 21:16:23 2022 ] Top1: 29.52%
|
42 |
+
[ Thu Sep 15 21:16:24 2022 ] Top5: 59.43%
|
43 |
+
[ Thu Sep 15 21:16:24 2022 ] Training epoch: 7
|
44 |
+
[ Thu Sep 15 21:16:47 2022 ] Batch(27/162) done. Loss: 1.3754 lr:0.100000 network_time: 0.0283
|
45 |
+
[ Thu Sep 15 21:18:00 2022 ] Batch(127/162) done. Loss: 1.2434 lr:0.100000 network_time: 0.0266
|
46 |
+
[ Thu Sep 15 21:18:25 2022 ] Eval epoch: 7
|
47 |
+
[ Thu Sep 15 21:20:14 2022 ] Mean test loss of 930 batches: 2.6982879638671875.
|
48 |
+
[ Thu Sep 15 21:20:15 2022 ] Top1: 35.94%
|
49 |
+
[ Thu Sep 15 21:20:15 2022 ] Top5: 66.52%
|
50 |
+
[ Thu Sep 15 21:20:15 2022 ] Training epoch: 8
|
51 |
+
[ Thu Sep 15 21:21:06 2022 ] Batch(65/162) done. Loss: 1.2703 lr:0.100000 network_time: 0.0313
|
52 |
+
[ Thu Sep 15 21:22:16 2022 ] Eval epoch: 8
|
53 |
+
[ Thu Sep 15 21:24:05 2022 ] Mean test loss of 930 batches: 2.8924400806427.
|
54 |
+
[ Thu Sep 15 21:24:06 2022 ] Top1: 34.11%
|
55 |
+
[ Thu Sep 15 21:24:06 2022 ] Top5: 63.32%
|
56 |
+
[ Thu Sep 15 21:24:06 2022 ] Training epoch: 9
|
57 |
+
[ Thu Sep 15 21:24:12 2022 ] Batch(3/162) done. Loss: 0.9692 lr:0.100000 network_time: 0.0265
|
58 |
+
[ Thu Sep 15 21:25:25 2022 ] Batch(103/162) done. Loss: 1.3851 lr:0.100000 network_time: 0.0268
|
59 |
+
[ Thu Sep 15 21:26:07 2022 ] Eval epoch: 9
|
60 |
+
[ Thu Sep 15 21:27:58 2022 ] Mean test loss of 930 batches: 3.032758951187134.
|
61 |
+
[ Thu Sep 15 21:27:58 2022 ] Top1: 35.23%
|
62 |
+
[ Thu Sep 15 21:27:59 2022 ] Top5: 64.33%
|
63 |
+
[ Thu Sep 15 21:27:59 2022 ] Training epoch: 10
|
64 |
+
[ Thu Sep 15 21:28:32 2022 ] Batch(41/162) done. Loss: 0.9587 lr:0.100000 network_time: 0.0267
|
65 |
+
[ Thu Sep 15 21:29:45 2022 ] Batch(141/162) done. Loss: 0.9386 lr:0.100000 network_time: 0.0262
|
66 |
+
[ Thu Sep 15 21:29:59 2022 ] Eval epoch: 10
|
67 |
+
[ Thu Sep 15 21:31:49 2022 ] Mean test loss of 930 batches: 2.911442995071411.
|
68 |
+
[ Thu Sep 15 21:31:50 2022 ] Top1: 37.85%
|
69 |
+
[ Thu Sep 15 21:31:50 2022 ] Top5: 66.94%
|
70 |
+
[ Thu Sep 15 21:31:51 2022 ] Training epoch: 11
|
71 |
+
[ Thu Sep 15 21:32:52 2022 ] Batch(79/162) done. Loss: 1.0747 lr:0.100000 network_time: 0.0276
|
72 |
+
[ Thu Sep 15 21:33:51 2022 ] Eval epoch: 11
|
73 |
+
[ Thu Sep 15 21:35:41 2022 ] Mean test loss of 930 batches: 2.7861416339874268.
|
74 |
+
[ Thu Sep 15 21:35:41 2022 ] Top1: 37.24%
|
75 |
+
[ Thu Sep 15 21:35:42 2022 ] Top5: 68.24%
|
76 |
+
[ Thu Sep 15 21:35:42 2022 ] Training epoch: 12
|
77 |
+
[ Thu Sep 15 21:35:58 2022 ] Batch(17/162) done. Loss: 0.8764 lr:0.100000 network_time: 0.0337
|
78 |
+
[ Thu Sep 15 21:37:10 2022 ] Batch(117/162) done. Loss: 1.0292 lr:0.100000 network_time: 0.0271
|
79 |
+
[ Thu Sep 15 21:37:43 2022 ] Eval epoch: 12
|
80 |
+
[ Thu Sep 15 21:39:32 2022 ] Mean test loss of 930 batches: 2.67501163482666.
|
81 |
+
[ Thu Sep 15 21:39:33 2022 ] Top1: 38.34%
|
82 |
+
[ Thu Sep 15 21:39:33 2022 ] Top5: 71.56%
|
83 |
+
[ Thu Sep 15 21:39:33 2022 ] Training epoch: 13
|
84 |
+
[ Thu Sep 15 21:40:16 2022 ] Batch(55/162) done. Loss: 0.7406 lr:0.100000 network_time: 0.0259
|
85 |
+
[ Thu Sep 15 21:41:29 2022 ] Batch(155/162) done. Loss: 1.0139 lr:0.100000 network_time: 0.0253
|
86 |
+
[ Thu Sep 15 21:41:33 2022 ] Eval epoch: 13
|
87 |
+
[ Thu Sep 15 21:43:24 2022 ] Mean test loss of 930 batches: 2.403536558151245.
|
88 |
+
[ Thu Sep 15 21:43:24 2022 ] Top1: 40.37%
|
89 |
+
[ Thu Sep 15 21:43:25 2022 ] Top5: 72.13%
|
90 |
+
[ Thu Sep 15 21:43:25 2022 ] Training epoch: 14
|
91 |
+
[ Thu Sep 15 21:44:36 2022 ] Batch(93/162) done. Loss: 1.0867 lr:0.100000 network_time: 0.0265
|
92 |
+
[ Thu Sep 15 21:45:26 2022 ] Eval epoch: 14
|
93 |
+
[ Thu Sep 15 21:47:15 2022 ] Mean test loss of 930 batches: 2.493147373199463.
|
94 |
+
[ Thu Sep 15 21:47:15 2022 ] Top1: 39.78%
|
95 |
+
[ Thu Sep 15 21:47:15 2022 ] Top5: 72.48%
|
96 |
+
[ Thu Sep 15 21:47:16 2022 ] Training epoch: 15
|
97 |
+
[ Thu Sep 15 21:47:42 2022 ] Batch(31/162) done. Loss: 0.8762 lr:0.100000 network_time: 0.0296
|
98 |
+
[ Thu Sep 15 21:48:54 2022 ] Batch(131/162) done. Loss: 0.5847 lr:0.100000 network_time: 0.0270
|
99 |
+
[ Thu Sep 15 21:49:16 2022 ] Eval epoch: 15
|
100 |
+
[ Thu Sep 15 21:51:06 2022 ] Mean test loss of 930 batches: 2.6337034702301025.
|
101 |
+
[ Thu Sep 15 21:51:06 2022 ] Top1: 40.75%
|
102 |
+
[ Thu Sep 15 21:51:07 2022 ] Top5: 72.22%
|
103 |
+
[ Thu Sep 15 21:51:07 2022 ] Training epoch: 16
|
104 |
+
[ Thu Sep 15 21:52:01 2022 ] Batch(69/162) done. Loss: 0.6017 lr:0.100000 network_time: 0.0269
|
105 |
+
[ Thu Sep 15 21:53:08 2022 ] Eval epoch: 16
|
106 |
+
[ Thu Sep 15 21:54:58 2022 ] Mean test loss of 930 batches: 2.993208885192871.
|
107 |
+
[ Thu Sep 15 21:54:58 2022 ] Top1: 39.27%
|
108 |
+
[ Thu Sep 15 21:54:58 2022 ] Top5: 71.64%
|
109 |
+
[ Thu Sep 15 21:54:59 2022 ] Training epoch: 17
|
110 |
+
[ Thu Sep 15 21:55:07 2022 ] Batch(7/162) done. Loss: 0.6349 lr:0.100000 network_time: 0.0286
|
111 |
+
[ Thu Sep 15 21:56:20 2022 ] Batch(107/162) done. Loss: 0.8137 lr:0.100000 network_time: 0.0272
|
112 |
+
[ Thu Sep 15 21:56:59 2022 ] Eval epoch: 17
|
113 |
+
[ Thu Sep 15 21:58:50 2022 ] Mean test loss of 930 batches: 2.7564895153045654.
|
114 |
+
[ Thu Sep 15 21:58:50 2022 ] Top1: 38.92%
|
115 |
+
[ Thu Sep 15 21:58:51 2022 ] Top5: 71.24%
|
116 |
+
[ Thu Sep 15 21:58:51 2022 ] Training epoch: 18
|
117 |
+
[ Thu Sep 15 21:59:27 2022 ] Batch(45/162) done. Loss: 0.7027 lr:0.100000 network_time: 0.0281
|
118 |
+
[ Thu Sep 15 22:00:39 2022 ] Batch(145/162) done. Loss: 0.6394 lr:0.100000 network_time: 0.0250
|
119 |
+
[ Thu Sep 15 22:00:51 2022 ] Eval epoch: 18
|
120 |
+
[ Thu Sep 15 22:02:41 2022 ] Mean test loss of 930 batches: 2.665600299835205.
|
121 |
+
[ Thu Sep 15 22:02:41 2022 ] Top1: 41.95%
|
122 |
+
[ Thu Sep 15 22:02:42 2022 ] Top5: 72.42%
|
123 |
+
[ Thu Sep 15 22:02:42 2022 ] Training epoch: 19
|
124 |
+
[ Thu Sep 15 22:03:46 2022 ] Batch(83/162) done. Loss: 0.4636 lr:0.100000 network_time: 0.0268
|
125 |
+
[ Thu Sep 15 22:04:43 2022 ] Eval epoch: 19
|
126 |
+
[ Thu Sep 15 22:06:32 2022 ] Mean test loss of 930 batches: 2.7386324405670166.
|
127 |
+
[ Thu Sep 15 22:06:33 2022 ] Top1: 41.85%
|
128 |
+
[ Thu Sep 15 22:06:33 2022 ] Top5: 72.58%
|
129 |
+
[ Thu Sep 15 22:06:33 2022 ] Training epoch: 20
|
130 |
+
[ Thu Sep 15 22:06:53 2022 ] Batch(21/162) done. Loss: 0.6220 lr:0.100000 network_time: 0.0266
|
131 |
+
[ Thu Sep 15 22:08:06 2022 ] Batch(121/162) done. Loss: 0.8370 lr:0.100000 network_time: 0.0304
|
132 |
+
[ Thu Sep 15 22:08:35 2022 ] Eval epoch: 20
|
133 |
+
[ Thu Sep 15 22:10:24 2022 ] Mean test loss of 930 batches: 3.217198610305786.
|
134 |
+
[ Thu Sep 15 22:10:25 2022 ] Top1: 39.58%
|
135 |
+
[ Thu Sep 15 22:10:25 2022 ] Top5: 71.58%
|
136 |
+
[ Thu Sep 15 22:10:25 2022 ] Training epoch: 21
|
137 |
+
[ Thu Sep 15 22:11:12 2022 ] Batch(59/162) done. Loss: 0.5685 lr:0.100000 network_time: 0.0261
|
138 |
+
[ Thu Sep 15 22:12:26 2022 ] Batch(159/162) done. Loss: 0.4968 lr:0.100000 network_time: 0.0279
|
139 |
+
[ Thu Sep 15 22:12:28 2022 ] Eval epoch: 21
|
140 |
+
[ Thu Sep 15 22:14:18 2022 ] Mean test loss of 930 batches: 2.607473850250244.
|
141 |
+
[ Thu Sep 15 22:14:18 2022 ] Top1: 45.13%
|
142 |
+
[ Thu Sep 15 22:14:19 2022 ] Top5: 74.89%
|
143 |
+
[ Thu Sep 15 22:14:19 2022 ] Training epoch: 22
|
144 |
+
[ Thu Sep 15 22:15:34 2022 ] Batch(97/162) done. Loss: 0.6277 lr:0.100000 network_time: 0.0301
|
145 |
+
[ Thu Sep 15 22:16:21 2022 ] Eval epoch: 22
|
146 |
+
[ Thu Sep 15 22:18:10 2022 ] Mean test loss of 930 batches: 3.202122688293457.
|
147 |
+
[ Thu Sep 15 22:18:11 2022 ] Top1: 41.16%
|
148 |
+
[ Thu Sep 15 22:18:11 2022 ] Top5: 70.16%
|
149 |
+
[ Thu Sep 15 22:18:12 2022 ] Training epoch: 23
|
150 |
+
[ Thu Sep 15 22:18:41 2022 ] Batch(35/162) done. Loss: 0.4671 lr:0.100000 network_time: 0.0306
|
151 |
+
[ Thu Sep 15 22:19:53 2022 ] Batch(135/162) done. Loss: 0.2605 lr:0.100000 network_time: 0.0295
|
152 |
+
[ Thu Sep 15 22:20:12 2022 ] Eval epoch: 23
|
153 |
+
[ Thu Sep 15 22:22:01 2022 ] Mean test loss of 930 batches: 2.9939019680023193.
|
154 |
+
[ Thu Sep 15 22:22:02 2022 ] Top1: 39.67%
|
155 |
+
[ Thu Sep 15 22:22:02 2022 ] Top5: 71.05%
|
156 |
+
[ Thu Sep 15 22:22:03 2022 ] Training epoch: 24
|
157 |
+
[ Thu Sep 15 22:23:00 2022 ] Batch(73/162) done. Loss: 0.3403 lr:0.100000 network_time: 0.0303
|
158 |
+
[ Thu Sep 15 22:24:04 2022 ] Eval epoch: 24
|
159 |
+
[ Thu Sep 15 22:25:54 2022 ] Mean test loss of 930 batches: 2.6512110233306885.
|
160 |
+
[ Thu Sep 15 22:25:55 2022 ] Top1: 43.70%
|
161 |
+
[ Thu Sep 15 22:25:55 2022 ] Top5: 74.94%
|
162 |
+
[ Thu Sep 15 22:25:56 2022 ] Training epoch: 25
|
163 |
+
[ Thu Sep 15 22:26:08 2022 ] Batch(11/162) done. Loss: 0.3482 lr:0.100000 network_time: 0.0267
|
164 |
+
[ Thu Sep 15 22:27:20 2022 ] Batch(111/162) done. Loss: 0.5646 lr:0.100000 network_time: 0.0248
|
165 |
+
[ Thu Sep 15 22:27:57 2022 ] Eval epoch: 25
|
166 |
+
[ Thu Sep 15 22:29:47 2022 ] Mean test loss of 930 batches: 2.80203914642334.
|
167 |
+
[ Thu Sep 15 22:29:48 2022 ] Top1: 43.78%
|
168 |
+
[ Thu Sep 15 22:29:48 2022 ] Top5: 75.42%
|
169 |
+
[ Thu Sep 15 22:29:48 2022 ] Training epoch: 26
|
170 |
+
[ Thu Sep 15 22:30:28 2022 ] Batch(49/162) done. Loss: 0.4110 lr:0.100000 network_time: 0.0359
|
171 |
+
[ Thu Sep 15 22:31:41 2022 ] Batch(149/162) done. Loss: 0.6011 lr:0.100000 network_time: 0.0454
|
172 |
+
[ Thu Sep 15 22:31:50 2022 ] Eval epoch: 26
|
173 |
+
[ Thu Sep 15 22:33:40 2022 ] Mean test loss of 930 batches: 3.0699634552001953.
|
174 |
+
[ Thu Sep 15 22:33:40 2022 ] Top1: 42.35%
|
175 |
+
[ Thu Sep 15 22:33:41 2022 ] Top5: 72.71%
|
176 |
+
[ Thu Sep 15 22:33:41 2022 ] Training epoch: 27
|
177 |
+
[ Thu Sep 15 22:34:49 2022 ] Batch(87/162) done. Loss: 0.3504 lr:0.100000 network_time: 0.0268
|
178 |
+
[ Thu Sep 15 22:35:43 2022 ] Eval epoch: 27
|
179 |
+
[ Thu Sep 15 22:37:33 2022 ] Mean test loss of 930 batches: 3.0952885150909424.
|
180 |
+
[ Thu Sep 15 22:37:34 2022 ] Top1: 42.13%
|
181 |
+
[ Thu Sep 15 22:37:34 2022 ] Top5: 71.48%
|
182 |
+
[ Thu Sep 15 22:37:35 2022 ] Training epoch: 28
|
183 |
+
[ Thu Sep 15 22:37:57 2022 ] Batch(25/162) done. Loss: 0.2971 lr:0.100000 network_time: 0.0287
|
184 |
+
[ Thu Sep 15 22:39:10 2022 ] Batch(125/162) done. Loss: 0.4361 lr:0.100000 network_time: 0.0265
|
185 |
+
[ Thu Sep 15 22:39:36 2022 ] Eval epoch: 28
|
186 |
+
[ Thu Sep 15 22:41:27 2022 ] Mean test loss of 930 batches: 2.9900245666503906.
|
187 |
+
[ Thu Sep 15 22:41:27 2022 ] Top1: 43.13%
|
188 |
+
[ Thu Sep 15 22:41:28 2022 ] Top5: 73.28%
|
189 |
+
[ Thu Sep 15 22:41:28 2022 ] Training epoch: 29
|
190 |
+
[ Thu Sep 15 22:42:18 2022 ] Batch(63/162) done. Loss: 0.3050 lr:0.100000 network_time: 0.0258
|
191 |
+
[ Thu Sep 15 22:43:30 2022 ] Eval epoch: 29
|
192 |
+
[ Thu Sep 15 22:45:21 2022 ] Mean test loss of 930 batches: 2.6688146591186523.
|
193 |
+
[ Thu Sep 15 22:45:21 2022 ] Top1: 47.25%
|
194 |
+
[ Thu Sep 15 22:45:22 2022 ] Top5: 76.30%
|
195 |
+
[ Thu Sep 15 22:45:22 2022 ] Training epoch: 30
|
196 |
+
[ Thu Sep 15 22:45:26 2022 ] Batch(1/162) done. Loss: 0.2491 lr:0.100000 network_time: 0.0287
|
197 |
+
[ Thu Sep 15 22:46:39 2022 ] Batch(101/162) done. Loss: 0.2432 lr:0.100000 network_time: 0.0323
|
198 |
+
[ Thu Sep 15 22:47:23 2022 ] Eval epoch: 30
|
199 |
+
[ Thu Sep 15 22:49:12 2022 ] Mean test loss of 930 batches: 2.776120901107788.
|
200 |
+
[ Thu Sep 15 22:49:12 2022 ] Top1: 44.79%
|
201 |
+
[ Thu Sep 15 22:49:13 2022 ] Top5: 74.90%
|
202 |
+
[ Thu Sep 15 22:49:13 2022 ] Training epoch: 31
|
203 |
+
[ Thu Sep 15 22:49:45 2022 ] Batch(39/162) done. Loss: 0.3644 lr:0.100000 network_time: 0.0311
|
204 |
+
[ Thu Sep 15 22:50:57 2022 ] Batch(139/162) done. Loss: 0.6405 lr:0.100000 network_time: 0.0285
|
205 |
+
[ Thu Sep 15 22:51:14 2022 ] Eval epoch: 31
|
206 |
+
[ Thu Sep 15 22:53:03 2022 ] Mean test loss of 930 batches: 2.716003179550171.
|
207 |
+
[ Thu Sep 15 22:53:04 2022 ] Top1: 44.46%
|
208 |
+
[ Thu Sep 15 22:53:04 2022 ] Top5: 74.83%
|
209 |
+
[ Thu Sep 15 22:53:05 2022 ] Training epoch: 32
|
210 |
+
[ Thu Sep 15 22:54:04 2022 ] Batch(77/162) done. Loss: 0.2649 lr:0.100000 network_time: 0.0276
|
211 |
+
[ Thu Sep 15 22:55:05 2022 ] Eval epoch: 32
|
212 |
+
[ Thu Sep 15 22:56:56 2022 ] Mean test loss of 930 batches: 2.863656997680664.
|
213 |
+
[ Thu Sep 15 22:56:56 2022 ] Top1: 45.39%
|
214 |
+
[ Thu Sep 15 22:56:57 2022 ] Top5: 74.88%
|
215 |
+
[ Thu Sep 15 22:56:57 2022 ] Training epoch: 33
|
216 |
+
[ Thu Sep 15 22:57:12 2022 ] Batch(15/162) done. Loss: 0.3665 lr:0.100000 network_time: 0.0302
|
217 |
+
[ Thu Sep 15 22:58:24 2022 ] Batch(115/162) done. Loss: 0.7653 lr:0.100000 network_time: 0.0272
|
218 |
+
[ Thu Sep 15 22:58:58 2022 ] Eval epoch: 33
|
219 |
+
[ Thu Sep 15 23:00:47 2022 ] Mean test loss of 930 batches: 2.677206039428711.
|
220 |
+
[ Thu Sep 15 23:00:48 2022 ] Top1: 45.82%
|
221 |
+
[ Thu Sep 15 23:00:48 2022 ] Top5: 75.90%
|
222 |
+
[ Thu Sep 15 23:00:48 2022 ] Training epoch: 34
|
223 |
+
[ Thu Sep 15 23:01:30 2022 ] Batch(53/162) done. Loss: 0.3284 lr:0.100000 network_time: 0.0271
|
224 |
+
[ Thu Sep 15 23:02:43 2022 ] Batch(153/162) done. Loss: 0.4470 lr:0.100000 network_time: 0.0269
|
225 |
+
[ Thu Sep 15 23:02:49 2022 ] Eval epoch: 34
|
226 |
+
[ Thu Sep 15 23:04:38 2022 ] Mean test loss of 930 batches: 2.884477138519287.
|
227 |
+
[ Thu Sep 15 23:04:38 2022 ] Top1: 43.68%
|
228 |
+
[ Thu Sep 15 23:04:39 2022 ] Top5: 74.68%
|
229 |
+
[ Thu Sep 15 23:04:39 2022 ] Training epoch: 35
|
230 |
+
[ Thu Sep 15 23:05:48 2022 ] Batch(91/162) done. Loss: 0.4457 lr:0.100000 network_time: 0.0276
|
231 |
+
[ Thu Sep 15 23:06:39 2022 ] Eval epoch: 35
|
232 |
+
[ Thu Sep 15 23:08:29 2022 ] Mean test loss of 930 batches: 3.4506053924560547.
|
233 |
+
[ Thu Sep 15 23:08:29 2022 ] Top1: 42.19%
|
234 |
+
[ Thu Sep 15 23:08:30 2022 ] Top5: 71.98%
|
235 |
+
[ Thu Sep 15 23:08:30 2022 ] Training epoch: 36
|
236 |
+
[ Thu Sep 15 23:08:54 2022 ] Batch(29/162) done. Loss: 0.2119 lr:0.100000 network_time: 0.0262
|
237 |
+
[ Thu Sep 15 23:10:07 2022 ] Batch(129/162) done. Loss: 0.4515 lr:0.100000 network_time: 0.0281
|
238 |
+
[ Thu Sep 15 23:10:31 2022 ] Eval epoch: 36
|
239 |
+
[ Thu Sep 15 23:12:20 2022 ] Mean test loss of 930 batches: 2.7693991661071777.
|
240 |
+
[ Thu Sep 15 23:12:20 2022 ] Top1: 45.62%
|
241 |
+
[ Thu Sep 15 23:12:20 2022 ] Top5: 76.00%
|
242 |
+
[ Thu Sep 15 23:12:21 2022 ] Training epoch: 37
|
243 |
+
[ Thu Sep 15 23:13:13 2022 ] Batch(67/162) done. Loss: 0.2028 lr:0.100000 network_time: 0.0270
|
244 |
+
[ Thu Sep 15 23:14:22 2022 ] Eval epoch: 37
|
245 |
+
[ Thu Sep 15 23:16:11 2022 ] Mean test loss of 930 batches: 3.095299005508423.
|
246 |
+
[ Thu Sep 15 23:16:12 2022 ] Top1: 42.58%
|
247 |
+
[ Thu Sep 15 23:16:12 2022 ] Top5: 73.84%
|
248 |
+
[ Thu Sep 15 23:16:12 2022 ] Training epoch: 38
|
249 |
+
[ Thu Sep 15 23:16:20 2022 ] Batch(5/162) done. Loss: 0.4349 lr:0.100000 network_time: 0.0282
|
250 |
+
[ Thu Sep 15 23:17:32 2022 ] Batch(105/162) done. Loss: 0.2566 lr:0.100000 network_time: 0.0271
|
251 |
+
[ Thu Sep 15 23:18:13 2022 ] Eval epoch: 38
|
252 |
+
[ Thu Sep 15 23:20:03 2022 ] Mean test loss of 930 batches: 3.1413280963897705.
|
253 |
+
[ Thu Sep 15 23:20:04 2022 ] Top1: 43.90%
|
254 |
+
[ Thu Sep 15 23:20:04 2022 ] Top5: 74.12%
|
255 |
+
[ Thu Sep 15 23:20:04 2022 ] Training epoch: 39
|
256 |
+
[ Thu Sep 15 23:20:39 2022 ] Batch(43/162) done. Loss: 0.2047 lr:0.100000 network_time: 0.0348
|
257 |
+
[ Thu Sep 15 23:21:52 2022 ] Batch(143/162) done. Loss: 0.3025 lr:0.100000 network_time: 0.0266
|
258 |
+
[ Thu Sep 15 23:22:05 2022 ] Eval epoch: 39
|
259 |
+
[ Thu Sep 15 23:23:54 2022 ] Mean test loss of 930 batches: 3.481278419494629.
|
260 |
+
[ Thu Sep 15 23:23:54 2022 ] Top1: 41.59%
|
261 |
+
[ Thu Sep 15 23:23:55 2022 ] Top5: 72.09%
|
262 |
+
[ Thu Sep 15 23:23:55 2022 ] Training epoch: 40
|
263 |
+
[ Thu Sep 15 23:24:57 2022 ] Batch(81/162) done. Loss: 0.3147 lr:0.100000 network_time: 0.0350
|
264 |
+
[ Thu Sep 15 23:25:56 2022 ] Eval epoch: 40
|
265 |
+
[ Thu Sep 15 23:27:45 2022 ] Mean test loss of 930 batches: 2.9946095943450928.
|
266 |
+
[ Thu Sep 15 23:27:46 2022 ] Top1: 44.16%
|
267 |
+
[ Thu Sep 15 23:27:46 2022 ] Top5: 74.71%
|
268 |
+
[ Thu Sep 15 23:27:46 2022 ] Training epoch: 41
|
269 |
+
[ Thu Sep 15 23:28:03 2022 ] Batch(19/162) done. Loss: 0.3987 lr:0.100000 network_time: 0.0277
|
270 |
+
[ Thu Sep 15 23:29:16 2022 ] Batch(119/162) done. Loss: 0.4457 lr:0.100000 network_time: 0.0273
|
271 |
+
[ Thu Sep 15 23:29:47 2022 ] Eval epoch: 41
|
272 |
+
[ Thu Sep 15 23:31:36 2022 ] Mean test loss of 930 batches: 3.4053616523742676.
|
273 |
+
[ Thu Sep 15 23:31:37 2022 ] Top1: 43.50%
|
274 |
+
[ Thu Sep 15 23:31:37 2022 ] Top5: 73.65%
|
275 |
+
[ Thu Sep 15 23:31:38 2022 ] Training epoch: 42
|
276 |
+
[ Thu Sep 15 23:32:22 2022 ] Batch(57/162) done. Loss: 0.2492 lr:0.100000 network_time: 0.0278
|
277 |
+
[ Thu Sep 15 23:33:35 2022 ] Batch(157/162) done. Loss: 0.4862 lr:0.100000 network_time: 0.0267
|
278 |
+
[ Thu Sep 15 23:33:38 2022 ] Eval epoch: 42
|
279 |
+
[ Thu Sep 15 23:35:28 2022 ] Mean test loss of 930 batches: 2.9815728664398193.
|
280 |
+
[ Thu Sep 15 23:35:28 2022 ] Top1: 46.10%
|
281 |
+
[ Thu Sep 15 23:35:28 2022 ] Top5: 74.05%
|
282 |
+
[ Thu Sep 15 23:35:29 2022 ] Training epoch: 43
|
283 |
+
[ Thu Sep 15 23:36:41 2022 ] Batch(95/162) done. Loss: 0.4019 lr:0.100000 network_time: 0.0485
|
284 |
+
[ Thu Sep 15 23:37:29 2022 ] Eval epoch: 43
|
285 |
+
[ Thu Sep 15 23:39:19 2022 ] Mean test loss of 930 batches: 2.9869003295898438.
|
286 |
+
[ Thu Sep 15 23:39:20 2022 ] Top1: 46.54%
|
287 |
+
[ Thu Sep 15 23:39:20 2022 ] Top5: 77.24%
|
288 |
+
[ Thu Sep 15 23:39:20 2022 ] Training epoch: 44
|
289 |
+
[ Thu Sep 15 23:39:48 2022 ] Batch(33/162) done. Loss: 0.2617 lr:0.100000 network_time: 0.0308
|
290 |
+
[ Thu Sep 15 23:41:00 2022 ] Batch(133/162) done. Loss: 0.3671 lr:0.100000 network_time: 0.0278
|
291 |
+
[ Thu Sep 15 23:41:21 2022 ] Eval epoch: 44
|
292 |
+
[ Thu Sep 15 23:43:10 2022 ] Mean test loss of 930 batches: 3.2402682304382324.
|
293 |
+
[ Thu Sep 15 23:43:11 2022 ] Top1: 41.60%
|
294 |
+
[ Thu Sep 15 23:43:11 2022 ] Top5: 72.04%
|
295 |
+
[ Thu Sep 15 23:43:11 2022 ] Training epoch: 45
|
296 |
+
[ Thu Sep 15 23:44:06 2022 ] Batch(71/162) done. Loss: 0.3470 lr:0.100000 network_time: 0.0251
|
297 |
+
[ Thu Sep 15 23:45:12 2022 ] Eval epoch: 45
|
298 |
+
[ Thu Sep 15 23:47:01 2022 ] Mean test loss of 930 batches: 2.804935932159424.
|
299 |
+
[ Thu Sep 15 23:47:01 2022 ] Top1: 46.84%
|
300 |
+
[ Thu Sep 15 23:47:02 2022 ] Top5: 76.32%
|
301 |
+
[ Thu Sep 15 23:47:02 2022 ] Training epoch: 46
|
302 |
+
[ Thu Sep 15 23:47:12 2022 ] Batch(9/162) done. Loss: 0.1822 lr:0.100000 network_time: 0.0267
|
303 |
+
[ Thu Sep 15 23:48:24 2022 ] Batch(109/162) done. Loss: 0.1606 lr:0.100000 network_time: 0.0268
|
304 |
+
[ Thu Sep 15 23:49:02 2022 ] Eval epoch: 46
|
305 |
+
[ Thu Sep 15 23:50:53 2022 ] Mean test loss of 930 batches: 2.79233980178833.
|
306 |
+
[ Thu Sep 15 23:50:53 2022 ] Top1: 46.51%
|
307 |
+
[ Thu Sep 15 23:50:54 2022 ] Top5: 77.12%
|
308 |
+
[ Thu Sep 15 23:50:54 2022 ] Training epoch: 47
|
309 |
+
[ Thu Sep 15 23:51:32 2022 ] Batch(47/162) done. Loss: 0.2231 lr:0.100000 network_time: 0.0254
|
310 |
+
[ Thu Sep 15 23:52:45 2022 ] Batch(147/162) done. Loss: 0.2199 lr:0.100000 network_time: 0.0330
|
311 |
+
[ Thu Sep 15 23:52:55 2022 ] Eval epoch: 47
|
312 |
+
[ Thu Sep 15 23:54:45 2022 ] Mean test loss of 930 batches: 2.7845840454101562.
|
313 |
+
[ Thu Sep 15 23:54:45 2022 ] Top1: 46.73%
|
314 |
+
[ Thu Sep 15 23:54:46 2022 ] Top5: 76.58%
|
315 |
+
[ Thu Sep 15 23:54:46 2022 ] Training epoch: 48
|
316 |
+
[ Thu Sep 15 23:55:51 2022 ] Batch(85/162) done. Loss: 0.1455 lr:0.100000 network_time: 0.0265
|
317 |
+
[ Thu Sep 15 23:56:47 2022 ] Eval epoch: 48
|
318 |
+
[ Thu Sep 15 23:58:36 2022 ] Mean test loss of 930 batches: 2.9818427562713623.
|
319 |
+
[ Thu Sep 15 23:58:37 2022 ] Top1: 44.06%
|
320 |
+
[ Thu Sep 15 23:58:37 2022 ] Top5: 74.52%
|
321 |
+
[ Thu Sep 15 23:58:37 2022 ] Training epoch: 49
|
322 |
+
[ Thu Sep 15 23:58:58 2022 ] Batch(23/162) done. Loss: 0.1679 lr:0.100000 network_time: 0.0315
|
323 |
+
[ Fri Sep 16 00:00:10 2022 ] Batch(123/162) done. Loss: 0.2418 lr:0.100000 network_time: 0.0252
|
324 |
+
[ Fri Sep 16 00:00:38 2022 ] Eval epoch: 49
|
325 |
+
[ Fri Sep 16 00:02:28 2022 ] Mean test loss of 930 batches: 3.2953529357910156.
|
326 |
+
[ Fri Sep 16 00:02:28 2022 ] Top1: 44.71%
|
327 |
+
[ Fri Sep 16 00:02:28 2022 ] Top5: 73.97%
|
328 |
+
[ Fri Sep 16 00:02:29 2022 ] Training epoch: 50
|
329 |
+
[ Fri Sep 16 00:03:17 2022 ] Batch(61/162) done. Loss: 0.2752 lr:0.100000 network_time: 0.0311
|
330 |
+
[ Fri Sep 16 00:04:29 2022 ] Batch(161/162) done. Loss: 0.2480 lr:0.100000 network_time: 0.0275
|
331 |
+
[ Fri Sep 16 00:04:29 2022 ] Eval epoch: 50
|
332 |
+
[ Fri Sep 16 00:06:19 2022 ] Mean test loss of 930 batches: 3.178257942199707.
|
333 |
+
[ Fri Sep 16 00:06:20 2022 ] Top1: 46.33%
|
334 |
+
[ Fri Sep 16 00:06:20 2022 ] Top5: 75.49%
|
335 |
+
[ Fri Sep 16 00:06:21 2022 ] Training epoch: 51
|
336 |
+
[ Fri Sep 16 00:07:36 2022 ] Batch(99/162) done. Loss: 0.2603 lr:0.100000 network_time: 0.0318
|
337 |
+
[ Fri Sep 16 00:08:21 2022 ] Eval epoch: 51
|
338 |
+
[ Fri Sep 16 00:10:11 2022 ] Mean test loss of 930 batches: 2.8996267318725586.
|
339 |
+
[ Fri Sep 16 00:10:11 2022 ] Top1: 45.21%
|
340 |
+
[ Fri Sep 16 00:10:12 2022 ] Top5: 75.58%
|
341 |
+
[ Fri Sep 16 00:10:12 2022 ] Training epoch: 52
|
342 |
+
[ Fri Sep 16 00:10:43 2022 ] Batch(37/162) done. Loss: 0.2263 lr:0.100000 network_time: 0.0314
|
343 |
+
[ Fri Sep 16 00:11:55 2022 ] Batch(137/162) done. Loss: 0.2389 lr:0.100000 network_time: 0.0305
|
344 |
+
[ Fri Sep 16 00:12:13 2022 ] Eval epoch: 52
|
345 |
+
[ Fri Sep 16 00:14:03 2022 ] Mean test loss of 930 batches: 3.1332056522369385.
|
346 |
+
[ Fri Sep 16 00:14:04 2022 ] Top1: 43.39%
|
347 |
+
[ Fri Sep 16 00:14:04 2022 ] Top5: 74.20%
|
348 |
+
[ Fri Sep 16 00:14:05 2022 ] Training epoch: 53
|
349 |
+
[ Fri Sep 16 00:15:02 2022 ] Batch(75/162) done. Loss: 0.2281 lr:0.100000 network_time: 0.0278
|
350 |
+
[ Fri Sep 16 00:16:05 2022 ] Eval epoch: 53
|
351 |
+
[ Fri Sep 16 00:17:55 2022 ] Mean test loss of 930 batches: 3.1676747798919678.
|
352 |
+
[ Fri Sep 16 00:17:55 2022 ] Top1: 45.65%
|
353 |
+
[ Fri Sep 16 00:17:56 2022 ] Top5: 74.51%
|
354 |
+
[ Fri Sep 16 00:17:56 2022 ] Training epoch: 54
|
355 |
+
[ Fri Sep 16 00:18:09 2022 ] Batch(13/162) done. Loss: 0.2242 lr:0.100000 network_time: 0.0284
|
356 |
+
[ Fri Sep 16 00:19:21 2022 ] Batch(113/162) done. Loss: 0.3021 lr:0.100000 network_time: 0.0271
|
357 |
+
[ Fri Sep 16 00:19:56 2022 ] Eval epoch: 54
|
358 |
+
[ Fri Sep 16 00:21:46 2022 ] Mean test loss of 930 batches: 2.7405104637145996.
|
359 |
+
[ Fri Sep 16 00:21:47 2022 ] Top1: 47.49%
|
360 |
+
[ Fri Sep 16 00:21:47 2022 ] Top5: 77.36%
|
361 |
+
[ Fri Sep 16 00:21:47 2022 ] Training epoch: 55
|
362 |
+
[ Fri Sep 16 00:22:28 2022 ] Batch(51/162) done. Loss: 0.0692 lr:0.100000 network_time: 0.0263
|
363 |
+
[ Fri Sep 16 00:23:40 2022 ] Batch(151/162) done. Loss: 0.1702 lr:0.100000 network_time: 0.0274
|
364 |
+
[ Fri Sep 16 00:23:47 2022 ] Eval epoch: 55
|
365 |
+
[ Fri Sep 16 00:25:37 2022 ] Mean test loss of 930 batches: 2.920945167541504.
|
366 |
+
[ Fri Sep 16 00:25:38 2022 ] Top1: 45.22%
|
367 |
+
[ Fri Sep 16 00:25:38 2022 ] Top5: 74.90%
|
368 |
+
[ Fri Sep 16 00:25:38 2022 ] Training epoch: 56
|
369 |
+
[ Fri Sep 16 00:26:46 2022 ] Batch(89/162) done. Loss: 0.2224 lr:0.100000 network_time: 0.0254
|
370 |
+
[ Fri Sep 16 00:27:39 2022 ] Eval epoch: 56
|
371 |
+
[ Fri Sep 16 00:29:29 2022 ] Mean test loss of 930 batches: 2.671355724334717.
|
372 |
+
[ Fri Sep 16 00:29:29 2022 ] Top1: 47.52%
|
373 |
+
[ Fri Sep 16 00:29:30 2022 ] Top5: 77.24%
|
374 |
+
[ Fri Sep 16 00:29:30 2022 ] Training epoch: 57
|
375 |
+
[ Fri Sep 16 00:29:53 2022 ] Batch(27/162) done. Loss: 0.2738 lr:0.100000 network_time: 0.0271
|
376 |
+
[ Fri Sep 16 00:31:05 2022 ] Batch(127/162) done. Loss: 0.2604 lr:0.100000 network_time: 0.0356
|
377 |
+
[ Fri Sep 16 00:31:30 2022 ] Eval epoch: 57
|
378 |
+
[ Fri Sep 16 00:33:20 2022 ] Mean test loss of 930 batches: 2.9581689834594727.
|
379 |
+
[ Fri Sep 16 00:33:20 2022 ] Top1: 46.12%
|
380 |
+
[ Fri Sep 16 00:33:21 2022 ] Top5: 75.99%
|
381 |
+
[ Fri Sep 16 00:33:21 2022 ] Training epoch: 58
|
382 |
+
[ Fri Sep 16 00:34:11 2022 ] Batch(65/162) done. Loss: 0.1503 lr:0.100000 network_time: 0.0274
|
383 |
+
[ Fri Sep 16 00:35:21 2022 ] Eval epoch: 58
|
384 |
+
[ Fri Sep 16 00:37:11 2022 ] Mean test loss of 930 batches: 2.9120888710021973.
|
385 |
+
[ Fri Sep 16 00:37:11 2022 ] Top1: 47.65%
|
386 |
+
[ Fri Sep 16 00:37:12 2022 ] Top5: 77.31%
|
387 |
+
[ Fri Sep 16 00:37:12 2022 ] Training epoch: 59
|
388 |
+
[ Fri Sep 16 00:37:17 2022 ] Batch(3/162) done. Loss: 0.2663 lr:0.100000 network_time: 0.0256
|
389 |
+
[ Fri Sep 16 00:38:30 2022 ] Batch(103/162) done. Loss: 0.1600 lr:0.100000 network_time: 0.0275
|
390 |
+
[ Fri Sep 16 00:39:12 2022 ] Eval epoch: 59
|
391 |
+
[ Fri Sep 16 00:41:02 2022 ] Mean test loss of 930 batches: 2.8816802501678467.
|
392 |
+
[ Fri Sep 16 00:41:02 2022 ] Top1: 46.62%
|
393 |
+
[ Fri Sep 16 00:41:03 2022 ] Top5: 75.71%
|
394 |
+
[ Fri Sep 16 00:41:03 2022 ] Training epoch: 60
|
395 |
+
[ Fri Sep 16 00:41:36 2022 ] Batch(41/162) done. Loss: 0.3349 lr:0.100000 network_time: 0.0259
|
396 |
+
[ Fri Sep 16 00:42:49 2022 ] Batch(141/162) done. Loss: 0.2002 lr:0.100000 network_time: 0.0256
|
397 |
+
[ Fri Sep 16 00:43:04 2022 ] Eval epoch: 60
|
398 |
+
[ Fri Sep 16 00:44:53 2022 ] Mean test loss of 930 batches: 3.1312150955200195.
|
399 |
+
[ Fri Sep 16 00:44:54 2022 ] Top1: 46.17%
|
400 |
+
[ Fri Sep 16 00:44:54 2022 ] Top5: 74.38%
|
401 |
+
[ Fri Sep 16 00:44:54 2022 ] Training epoch: 61
|
402 |
+
[ Fri Sep 16 00:45:55 2022 ] Batch(79/162) done. Loss: 0.1466 lr:0.010000 network_time: 0.0264
|
403 |
+
[ Fri Sep 16 00:46:55 2022 ] Eval epoch: 61
|
404 |
+
[ Fri Sep 16 00:48:45 2022 ] Mean test loss of 930 batches: 2.4748167991638184.
|
405 |
+
[ Fri Sep 16 00:48:45 2022 ] Top1: 53.49%
|
406 |
+
[ Fri Sep 16 00:48:46 2022 ] Top5: 80.49%
|
407 |
+
[ Fri Sep 16 00:48:46 2022 ] Training epoch: 62
|
408 |
+
[ Fri Sep 16 00:49:01 2022 ] Batch(17/162) done. Loss: 0.0275 lr:0.010000 network_time: 0.0258
|
409 |
+
[ Fri Sep 16 00:50:14 2022 ] Batch(117/162) done. Loss: 0.0287 lr:0.010000 network_time: 0.0290
|
410 |
+
[ Fri Sep 16 00:50:46 2022 ] Eval epoch: 62
|
411 |
+
[ Fri Sep 16 00:52:36 2022 ] Mean test loss of 930 batches: 2.490679979324341.
|
412 |
+
[ Fri Sep 16 00:52:36 2022 ] Top1: 53.89%
|
413 |
+
[ Fri Sep 16 00:52:37 2022 ] Top5: 80.59%
|
414 |
+
[ Fri Sep 16 00:52:37 2022 ] Training epoch: 63
|
415 |
+
[ Fri Sep 16 00:53:20 2022 ] Batch(55/162) done. Loss: 0.0312 lr:0.010000 network_time: 0.0266
|
416 |
+
[ Fri Sep 16 00:54:33 2022 ] Batch(155/162) done. Loss: 0.0125 lr:0.010000 network_time: 0.0260
|
417 |
+
[ Fri Sep 16 00:54:37 2022 ] Eval epoch: 63
|
418 |
+
[ Fri Sep 16 00:56:27 2022 ] Mean test loss of 930 batches: 2.4980976581573486.
|
419 |
+
[ Fri Sep 16 00:56:27 2022 ] Top1: 54.03%
|
420 |
+
[ Fri Sep 16 00:56:28 2022 ] Top5: 80.86%
|
421 |
+
[ Fri Sep 16 00:56:28 2022 ] Training epoch: 64
|
422 |
+
[ Fri Sep 16 00:57:39 2022 ] Batch(93/162) done. Loss: 0.0411 lr:0.010000 network_time: 0.0260
|
423 |
+
[ Fri Sep 16 00:58:29 2022 ] Eval epoch: 64
|
424 |
+
[ Fri Sep 16 01:00:18 2022 ] Mean test loss of 930 batches: 2.519536018371582.
|
425 |
+
[ Fri Sep 16 01:00:18 2022 ] Top1: 54.18%
|
426 |
+
[ Fri Sep 16 01:00:19 2022 ] Top5: 80.82%
|
427 |
+
[ Fri Sep 16 01:00:19 2022 ] Training epoch: 65
|
428 |
+
[ Fri Sep 16 01:00:45 2022 ] Batch(31/162) done. Loss: 0.0299 lr:0.010000 network_time: 0.0276
|
429 |
+
[ Fri Sep 16 01:01:58 2022 ] Batch(131/162) done. Loss: 0.0315 lr:0.010000 network_time: 0.0299
|
430 |
+
[ Fri Sep 16 01:02:20 2022 ] Eval epoch: 65
|
431 |
+
[ Fri Sep 16 01:04:09 2022 ] Mean test loss of 930 batches: 2.5533487796783447.
|
432 |
+
[ Fri Sep 16 01:04:09 2022 ] Top1: 53.81%
|
433 |
+
[ Fri Sep 16 01:04:10 2022 ] Top5: 80.72%
|
434 |
+
[ Fri Sep 16 01:04:10 2022 ] Training epoch: 66
|
435 |
+
[ Fri Sep 16 01:05:04 2022 ] Batch(69/162) done. Loss: 0.0256 lr:0.010000 network_time: 0.0266
|
436 |
+
[ Fri Sep 16 01:06:11 2022 ] Eval epoch: 66
|
437 |
+
[ Fri Sep 16 01:08:01 2022 ] Mean test loss of 930 batches: 2.5415453910827637.
|
438 |
+
[ Fri Sep 16 01:08:01 2022 ] Top1: 54.21%
|
439 |
+
[ Fri Sep 16 01:08:01 2022 ] Top5: 80.87%
|
440 |
+
[ Fri Sep 16 01:08:02 2022 ] Training epoch: 67
|
441 |
+
[ Fri Sep 16 01:08:11 2022 ] Batch(7/162) done. Loss: 0.0065 lr:0.010000 network_time: 0.0315
|
442 |
+
[ Fri Sep 16 01:09:23 2022 ] Batch(107/162) done. Loss: 0.0125 lr:0.010000 network_time: 0.0663
|
443 |
+
[ Fri Sep 16 01:10:03 2022 ] Eval epoch: 67
|
444 |
+
[ Fri Sep 16 01:11:52 2022 ] Mean test loss of 930 batches: 2.536372661590576.
|
445 |
+
[ Fri Sep 16 01:11:53 2022 ] Top1: 54.25%
|
446 |
+
[ Fri Sep 16 01:11:53 2022 ] Top5: 80.92%
|
447 |
+
[ Fri Sep 16 01:11:53 2022 ] Training epoch: 68
|
448 |
+
[ Fri Sep 16 01:12:29 2022 ] Batch(45/162) done. Loss: 0.0395 lr:0.010000 network_time: 0.0299
|
449 |
+
[ Fri Sep 16 01:13:42 2022 ] Batch(145/162) done. Loss: 0.0242 lr:0.010000 network_time: 0.0269
|
450 |
+
[ Fri Sep 16 01:13:54 2022 ] Eval epoch: 68
|
451 |
+
[ Fri Sep 16 01:15:43 2022 ] Mean test loss of 930 batches: 2.539608955383301.
|
452 |
+
[ Fri Sep 16 01:15:43 2022 ] Top1: 54.20%
|
453 |
+
[ Fri Sep 16 01:15:44 2022 ] Top5: 81.04%
|
454 |
+
[ Fri Sep 16 01:15:44 2022 ] Training epoch: 69
|
455 |
+
[ Fri Sep 16 01:16:48 2022 ] Batch(83/162) done. Loss: 0.0367 lr:0.010000 network_time: 0.0266
|
456 |
+
[ Fri Sep 16 01:17:44 2022 ] Eval epoch: 69
|
457 |
+
[ Fri Sep 16 01:19:34 2022 ] Mean test loss of 930 batches: 2.5502073764801025.
|
458 |
+
[ Fri Sep 16 01:19:35 2022 ] Top1: 54.33%
|
459 |
+
[ Fri Sep 16 01:19:35 2022 ] Top5: 80.96%
|
460 |
+
[ Fri Sep 16 01:19:35 2022 ] Training epoch: 70
|
461 |
+
[ Fri Sep 16 01:19:55 2022 ] Batch(21/162) done. Loss: 0.0162 lr:0.010000 network_time: 0.0308
|
462 |
+
[ Fri Sep 16 01:21:07 2022 ] Batch(121/162) done. Loss: 0.0184 lr:0.010000 network_time: 0.0257
|
463 |
+
[ Fri Sep 16 01:21:36 2022 ] Eval epoch: 70
|
464 |
+
[ Fri Sep 16 01:23:26 2022 ] Mean test loss of 930 batches: 2.5347869396209717.
|
465 |
+
[ Fri Sep 16 01:23:27 2022 ] Top1: 54.52%
|
466 |
+
[ Fri Sep 16 01:23:27 2022 ] Top5: 81.08%
|
467 |
+
[ Fri Sep 16 01:23:27 2022 ] Training epoch: 71
|
468 |
+
[ Fri Sep 16 01:24:14 2022 ] Batch(59/162) done. Loss: 0.0151 lr:0.010000 network_time: 0.0277
|
469 |
+
[ Fri Sep 16 01:25:26 2022 ] Batch(159/162) done. Loss: 0.0078 lr:0.010000 network_time: 0.0268
|
470 |
+
[ Fri Sep 16 01:25:28 2022 ] Eval epoch: 71
|
471 |
+
[ Fri Sep 16 01:27:18 2022 ] Mean test loss of 930 batches: 2.5435900688171387.
|
472 |
+
[ Fri Sep 16 01:27:18 2022 ] Top1: 54.45%
|
473 |
+
[ Fri Sep 16 01:27:18 2022 ] Top5: 81.15%
|
474 |
+
[ Fri Sep 16 01:27:19 2022 ] Training epoch: 72
|
475 |
+
[ Fri Sep 16 01:28:33 2022 ] Batch(97/162) done. Loss: 0.0244 lr:0.010000 network_time: 0.0289
|
476 |
+
[ Fri Sep 16 01:29:19 2022 ] Eval epoch: 72
|
477 |
+
[ Fri Sep 16 01:31:09 2022 ] Mean test loss of 930 batches: 2.6118814945220947.
|
478 |
+
[ Fri Sep 16 01:31:09 2022 ] Top1: 54.16%
|
479 |
+
[ Fri Sep 16 01:31:10 2022 ] Top5: 80.86%
|
480 |
+
[ Fri Sep 16 01:31:10 2022 ] Training epoch: 73
|
481 |
+
[ Fri Sep 16 01:31:39 2022 ] Batch(35/162) done. Loss: 0.0033 lr:0.010000 network_time: 0.0262
|
482 |
+
[ Fri Sep 16 01:32:52 2022 ] Batch(135/162) done. Loss: 0.0129 lr:0.010000 network_time: 0.0261
|
483 |
+
[ Fri Sep 16 01:33:11 2022 ] Eval epoch: 73
|
484 |
+
[ Fri Sep 16 01:35:00 2022 ] Mean test loss of 930 batches: 2.569013833999634.
|
485 |
+
[ Fri Sep 16 01:35:01 2022 ] Top1: 54.44%
|
486 |
+
[ Fri Sep 16 01:35:01 2022 ] Top5: 81.23%
|
487 |
+
[ Fri Sep 16 01:35:01 2022 ] Training epoch: 74
|
488 |
+
[ Fri Sep 16 01:35:58 2022 ] Batch(73/162) done. Loss: 0.0043 lr:0.010000 network_time: 0.0440
|
489 |
+
[ Fri Sep 16 01:37:02 2022 ] Eval epoch: 74
|
490 |
+
[ Fri Sep 16 01:38:51 2022 ] Mean test loss of 930 batches: 2.572516679763794.
|
491 |
+
[ Fri Sep 16 01:38:52 2022 ] Top1: 54.38%
|
492 |
+
[ Fri Sep 16 01:38:52 2022 ] Top5: 81.14%
|
493 |
+
[ Fri Sep 16 01:38:52 2022 ] Training epoch: 75
|
494 |
+
[ Fri Sep 16 01:39:04 2022 ] Batch(11/162) done. Loss: 0.0047 lr:0.010000 network_time: 0.0298
|
495 |
+
[ Fri Sep 16 01:40:16 2022 ] Batch(111/162) done. Loss: 0.0327 lr:0.010000 network_time: 0.0266
|
496 |
+
[ Fri Sep 16 01:40:53 2022 ] Eval epoch: 75
|
497 |
+
[ Fri Sep 16 01:42:43 2022 ] Mean test loss of 930 batches: 2.5794084072113037.
|
498 |
+
[ Fri Sep 16 01:42:43 2022 ] Top1: 54.24%
|
499 |
+
[ Fri Sep 16 01:42:43 2022 ] Top5: 80.90%
|
500 |
+
[ Fri Sep 16 01:42:44 2022 ] Training epoch: 76
|
501 |
+
[ Fri Sep 16 01:43:23 2022 ] Batch(49/162) done. Loss: 0.0127 lr:0.010000 network_time: 0.0267
|
502 |
+
[ Fri Sep 16 01:44:35 2022 ] Batch(149/162) done. Loss: 0.0227 lr:0.010000 network_time: 0.0269
|
503 |
+
[ Fri Sep 16 01:44:44 2022 ] Eval epoch: 76
|
504 |
+
[ Fri Sep 16 01:46:34 2022 ] Mean test loss of 930 batches: 2.6028902530670166.
|
505 |
+
[ Fri Sep 16 01:46:34 2022 ] Top1: 54.26%
|
506 |
+
[ Fri Sep 16 01:46:35 2022 ] Top5: 80.83%
|
507 |
+
[ Fri Sep 16 01:46:35 2022 ] Training epoch: 77
|
508 |
+
[ Fri Sep 16 01:47:42 2022 ] Batch(87/162) done. Loss: 0.0140 lr:0.010000 network_time: 0.0266
|
509 |
+
[ Fri Sep 16 01:48:36 2022 ] Eval epoch: 77
|
510 |
+
[ Fri Sep 16 01:50:25 2022 ] Mean test loss of 930 batches: 2.587498903274536.
|
511 |
+
[ Fri Sep 16 01:50:25 2022 ] Top1: 54.37%
|
512 |
+
[ Fri Sep 16 01:50:26 2022 ] Top5: 80.98%
|
513 |
+
[ Fri Sep 16 01:50:26 2022 ] Training epoch: 78
|
514 |
+
[ Fri Sep 16 01:50:48 2022 ] Batch(25/162) done. Loss: 0.0059 lr:0.010000 network_time: 0.0265
|
515 |
+
[ Fri Sep 16 01:52:00 2022 ] Batch(125/162) done. Loss: 0.0070 lr:0.010000 network_time: 0.0260
|
516 |
+
[ Fri Sep 16 01:52:27 2022 ] Eval epoch: 78
|
517 |
+
[ Fri Sep 16 01:54:17 2022 ] Mean test loss of 930 batches: 2.579465866088867.
|
518 |
+
[ Fri Sep 16 01:54:17 2022 ] Top1: 54.72%
|
519 |
+
[ Fri Sep 16 01:54:17 2022 ] Top5: 81.03%
|
520 |
+
[ Fri Sep 16 01:54:18 2022 ] Training epoch: 79
|
521 |
+
[ Fri Sep 16 01:55:07 2022 ] Batch(63/162) done. Loss: 0.0047 lr:0.010000 network_time: 0.0279
|
522 |
+
[ Fri Sep 16 01:56:18 2022 ] Eval epoch: 79
|
523 |
+
[ Fri Sep 16 01:58:08 2022 ] Mean test loss of 930 batches: 2.603970527648926.
|
524 |
+
[ Fri Sep 16 01:58:08 2022 ] Top1: 54.30%
|
525 |
+
[ Fri Sep 16 01:58:09 2022 ] Top5: 80.87%
|
526 |
+
[ Fri Sep 16 01:58:09 2022 ] Training epoch: 80
|
527 |
+
[ Fri Sep 16 01:58:13 2022 ] Batch(1/162) done. Loss: 0.0055 lr:0.010000 network_time: 0.0293
|
528 |
+
[ Fri Sep 16 01:59:26 2022 ] Batch(101/162) done. Loss: 0.0043 lr:0.010000 network_time: 0.0263
|
529 |
+
[ Fri Sep 16 02:00:10 2022 ] Eval epoch: 80
|
530 |
+
[ Fri Sep 16 02:01:59 2022 ] Mean test loss of 930 batches: 2.5931570529937744.
|
531 |
+
[ Fri Sep 16 02:01:59 2022 ] Top1: 54.43%
|
532 |
+
[ Fri Sep 16 02:02:00 2022 ] Top5: 81.05%
|
533 |
+
[ Fri Sep 16 02:02:00 2022 ] Training epoch: 81
|
534 |
+
[ Fri Sep 16 02:02:32 2022 ] Batch(39/162) done. Loss: 0.0105 lr:0.001000 network_time: 0.0305
|
535 |
+
[ Fri Sep 16 02:03:44 2022 ] Batch(139/162) done. Loss: 0.0017 lr:0.001000 network_time: 0.0307
|
536 |
+
[ Fri Sep 16 02:04:00 2022 ] Eval epoch: 81
|
537 |
+
[ Fri Sep 16 02:05:50 2022 ] Mean test loss of 930 batches: 2.6085758209228516.
|
538 |
+
[ Fri Sep 16 02:05:51 2022 ] Top1: 54.33%
|
539 |
+
[ Fri Sep 16 02:05:51 2022 ] Top5: 80.87%
|
540 |
+
[ Fri Sep 16 02:05:51 2022 ] Training epoch: 82
|
541 |
+
[ Fri Sep 16 02:06:51 2022 ] Batch(77/162) done. Loss: 0.0111 lr:0.001000 network_time: 0.0309
|
542 |
+
[ Fri Sep 16 02:07:52 2022 ] Eval epoch: 82
|
543 |
+
[ Fri Sep 16 02:09:42 2022 ] Mean test loss of 930 batches: 2.5661566257476807.
|
544 |
+
[ Fri Sep 16 02:09:42 2022 ] Top1: 54.70%
|
545 |
+
[ Fri Sep 16 02:09:43 2022 ] Top5: 81.25%
|
546 |
+
[ Fri Sep 16 02:09:43 2022 ] Training epoch: 83
|
547 |
+
[ Fri Sep 16 02:09:57 2022 ] Batch(15/162) done. Loss: 0.0092 lr:0.001000 network_time: 0.0292
|
548 |
+
[ Fri Sep 16 02:11:10 2022 ] Batch(115/162) done. Loss: 0.0125 lr:0.001000 network_time: 0.0315
|
549 |
+
[ Fri Sep 16 02:11:44 2022 ] Eval epoch: 83
|
550 |
+
[ Fri Sep 16 02:13:33 2022 ] Mean test loss of 930 batches: 2.590534210205078.
|
551 |
+
[ Fri Sep 16 02:13:33 2022 ] Top1: 54.68%
|
552 |
+
[ Fri Sep 16 02:13:34 2022 ] Top5: 81.02%
|
553 |
+
[ Fri Sep 16 02:13:34 2022 ] Training epoch: 84
|
554 |
+
[ Fri Sep 16 02:14:16 2022 ] Batch(53/162) done. Loss: 0.0171 lr:0.001000 network_time: 0.0291
|
555 |
+
[ Fri Sep 16 02:15:29 2022 ] Batch(153/162) done. Loss: 0.0115 lr:0.001000 network_time: 0.0257
|
556 |
+
[ Fri Sep 16 02:15:35 2022 ] Eval epoch: 84
|
557 |
+
[ Fri Sep 16 02:17:25 2022 ] Mean test loss of 930 batches: 2.5949807167053223.
|
558 |
+
[ Fri Sep 16 02:17:25 2022 ] Top1: 54.61%
|
559 |
+
[ Fri Sep 16 02:17:25 2022 ] Top5: 80.92%
|
560 |
+
[ Fri Sep 16 02:17:26 2022 ] Training epoch: 85
|
561 |
+
[ Fri Sep 16 02:18:36 2022 ] Batch(91/162) done. Loss: 0.0127 lr:0.001000 network_time: 0.0315
|
562 |
+
[ Fri Sep 16 02:19:27 2022 ] Eval epoch: 85
|
563 |
+
[ Fri Sep 16 02:21:17 2022 ] Mean test loss of 930 batches: 2.608656406402588.
|
564 |
+
[ Fri Sep 16 02:21:17 2022 ] Top1: 54.46%
|
565 |
+
[ Fri Sep 16 02:21:18 2022 ] Top5: 81.11%
|
566 |
+
[ Fri Sep 16 02:21:18 2022 ] Training epoch: 86
|
567 |
+
[ Fri Sep 16 02:21:42 2022 ] Batch(29/162) done. Loss: 0.0120 lr:0.001000 network_time: 0.0271
|
568 |
+
[ Fri Sep 16 02:22:55 2022 ] Batch(129/162) done. Loss: 0.0073 lr:0.001000 network_time: 0.0270
|
569 |
+
[ Fri Sep 16 02:23:18 2022 ] Eval epoch: 86
|
570 |
+
[ Fri Sep 16 02:25:08 2022 ] Mean test loss of 930 batches: 2.586932420730591.
|
571 |
+
[ Fri Sep 16 02:25:08 2022 ] Top1: 54.47%
|
572 |
+
[ Fri Sep 16 02:25:09 2022 ] Top5: 81.06%
|
573 |
+
[ Fri Sep 16 02:25:09 2022 ] Training epoch: 87
|
574 |
+
[ Fri Sep 16 02:26:01 2022 ] Batch(67/162) done. Loss: 0.0127 lr:0.001000 network_time: 0.0279
|
575 |
+
[ Fri Sep 16 02:27:09 2022 ] Eval epoch: 87
|
576 |
+
[ Fri Sep 16 02:28:58 2022 ] Mean test loss of 930 batches: 2.5606770515441895.
|
577 |
+
[ Fri Sep 16 02:28:59 2022 ] Top1: 54.67%
|
578 |
+
[ Fri Sep 16 02:28:59 2022 ] Top5: 81.27%
|
579 |
+
[ Fri Sep 16 02:28:59 2022 ] Training epoch: 88
|
580 |
+
[ Fri Sep 16 02:29:07 2022 ] Batch(5/162) done. Loss: 0.0105 lr:0.001000 network_time: 0.0260
|
581 |
+
[ Fri Sep 16 02:30:19 2022 ] Batch(105/162) done. Loss: 0.0090 lr:0.001000 network_time: 0.0265
|
582 |
+
[ Fri Sep 16 02:31:00 2022 ] Eval epoch: 88
|
583 |
+
[ Fri Sep 16 02:32:49 2022 ] Mean test loss of 930 batches: 2.5782501697540283.
|
584 |
+
[ Fri Sep 16 02:32:49 2022 ] Top1: 54.59%
|
585 |
+
[ Fri Sep 16 02:32:50 2022 ] Top5: 81.03%
|
586 |
+
[ Fri Sep 16 02:32:50 2022 ] Training epoch: 89
|
587 |
+
[ Fri Sep 16 02:33:25 2022 ] Batch(43/162) done. Loss: 0.0029 lr:0.001000 network_time: 0.0306
|
588 |
+
[ Fri Sep 16 02:34:38 2022 ] Batch(143/162) done. Loss: 0.0068 lr:0.001000 network_time: 0.0255
|
589 |
+
[ Fri Sep 16 02:34:51 2022 ] Eval epoch: 89
|
590 |
+
[ Fri Sep 16 02:36:40 2022 ] Mean test loss of 930 batches: 2.583160161972046.
|
591 |
+
[ Fri Sep 16 02:36:41 2022 ] Top1: 54.79%
|
592 |
+
[ Fri Sep 16 02:36:41 2022 ] Top5: 81.18%
|
593 |
+
[ Fri Sep 16 02:36:41 2022 ] Training epoch: 90
|
594 |
+
[ Fri Sep 16 02:37:43 2022 ] Batch(81/162) done. Loss: 0.0046 lr:0.001000 network_time: 0.0283
|
595 |
+
[ Fri Sep 16 02:38:42 2022 ] Eval epoch: 90
|
596 |
+
[ Fri Sep 16 02:40:31 2022 ] Mean test loss of 930 batches: 2.5848512649536133.
|
597 |
+
[ Fri Sep 16 02:40:31 2022 ] Top1: 54.56%
|
598 |
+
[ Fri Sep 16 02:40:32 2022 ] Top5: 81.17%
|
599 |
+
[ Fri Sep 16 02:40:32 2022 ] Training epoch: 91
|
600 |
+
[ Fri Sep 16 02:40:49 2022 ] Batch(19/162) done. Loss: 0.0071 lr:0.001000 network_time: 0.0335
|
601 |
+
[ Fri Sep 16 02:42:01 2022 ] Batch(119/162) done. Loss: 0.0055 lr:0.001000 network_time: 0.0258
|
602 |
+
[ Fri Sep 16 02:42:32 2022 ] Eval epoch: 91
|
603 |
+
[ Fri Sep 16 02:44:21 2022 ] Mean test loss of 930 batches: 2.625767707824707.
|
604 |
+
[ Fri Sep 16 02:44:22 2022 ] Top1: 54.39%
|
605 |
+
[ Fri Sep 16 02:44:22 2022 ] Top5: 81.06%
|
606 |
+
[ Fri Sep 16 02:44:22 2022 ] Training epoch: 92
|
607 |
+
[ Fri Sep 16 02:45:07 2022 ] Batch(57/162) done. Loss: 0.0181 lr:0.001000 network_time: 0.0260
|
608 |
+
[ Fri Sep 16 02:46:20 2022 ] Batch(157/162) done. Loss: 0.0126 lr:0.001000 network_time: 0.0266
|
609 |
+
[ Fri Sep 16 02:46:23 2022 ] Eval epoch: 92
|
610 |
+
[ Fri Sep 16 02:48:12 2022 ] Mean test loss of 930 batches: 2.5934081077575684.
|
611 |
+
[ Fri Sep 16 02:48:13 2022 ] Top1: 54.54%
|
612 |
+
[ Fri Sep 16 02:48:13 2022 ] Top5: 81.03%
|
613 |
+
[ Fri Sep 16 02:48:13 2022 ] Training epoch: 93
|
614 |
+
[ Fri Sep 16 02:49:26 2022 ] Batch(95/162) done. Loss: 0.0061 lr:0.001000 network_time: 0.0678
|
615 |
+
[ Fri Sep 16 02:50:14 2022 ] Eval epoch: 93
|
616 |
+
[ Fri Sep 16 02:52:03 2022 ] Mean test loss of 930 batches: 2.5692086219787598.
|
617 |
+
[ Fri Sep 16 02:52:04 2022 ] Top1: 55.00%
|
618 |
+
[ Fri Sep 16 02:52:04 2022 ] Top5: 81.34%
|
619 |
+
[ Fri Sep 16 02:52:04 2022 ] Training epoch: 94
|
620 |
+
[ Fri Sep 16 02:52:32 2022 ] Batch(33/162) done. Loss: 0.0225 lr:0.001000 network_time: 0.0273
|
621 |
+
[ Fri Sep 16 02:53:45 2022 ] Batch(133/162) done. Loss: 0.0196 lr:0.001000 network_time: 0.0302
|
622 |
+
[ Fri Sep 16 02:54:05 2022 ] Eval epoch: 94
|
623 |
+
[ Fri Sep 16 02:55:55 2022 ] Mean test loss of 930 batches: 2.561540126800537.
|
624 |
+
[ Fri Sep 16 02:55:55 2022 ] Top1: 54.92%
|
625 |
+
[ Fri Sep 16 02:55:56 2022 ] Top5: 81.30%
|
626 |
+
[ Fri Sep 16 02:55:56 2022 ] Training epoch: 95
|
627 |
+
[ Fri Sep 16 02:56:51 2022 ] Batch(71/162) done. Loss: 0.0138 lr:0.001000 network_time: 0.0272
|
628 |
+
[ Fri Sep 16 02:57:56 2022 ] Eval epoch: 95
|
629 |
+
[ Fri Sep 16 02:59:46 2022 ] Mean test loss of 930 batches: 2.600646495819092.
|
630 |
+
[ Fri Sep 16 02:59:47 2022 ] Top1: 54.43%
|
631 |
+
[ Fri Sep 16 02:59:47 2022 ] Top5: 80.92%
|
632 |
+
[ Fri Sep 16 02:59:47 2022 ] Training epoch: 96
|
633 |
+
[ Fri Sep 16 02:59:58 2022 ] Batch(9/162) done. Loss: 0.0091 lr:0.001000 network_time: 0.0254
|
634 |
+
[ Fri Sep 16 03:01:10 2022 ] Batch(109/162) done. Loss: 0.0059 lr:0.001000 network_time: 0.0275
|
635 |
+
[ Fri Sep 16 03:01:48 2022 ] Eval epoch: 96
|
636 |
+
[ Fri Sep 16 03:03:38 2022 ] Mean test loss of 930 batches: 2.594008207321167.
|
637 |
+
[ Fri Sep 16 03:03:38 2022 ] Top1: 54.50%
|
638 |
+
[ Fri Sep 16 03:03:39 2022 ] Top5: 81.09%
|
639 |
+
[ Fri Sep 16 03:03:39 2022 ] Training epoch: 97
|
640 |
+
[ Fri Sep 16 03:04:17 2022 ] Batch(47/162) done. Loss: 0.0162 lr:0.001000 network_time: 0.0313
|
641 |
+
[ Fri Sep 16 03:05:29 2022 ] Batch(147/162) done. Loss: 0.0074 lr:0.001000 network_time: 0.0307
|
642 |
+
[ Fri Sep 16 03:05:40 2022 ] Eval epoch: 97
|
643 |
+
[ Fri Sep 16 03:07:29 2022 ] Mean test loss of 930 batches: 2.56474232673645.
|
644 |
+
[ Fri Sep 16 03:07:30 2022 ] Top1: 54.66%
|
645 |
+
[ Fri Sep 16 03:07:30 2022 ] Top5: 81.15%
|
646 |
+
[ Fri Sep 16 03:07:30 2022 ] Training epoch: 98
|
647 |
+
[ Fri Sep 16 03:08:36 2022 ] Batch(85/162) done. Loss: 0.0135 lr:0.001000 network_time: 0.0295
|
648 |
+
[ Fri Sep 16 03:09:31 2022 ] Eval epoch: 98
|
649 |
+
[ Fri Sep 16 03:11:21 2022 ] Mean test loss of 930 batches: 2.5852057933807373.
|
650 |
+
[ Fri Sep 16 03:11:21 2022 ] Top1: 54.71%
|
651 |
+
[ Fri Sep 16 03:11:21 2022 ] Top5: 81.15%
|
652 |
+
[ Fri Sep 16 03:11:22 2022 ] Training epoch: 99
|
653 |
+
[ Fri Sep 16 03:11:42 2022 ] Batch(23/162) done. Loss: 0.0056 lr:0.001000 network_time: 0.0263
|
654 |
+
[ Fri Sep 16 03:12:55 2022 ] Batch(123/162) done. Loss: 0.0053 lr:0.001000 network_time: 0.0262
|
655 |
+
[ Fri Sep 16 03:13:22 2022 ] Eval epoch: 99
|
656 |
+
[ Fri Sep 16 03:15:11 2022 ] Mean test loss of 930 batches: 2.5815749168395996.
|
657 |
+
[ Fri Sep 16 03:15:12 2022 ] Top1: 54.67%
|
658 |
+
[ Fri Sep 16 03:15:12 2022 ] Top5: 81.28%
|
659 |
+
[ Fri Sep 16 03:15:13 2022 ] Training epoch: 100
|
660 |
+
[ Fri Sep 16 03:16:00 2022 ] Batch(61/162) done. Loss: 0.0195 lr:0.001000 network_time: 0.0220
|
661 |
+
[ Fri Sep 16 03:17:13 2022 ] Batch(161/162) done. Loss: 0.0064 lr:0.001000 network_time: 0.0269
|
662 |
+
[ Fri Sep 16 03:17:13 2022 ] Eval epoch: 100
|
663 |
+
[ Fri Sep 16 03:19:02 2022 ] Mean test loss of 930 batches: 2.606626510620117.
|
664 |
+
[ Fri Sep 16 03:19:03 2022 ] Top1: 54.28%
|
665 |
+
[ Fri Sep 16 03:19:03 2022 ] Top5: 80.92%
|
666 |
+
[ Fri Sep 16 03:19:04 2022 ] Training epoch: 101
|
667 |
+
[ Fri Sep 16 03:20:19 2022 ] Batch(99/162) done. Loss: 0.0070 lr:0.000100 network_time: 0.0313
|
668 |
+
[ Fri Sep 16 03:21:04 2022 ] Eval epoch: 101
|
669 |
+
[ Fri Sep 16 03:22:53 2022 ] Mean test loss of 930 batches: 2.575133800506592.
|
670 |
+
[ Fri Sep 16 03:22:54 2022 ] Top1: 54.92%
|
671 |
+
[ Fri Sep 16 03:22:54 2022 ] Top5: 81.40%
|
672 |
+
[ Fri Sep 16 03:22:54 2022 ] Training epoch: 102
|
673 |
+
[ Fri Sep 16 03:23:25 2022 ] Batch(37/162) done. Loss: 0.0085 lr:0.000100 network_time: 0.0315
|
674 |
+
[ Fri Sep 16 03:24:37 2022 ] Batch(137/162) done. Loss: 0.0057 lr:0.000100 network_time: 0.0299
|
675 |
+
[ Fri Sep 16 03:24:55 2022 ] Eval epoch: 102
|
676 |
+
[ Fri Sep 16 03:26:45 2022 ] Mean test loss of 930 batches: 2.5923445224761963.
|
677 |
+
[ Fri Sep 16 03:26:45 2022 ] Top1: 54.70%
|
678 |
+
[ Fri Sep 16 03:26:46 2022 ] Top5: 81.13%
|
679 |
+
[ Fri Sep 16 03:26:46 2022 ] Training epoch: 103
|
680 |
+
[ Fri Sep 16 03:27:44 2022 ] Batch(75/162) done. Loss: 0.0136 lr:0.000100 network_time: 0.0268
|
681 |
+
[ Fri Sep 16 03:28:47 2022 ] Eval epoch: 103
|
682 |
+
[ Fri Sep 16 03:30:36 2022 ] Mean test loss of 930 batches: 2.6140177249908447.
|
683 |
+
[ Fri Sep 16 03:30:37 2022 ] Top1: 54.28%
|
684 |
+
[ Fri Sep 16 03:30:37 2022 ] Top5: 81.05%
|
685 |
+
[ Fri Sep 16 03:30:38 2022 ] Training epoch: 104
|
686 |
+
[ Fri Sep 16 03:30:50 2022 ] Batch(13/162) done. Loss: 0.0077 lr:0.000100 network_time: 0.0275
|
687 |
+
[ Fri Sep 16 03:32:03 2022 ] Batch(113/162) done. Loss: 0.0058 lr:0.000100 network_time: 0.0257
|
688 |
+
[ Fri Sep 16 03:32:38 2022 ] Eval epoch: 104
|
689 |
+
[ Fri Sep 16 03:34:27 2022 ] Mean test loss of 930 batches: 2.602022647857666.
|
690 |
+
[ Fri Sep 16 03:34:27 2022 ] Top1: 54.47%
|
691 |
+
[ Fri Sep 16 03:34:28 2022 ] Top5: 81.10%
|
692 |
+
[ Fri Sep 16 03:34:28 2022 ] Training epoch: 105
|
693 |
+
[ Fri Sep 16 03:35:09 2022 ] Batch(51/162) done. Loss: 0.0099 lr:0.000100 network_time: 0.0324
|
694 |
+
[ Fri Sep 16 03:36:21 2022 ] Batch(151/162) done. Loss: 0.0118 lr:0.000100 network_time: 0.0259
|
695 |
+
[ Fri Sep 16 03:36:29 2022 ] Eval epoch: 105
|
696 |
+
[ Fri Sep 16 03:38:18 2022 ] Mean test loss of 930 batches: 2.5884015560150146.
|
697 |
+
[ Fri Sep 16 03:38:19 2022 ] Top1: 54.51%
|
698 |
+
[ Fri Sep 16 03:38:19 2022 ] Top5: 81.17%
|
699 |
+
[ Fri Sep 16 03:38:19 2022 ] Training epoch: 106
|
700 |
+
[ Fri Sep 16 03:39:27 2022 ] Batch(89/162) done. Loss: 0.0040 lr:0.000100 network_time: 0.0231
|
701 |
+
[ Fri Sep 16 03:40:20 2022 ] Eval epoch: 106
|
702 |
+
[ Fri Sep 16 03:42:09 2022 ] Mean test loss of 930 batches: 2.61933970451355.
|
703 |
+
[ Fri Sep 16 03:42:09 2022 ] Top1: 54.38%
|
704 |
+
[ Fri Sep 16 03:42:10 2022 ] Top5: 80.87%
|
705 |
+
[ Fri Sep 16 03:42:10 2022 ] Training epoch: 107
|
706 |
+
[ Fri Sep 16 03:42:33 2022 ] Batch(27/162) done. Loss: 0.0046 lr:0.000100 network_time: 0.0302
|
707 |
+
[ Fri Sep 16 03:43:45 2022 ] Batch(127/162) done. Loss: 0.0163 lr:0.000100 network_time: 0.0320
|
708 |
+
[ Fri Sep 16 03:44:10 2022 ] Eval epoch: 107
|
709 |
+
[ Fri Sep 16 03:45:59 2022 ] Mean test loss of 930 batches: 2.5805156230926514.
|
710 |
+
[ Fri Sep 16 03:46:00 2022 ] Top1: 54.50%
|
711 |
+
[ Fri Sep 16 03:46:00 2022 ] Top5: 81.09%
|
712 |
+
[ Fri Sep 16 03:46:01 2022 ] Training epoch: 108
|
713 |
+
[ Fri Sep 16 03:46:51 2022 ] Batch(65/162) done. Loss: 0.0039 lr:0.000100 network_time: 0.0311
|
714 |
+
[ Fri Sep 16 03:48:01 2022 ] Eval epoch: 108
|
715 |
+
[ Fri Sep 16 03:49:50 2022 ] Mean test loss of 930 batches: 2.622124433517456.
|
716 |
+
[ Fri Sep 16 03:49:51 2022 ] Top1: 54.37%
|
717 |
+
[ Fri Sep 16 03:49:51 2022 ] Top5: 81.01%
|
718 |
+
[ Fri Sep 16 03:49:51 2022 ] Training epoch: 109
|
719 |
+
[ Fri Sep 16 03:49:57 2022 ] Batch(3/162) done. Loss: 0.0086 lr:0.000100 network_time: 0.0315
|
720 |
+
[ Fri Sep 16 03:51:10 2022 ] Batch(103/162) done. Loss: 0.0456 lr:0.000100 network_time: 0.0265
|
721 |
+
[ Fri Sep 16 03:51:52 2022 ] Eval epoch: 109
|
722 |
+
[ Fri Sep 16 03:53:41 2022 ] Mean test loss of 930 batches: 2.5847461223602295.
|
723 |
+
[ Fri Sep 16 03:53:42 2022 ] Top1: 54.65%
|
724 |
+
[ Fri Sep 16 03:53:42 2022 ] Top5: 81.22%
|
725 |
+
[ Fri Sep 16 03:53:42 2022 ] Training epoch: 110
|
726 |
+
[ Fri Sep 16 03:54:16 2022 ] Batch(41/162) done. Loss: 0.0170 lr:0.000100 network_time: 0.0301
|
727 |
+
[ Fri Sep 16 03:55:28 2022 ] Batch(141/162) done. Loss: 0.0042 lr:0.000100 network_time: 0.0270
|
728 |
+
[ Fri Sep 16 03:55:43 2022 ] Eval epoch: 110
|
729 |
+
[ Fri Sep 16 03:57:32 2022 ] Mean test loss of 930 batches: 2.6004409790039062.
|
730 |
+
[ Fri Sep 16 03:57:33 2022 ] Top1: 54.47%
|
731 |
+
[ Fri Sep 16 03:57:33 2022 ] Top5: 80.99%
|
732 |
+
[ Fri Sep 16 03:57:33 2022 ] Training epoch: 111
|
733 |
+
[ Fri Sep 16 03:58:34 2022 ] Batch(79/162) done. Loss: 0.0052 lr:0.000100 network_time: 0.0327
|
734 |
+
[ Fri Sep 16 03:59:34 2022 ] Eval epoch: 111
|
735 |
+
[ Fri Sep 16 04:01:24 2022 ] Mean test loss of 930 batches: 2.621633291244507.
|
736 |
+
[ Fri Sep 16 04:01:24 2022 ] Top1: 54.11%
|
737 |
+
[ Fri Sep 16 04:01:25 2022 ] Top5: 80.90%
|
738 |
+
[ Fri Sep 16 04:01:25 2022 ] Training epoch: 112
|
739 |
+
[ Fri Sep 16 04:01:41 2022 ] Batch(17/162) done. Loss: 0.0093 lr:0.000100 network_time: 0.0266
|
740 |
+
[ Fri Sep 16 04:02:54 2022 ] Batch(117/162) done. Loss: 0.0104 lr:0.000100 network_time: 0.0268
|
741 |
+
[ Fri Sep 16 04:03:26 2022 ] Eval epoch: 112
|
742 |
+
[ Fri Sep 16 04:05:15 2022 ] Mean test loss of 930 batches: 2.5725698471069336.
|
743 |
+
[ Fri Sep 16 04:05:15 2022 ] Top1: 54.85%
|
744 |
+
[ Fri Sep 16 04:05:16 2022 ] Top5: 81.15%
|
745 |
+
[ Fri Sep 16 04:05:16 2022 ] Training epoch: 113
|
746 |
+
[ Fri Sep 16 04:05:59 2022 ] Batch(55/162) done. Loss: 0.0106 lr:0.000100 network_time: 0.0316
|
747 |
+
[ Fri Sep 16 04:07:12 2022 ] Batch(155/162) done. Loss: 0.0043 lr:0.000100 network_time: 0.0264
|
748 |
+
[ Fri Sep 16 04:07:16 2022 ] Eval epoch: 113
|
749 |
+
[ Fri Sep 16 04:09:06 2022 ] Mean test loss of 930 batches: 2.610018730163574.
|
750 |
+
[ Fri Sep 16 04:09:06 2022 ] Top1: 54.21%
|
751 |
+
[ Fri Sep 16 04:09:06 2022 ] Top5: 80.90%
|
752 |
+
[ Fri Sep 16 04:09:07 2022 ] Training epoch: 114
|
753 |
+
[ Fri Sep 16 04:10:18 2022 ] Batch(93/162) done. Loss: 0.0059 lr:0.000100 network_time: 0.0265
|
754 |
+
[ Fri Sep 16 04:11:07 2022 ] Eval epoch: 114
|
755 |
+
[ Fri Sep 16 04:12:57 2022 ] Mean test loss of 930 batches: 2.5909993648529053.
|
756 |
+
[ Fri Sep 16 04:12:57 2022 ] Top1: 54.70%
|
757 |
+
[ Fri Sep 16 04:12:58 2022 ] Top5: 81.17%
|
758 |
+
[ Fri Sep 16 04:12:58 2022 ] Training epoch: 115
|
759 |
+
[ Fri Sep 16 04:13:24 2022 ] Batch(31/162) done. Loss: 0.0038 lr:0.000100 network_time: 0.0312
|
760 |
+
[ Fri Sep 16 04:14:37 2022 ] Batch(131/162) done. Loss: 0.0082 lr:0.000100 network_time: 0.0268
|
761 |
+
[ Fri Sep 16 04:14:59 2022 ] Eval epoch: 115
|
762 |
+
[ Fri Sep 16 04:16:48 2022 ] Mean test loss of 930 batches: 2.6113758087158203.
|
763 |
+
[ Fri Sep 16 04:16:48 2022 ] Top1: 54.65%
|
764 |
+
[ Fri Sep 16 04:16:49 2022 ] Top5: 80.93%
|
765 |
+
[ Fri Sep 16 04:16:49 2022 ] Training epoch: 116
|
766 |
+
[ Fri Sep 16 04:17:42 2022 ] Batch(69/162) done. Loss: 0.0166 lr:0.000100 network_time: 0.0276
|
767 |
+
[ Fri Sep 16 04:18:49 2022 ] Eval epoch: 116
|
768 |
+
[ Fri Sep 16 04:20:38 2022 ] Mean test loss of 930 batches: 2.5807549953460693.
|
769 |
+
[ Fri Sep 16 04:20:39 2022 ] Top1: 54.80%
|
770 |
+
[ Fri Sep 16 04:20:39 2022 ] Top5: 81.31%
|
771 |
+
[ Fri Sep 16 04:20:39 2022 ] Training epoch: 117
|
772 |
+
[ Fri Sep 16 04:20:48 2022 ] Batch(7/162) done. Loss: 0.0119 lr:0.000100 network_time: 0.0555
|
773 |
+
[ Fri Sep 16 04:22:01 2022 ] Batch(107/162) done. Loss: 0.0034 lr:0.000100 network_time: 0.0301
|
774 |
+
[ Fri Sep 16 04:22:40 2022 ] Eval epoch: 117
|
775 |
+
[ Fri Sep 16 04:24:29 2022 ] Mean test loss of 930 batches: 2.5913569927215576.
|
776 |
+
[ Fri Sep 16 04:24:30 2022 ] Top1: 54.78%
|
777 |
+
[ Fri Sep 16 04:24:30 2022 ] Top5: 81.19%
|
778 |
+
[ Fri Sep 16 04:24:30 2022 ] Training epoch: 118
|
779 |
+
[ Fri Sep 16 04:25:07 2022 ] Batch(45/162) done. Loss: 0.0136 lr:0.000100 network_time: 0.0284
|
780 |
+
[ Fri Sep 16 04:26:19 2022 ] Batch(145/162) done. Loss: 0.0099 lr:0.000100 network_time: 0.0270
|
781 |
+
[ Fri Sep 16 04:26:31 2022 ] Eval epoch: 118
|
782 |
+
[ Fri Sep 16 04:28:20 2022 ] Mean test loss of 930 batches: 2.5927035808563232.
|
783 |
+
[ Fri Sep 16 04:28:21 2022 ] Top1: 54.50%
|
784 |
+
[ Fri Sep 16 04:28:21 2022 ] Top5: 81.17%
|
785 |
+
[ Fri Sep 16 04:28:21 2022 ] Training epoch: 119
|
786 |
+
[ Fri Sep 16 04:29:25 2022 ] Batch(83/162) done. Loss: 0.0105 lr:0.000100 network_time: 0.0313
|
787 |
+
[ Fri Sep 16 04:30:22 2022 ] Eval epoch: 119
|
788 |
+
[ Fri Sep 16 04:32:12 2022 ] Mean test loss of 930 batches: 2.582989454269409.
|
789 |
+
[ Fri Sep 16 04:32:12 2022 ] Top1: 54.89%
|
790 |
+
[ Fri Sep 16 04:32:12 2022 ] Top5: 81.16%
|
791 |
+
[ Fri Sep 16 04:32:13 2022 ] Training epoch: 120
|
792 |
+
[ Fri Sep 16 04:32:32 2022 ] Batch(21/162) done. Loss: 0.0411 lr:0.000100 network_time: 0.0279
|
793 |
+
[ Fri Sep 16 04:33:44 2022 ] Batch(121/162) done. Loss: 0.0056 lr:0.000100 network_time: 0.0327
|
794 |
+
[ Fri Sep 16 04:34:13 2022 ] Eval epoch: 120
|
795 |
+
[ Fri Sep 16 04:36:03 2022 ] Mean test loss of 930 batches: 2.5880775451660156.
|
796 |
+
[ Fri Sep 16 04:36:03 2022 ] Top1: 54.77%
|
797 |
+
[ Fri Sep 16 04:36:04 2022 ] Top5: 81.30%
|
798 |
+
[ Fri Sep 16 04:36:04 2022 ] Training epoch: 121
|
799 |
+
[ Fri Sep 16 04:36:50 2022 ] Batch(59/162) done. Loss: 0.0113 lr:0.000100 network_time: 0.0280
|
800 |
+
[ Fri Sep 16 04:38:03 2022 ] Batch(159/162) done. Loss: 0.0105 lr:0.000100 network_time: 0.0266
|
801 |
+
[ Fri Sep 16 04:38:04 2022 ] Eval epoch: 121
|
802 |
+
[ Fri Sep 16 04:39:53 2022 ] Mean test loss of 930 batches: 2.565481185913086.
|
803 |
+
[ Fri Sep 16 04:39:54 2022 ] Top1: 54.65%
|
804 |
+
[ Fri Sep 16 04:39:54 2022 ] Top5: 81.13%
|
805 |
+
[ Fri Sep 16 04:39:55 2022 ] Training epoch: 122
|
806 |
+
[ Fri Sep 16 04:41:08 2022 ] Batch(97/162) done. Loss: 0.0066 lr:0.000100 network_time: 0.0375
|
807 |
+
[ Fri Sep 16 04:41:55 2022 ] Eval epoch: 122
|
808 |
+
[ Fri Sep 16 04:43:44 2022 ] Mean test loss of 930 batches: 2.5854990482330322.
|
809 |
+
[ Fri Sep 16 04:43:44 2022 ] Top1: 54.53%
|
810 |
+
[ Fri Sep 16 04:43:45 2022 ] Top5: 81.14%
|
811 |
+
[ Fri Sep 16 04:43:45 2022 ] Training epoch: 123
|
812 |
+
[ Fri Sep 16 04:44:14 2022 ] Batch(35/162) done. Loss: 0.0107 lr:0.000100 network_time: 0.0266
|
813 |
+
[ Fri Sep 16 04:45:27 2022 ] Batch(135/162) done. Loss: 0.0059 lr:0.000100 network_time: 0.0329
|
814 |
+
[ Fri Sep 16 04:45:46 2022 ] Eval epoch: 123
|
815 |
+
[ Fri Sep 16 04:47:35 2022 ] Mean test loss of 930 batches: 2.5903828144073486.
|
816 |
+
[ Fri Sep 16 04:47:35 2022 ] Top1: 54.24%
|
817 |
+
[ Fri Sep 16 04:47:36 2022 ] Top5: 80.99%
|
818 |
+
[ Fri Sep 16 04:47:36 2022 ] Training epoch: 124
|
819 |
+
[ Fri Sep 16 04:48:32 2022 ] Batch(73/162) done. Loss: 0.0074 lr:0.000100 network_time: 0.0268
|
820 |
+
[ Fri Sep 16 04:49:36 2022 ] Eval epoch: 124
|
821 |
+
[ Fri Sep 16 04:51:26 2022 ] Mean test loss of 930 batches: 2.5589847564697266.
|
822 |
+
[ Fri Sep 16 04:51:26 2022 ] Top1: 55.00%
|
823 |
+
[ Fri Sep 16 04:51:26 2022 ] Top5: 81.28%
|
824 |
+
[ Fri Sep 16 04:51:27 2022 ] Training epoch: 125
|
825 |
+
[ Fri Sep 16 04:51:38 2022 ] Batch(11/162) done. Loss: 0.0028 lr:0.000100 network_time: 0.0296
|
826 |
+
[ Fri Sep 16 04:52:51 2022 ] Batch(111/162) done. Loss: 0.0088 lr:0.000100 network_time: 0.0270
|
827 |
+
[ Fri Sep 16 04:53:27 2022 ] Eval epoch: 125
|
828 |
+
[ Fri Sep 16 04:55:16 2022 ] Mean test loss of 930 batches: 2.583209991455078.
|
829 |
+
[ Fri Sep 16 04:55:16 2022 ] Top1: 54.80%
|
830 |
+
[ Fri Sep 16 04:55:17 2022 ] Top5: 81.28%
|
831 |
+
[ Fri Sep 16 04:55:17 2022 ] Training epoch: 126
|
832 |
+
[ Fri Sep 16 04:55:56 2022 ] Batch(49/162) done. Loss: 0.0033 lr:0.000100 network_time: 0.0266
|
833 |
+
[ Fri Sep 16 04:57:08 2022 ] Batch(149/162) done. Loss: 0.0096 lr:0.000100 network_time: 0.0266
|
834 |
+
[ Fri Sep 16 04:57:17 2022 ] Eval epoch: 126
|
835 |
+
[ Fri Sep 16 04:59:07 2022 ] Mean test loss of 930 batches: 2.584449052810669.
|
836 |
+
[ Fri Sep 16 04:59:08 2022 ] Top1: 54.66%
|
837 |
+
[ Fri Sep 16 04:59:08 2022 ] Top5: 81.07%
|
838 |
+
[ Fri Sep 16 04:59:08 2022 ] Training epoch: 127
|
839 |
+
[ Fri Sep 16 05:00:15 2022 ] Batch(87/162) done. Loss: 0.0107 lr:0.000100 network_time: 0.0302
|
840 |
+
[ Fri Sep 16 05:01:08 2022 ] Eval epoch: 127
|
841 |
+
[ Fri Sep 16 05:02:58 2022 ] Mean test loss of 930 batches: 2.5924336910247803.
|
842 |
+
[ Fri Sep 16 05:02:58 2022 ] Top1: 54.68%
|
843 |
+
[ Fri Sep 16 05:02:58 2022 ] Top5: 81.16%
|
844 |
+
[ Fri Sep 16 05:02:59 2022 ] Training epoch: 128
|
845 |
+
[ Fri Sep 16 05:03:21 2022 ] Batch(25/162) done. Loss: 0.0049 lr:0.000100 network_time: 0.0275
|
846 |
+
[ Fri Sep 16 05:04:33 2022 ] Batch(125/162) done. Loss: 0.0092 lr:0.000100 network_time: 0.0316
|
847 |
+
[ Fri Sep 16 05:04:59 2022 ] Eval epoch: 128
|
848 |
+
[ Fri Sep 16 05:06:48 2022 ] Mean test loss of 930 batches: 2.6165969371795654.
|
849 |
+
[ Fri Sep 16 05:06:49 2022 ] Top1: 54.43%
|
850 |
+
[ Fri Sep 16 05:06:49 2022 ] Top5: 80.89%
|
851 |
+
[ Fri Sep 16 05:06:49 2022 ] Training epoch: 129
|
852 |
+
[ Fri Sep 16 05:07:39 2022 ] Batch(63/162) done. Loss: 0.0040 lr:0.000100 network_time: 0.0267
|
853 |
+
[ Fri Sep 16 05:08:50 2022 ] Eval epoch: 129
|
854 |
+
[ Fri Sep 16 05:10:39 2022 ] Mean test loss of 930 batches: 2.5882484912872314.
|
855 |
+
[ Fri Sep 16 05:10:39 2022 ] Top1: 54.59%
|
856 |
+
[ Fri Sep 16 05:10:39 2022 ] Top5: 80.97%
|
857 |
+
[ Fri Sep 16 05:10:40 2022 ] Training epoch: 130
|
858 |
+
[ Fri Sep 16 05:10:44 2022 ] Batch(1/162) done. Loss: 0.0038 lr:0.000100 network_time: 0.0279
|
859 |
+
[ Fri Sep 16 05:11:56 2022 ] Batch(101/162) done. Loss: 0.0132 lr:0.000100 network_time: 0.0285
|
860 |
+
[ Fri Sep 16 05:12:40 2022 ] Eval epoch: 130
|
861 |
+
[ Fri Sep 16 05:14:29 2022 ] Mean test loss of 930 batches: 2.577380657196045.
|
862 |
+
[ Fri Sep 16 05:14:30 2022 ] Top1: 54.80%
|
863 |
+
[ Fri Sep 16 05:14:30 2022 ] Top5: 81.19%
|
864 |
+
[ Fri Sep 16 05:14:30 2022 ] Training epoch: 131
|
865 |
+
[ Fri Sep 16 05:15:02 2022 ] Batch(39/162) done. Loss: 0.0056 lr:0.000100 network_time: 0.0264
|
866 |
+
[ Fri Sep 16 05:16:15 2022 ] Batch(139/162) done. Loss: 0.0055 lr:0.000100 network_time: 0.0304
|
867 |
+
[ Fri Sep 16 05:16:31 2022 ] Eval epoch: 131
|
868 |
+
[ Fri Sep 16 05:18:19 2022 ] Mean test loss of 930 batches: 2.5679023265838623.
|
869 |
+
[ Fri Sep 16 05:18:20 2022 ] Top1: 54.80%
|
870 |
+
[ Fri Sep 16 05:18:20 2022 ] Top5: 81.27%
|
871 |
+
[ Fri Sep 16 05:18:21 2022 ] Training epoch: 132
|
872 |
+
[ Fri Sep 16 05:19:20 2022 ] Batch(77/162) done. Loss: 0.0100 lr:0.000100 network_time: 0.0267
|
873 |
+
[ Fri Sep 16 05:20:21 2022 ] Eval epoch: 132
|
874 |
+
[ Fri Sep 16 05:22:10 2022 ] Mean test loss of 930 batches: 2.5951454639434814.
|
875 |
+
[ Fri Sep 16 05:22:10 2022 ] Top1: 54.70%
|
876 |
+
[ Fri Sep 16 05:22:11 2022 ] Top5: 81.24%
|
877 |
+
[ Fri Sep 16 05:22:11 2022 ] Training epoch: 133
|
878 |
+
[ Fri Sep 16 05:22:26 2022 ] Batch(15/162) done. Loss: 0.0056 lr:0.000100 network_time: 0.0269
|
879 |
+
[ Fri Sep 16 05:23:38 2022 ] Batch(115/162) done. Loss: 0.0043 lr:0.000100 network_time: 0.0427
|
880 |
+
[ Fri Sep 16 05:24:12 2022 ] Eval epoch: 133
|
881 |
+
[ Fri Sep 16 05:26:00 2022 ] Mean test loss of 930 batches: 2.583064556121826.
|
882 |
+
[ Fri Sep 16 05:26:01 2022 ] Top1: 54.66%
|
883 |
+
[ Fri Sep 16 05:26:01 2022 ] Top5: 81.21%
|
884 |
+
[ Fri Sep 16 05:26:02 2022 ] Training epoch: 134
|
885 |
+
[ Fri Sep 16 05:26:43 2022 ] Batch(53/162) done. Loss: 0.0039 lr:0.000100 network_time: 0.0267
|
886 |
+
[ Fri Sep 16 05:27:56 2022 ] Batch(153/162) done. Loss: 0.0109 lr:0.000100 network_time: 0.0470
|
887 |
+
[ Fri Sep 16 05:28:02 2022 ] Eval epoch: 134
|
888 |
+
[ Fri Sep 16 05:29:51 2022 ] Mean test loss of 930 batches: 2.6534018516540527.
|
889 |
+
[ Fri Sep 16 05:29:52 2022 ] Top1: 53.97%
|
890 |
+
[ Fri Sep 16 05:29:52 2022 ] Top5: 80.83%
|
891 |
+
[ Fri Sep 16 05:29:52 2022 ] Training epoch: 135
|
892 |
+
[ Fri Sep 16 05:31:02 2022 ] Batch(91/162) done. Loss: 0.0041 lr:0.000100 network_time: 0.0265
|
893 |
+
[ Fri Sep 16 05:31:53 2022 ] Eval epoch: 135
|
894 |
+
[ Fri Sep 16 05:33:42 2022 ] Mean test loss of 930 batches: 2.5870189666748047.
|
895 |
+
[ Fri Sep 16 05:33:42 2022 ] Top1: 54.72%
|
896 |
+
[ Fri Sep 16 05:33:43 2022 ] Top5: 81.20%
|
897 |
+
[ Fri Sep 16 05:33:43 2022 ] Training epoch: 136
|
898 |
+
[ Fri Sep 16 05:34:08 2022 ] Batch(29/162) done. Loss: 0.0045 lr:0.000100 network_time: 0.0276
|
899 |
+
[ Fri Sep 16 05:35:20 2022 ] Batch(129/162) done. Loss: 0.0047 lr:0.000100 network_time: 0.0276
|
900 |
+
[ Fri Sep 16 05:35:44 2022 ] Eval epoch: 136
|
901 |
+
[ Fri Sep 16 05:37:33 2022 ] Mean test loss of 930 batches: 2.5728559494018555.
|
902 |
+
[ Fri Sep 16 05:37:33 2022 ] Top1: 54.68%
|
903 |
+
[ Fri Sep 16 05:37:33 2022 ] Top5: 81.26%
|
904 |
+
[ Fri Sep 16 05:37:34 2022 ] Training epoch: 137
|
905 |
+
[ Fri Sep 16 05:38:26 2022 ] Batch(67/162) done. Loss: 0.0056 lr:0.000100 network_time: 0.0306
|
906 |
+
[ Fri Sep 16 05:39:35 2022 ] Eval epoch: 137
|
907 |
+
[ Fri Sep 16 05:41:24 2022 ] Mean test loss of 930 batches: 2.589679002761841.
|
908 |
+
[ Fri Sep 16 05:41:24 2022 ] Top1: 54.66%
|
909 |
+
[ Fri Sep 16 05:41:25 2022 ] Top5: 81.09%
|
910 |
+
[ Fri Sep 16 05:41:25 2022 ] Training epoch: 138
|
911 |
+
[ Fri Sep 16 05:41:33 2022 ] Batch(5/162) done. Loss: 0.0089 lr:0.000100 network_time: 0.0311
|
912 |
+
[ Fri Sep 16 05:42:45 2022 ] Batch(105/162) done. Loss: 0.0056 lr:0.000100 network_time: 0.0315
|
913 |
+
[ Fri Sep 16 05:43:26 2022 ] Eval epoch: 138
|
914 |
+
[ Fri Sep 16 05:45:15 2022 ] Mean test loss of 930 batches: 2.5958192348480225.
|
915 |
+
[ Fri Sep 16 05:45:16 2022 ] Top1: 54.56%
|
916 |
+
[ Fri Sep 16 05:45:16 2022 ] Top5: 81.23%
|
917 |
+
[ Fri Sep 16 05:45:16 2022 ] Training epoch: 139
|
918 |
+
[ Fri Sep 16 05:45:52 2022 ] Batch(43/162) done. Loss: 0.0162 lr:0.000100 network_time: 0.0276
|
919 |
+
[ Fri Sep 16 05:47:04 2022 ] Batch(143/162) done. Loss: 0.0039 lr:0.000100 network_time: 0.0267
|
920 |
+
[ Fri Sep 16 05:47:18 2022 ] Eval epoch: 139
|
921 |
+
[ Fri Sep 16 05:49:07 2022 ] Mean test loss of 930 batches: 2.6090312004089355.
|
922 |
+
[ Fri Sep 16 05:49:07 2022 ] Top1: 54.48%
|
923 |
+
[ Fri Sep 16 05:49:08 2022 ] Top5: 81.00%
|
924 |
+
[ Fri Sep 16 05:49:08 2022 ] Training epoch: 140
|
925 |
+
[ Fri Sep 16 05:50:11 2022 ] Batch(81/162) done. Loss: 0.0042 lr:0.000100 network_time: 0.0277
|
926 |
+
[ Fri Sep 16 05:51:09 2022 ] Eval epoch: 140
|
927 |
+
[ Fri Sep 16 05:52:58 2022 ] Mean test loss of 930 batches: 2.596174716949463.
|
928 |
+
[ Fri Sep 16 05:52:59 2022 ] Top1: 54.44%
|
929 |
+
[ Fri Sep 16 05:52:59 2022 ] Top5: 81.09%
|
ckpt/Others/Shift-GCN/ntu120_xset/ntu120_bone_xset/shift_gcn.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torch.autograd import Variable
|
5 |
+
import numpy as np
|
6 |
+
import math
|
7 |
+
|
8 |
+
import sys
|
9 |
+
sys.path.append("./model/Temporal_shift/")
|
10 |
+
|
11 |
+
from cuda.shift import Shift
|
12 |
+
|
13 |
+
|
14 |
+
def import_class(name):
|
15 |
+
components = name.split('.')
|
16 |
+
mod = __import__(components[0])
|
17 |
+
for comp in components[1:]:
|
18 |
+
mod = getattr(mod, comp)
|
19 |
+
return mod
|
20 |
+
|
21 |
+
def conv_init(conv):
|
22 |
+
nn.init.kaiming_normal(conv.weight, mode='fan_out')
|
23 |
+
nn.init.constant(conv.bias, 0)
|
24 |
+
|
25 |
+
|
26 |
+
def bn_init(bn, scale):
|
27 |
+
nn.init.constant(bn.weight, scale)
|
28 |
+
nn.init.constant(bn.bias, 0)
|
29 |
+
|
30 |
+
|
31 |
+
class tcn(nn.Module):
|
32 |
+
def __init__(self, in_channels, out_channels, kernel_size=9, stride=1):
|
33 |
+
super(tcn, self).__init__()
|
34 |
+
pad = int((kernel_size - 1) / 2)
|
35 |
+
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=(kernel_size, 1), padding=(pad, 0),
|
36 |
+
stride=(stride, 1))
|
37 |
+
|
38 |
+
self.bn = nn.BatchNorm2d(out_channels)
|
39 |
+
self.relu = nn.ReLU()
|
40 |
+
conv_init(self.conv)
|
41 |
+
bn_init(self.bn, 1)
|
42 |
+
|
43 |
+
def forward(self, x):
|
44 |
+
x = self.bn(self.conv(x))
|
45 |
+
return x
|
46 |
+
|
47 |
+
|
48 |
+
class Shift_tcn(nn.Module):
|
49 |
+
def __init__(self, in_channels, out_channels, kernel_size=9, stride=1):
|
50 |
+
super(Shift_tcn, self).__init__()
|
51 |
+
|
52 |
+
self.in_channels = in_channels
|
53 |
+
self.out_channels = out_channels
|
54 |
+
|
55 |
+
self.bn = nn.BatchNorm2d(in_channels)
|
56 |
+
self.bn2 = nn.BatchNorm2d(in_channels)
|
57 |
+
bn_init(self.bn2, 1)
|
58 |
+
self.relu = nn.ReLU(inplace=True)
|
59 |
+
self.shift_in = Shift(channel=in_channels, stride=1, init_scale=1)
|
60 |
+
self.shift_out = Shift(channel=out_channels, stride=stride, init_scale=1)
|
61 |
+
|
62 |
+
self.temporal_linear = nn.Conv2d(in_channels, out_channels, 1)
|
63 |
+
nn.init.kaiming_normal(self.temporal_linear.weight, mode='fan_out')
|
64 |
+
|
65 |
+
def forward(self, x):
|
66 |
+
x = self.bn(x)
|
67 |
+
# shift1
|
68 |
+
x = self.shift_in(x)
|
69 |
+
x = self.temporal_linear(x)
|
70 |
+
x = self.relu(x)
|
71 |
+
# shift2
|
72 |
+
x = self.shift_out(x)
|
73 |
+
x = self.bn2(x)
|
74 |
+
return x
|
75 |
+
|
76 |
+
|
77 |
+
class Shift_gcn(nn.Module):
|
78 |
+
def __init__(self, in_channels, out_channels, A, coff_embedding=4, num_subset=3):
|
79 |
+
super(Shift_gcn, self).__init__()
|
80 |
+
self.in_channels = in_channels
|
81 |
+
self.out_channels = out_channels
|
82 |
+
if in_channels != out_channels:
|
83 |
+
self.down = nn.Sequential(
|
84 |
+
nn.Conv2d(in_channels, out_channels, 1),
|
85 |
+
nn.BatchNorm2d(out_channels)
|
86 |
+
)
|
87 |
+
else:
|
88 |
+
self.down = lambda x: x
|
89 |
+
|
90 |
+
self.Linear_weight = nn.Parameter(torch.zeros(in_channels, out_channels, requires_grad=True, device='cuda'), requires_grad=True)
|
91 |
+
nn.init.normal_(self.Linear_weight, 0,math.sqrt(1.0/out_channels))
|
92 |
+
|
93 |
+
self.Linear_bias = nn.Parameter(torch.zeros(1,1,out_channels,requires_grad=True,device='cuda'),requires_grad=True)
|
94 |
+
nn.init.constant(self.Linear_bias, 0)
|
95 |
+
|
96 |
+
self.Feature_Mask = nn.Parameter(torch.ones(1,25,in_channels, requires_grad=True,device='cuda'),requires_grad=True)
|
97 |
+
nn.init.constant(self.Feature_Mask, 0)
|
98 |
+
|
99 |
+
self.bn = nn.BatchNorm1d(25*out_channels)
|
100 |
+
self.relu = nn.ReLU()
|
101 |
+
|
102 |
+
for m in self.modules():
|
103 |
+
if isinstance(m, nn.Conv2d):
|
104 |
+
conv_init(m)
|
105 |
+
elif isinstance(m, nn.BatchNorm2d):
|
106 |
+
bn_init(m, 1)
|
107 |
+
|
108 |
+
index_array = np.empty(25*in_channels).astype(np.int)
|
109 |
+
for i in range(25):
|
110 |
+
for j in range(in_channels):
|
111 |
+
index_array[i*in_channels + j] = (i*in_channels + j + j*in_channels)%(in_channels*25)
|
112 |
+
self.shift_in = nn.Parameter(torch.from_numpy(index_array),requires_grad=False)
|
113 |
+
|
114 |
+
index_array = np.empty(25*out_channels).astype(np.int)
|
115 |
+
for i in range(25):
|
116 |
+
for j in range(out_channels):
|
117 |
+
index_array[i*out_channels + j] = (i*out_channels + j - j*out_channels)%(out_channels*25)
|
118 |
+
self.shift_out = nn.Parameter(torch.from_numpy(index_array),requires_grad=False)
|
119 |
+
|
120 |
+
|
121 |
+
def forward(self, x0):
|
122 |
+
n, c, t, v = x0.size()
|
123 |
+
x = x0.permute(0,2,3,1).contiguous()
|
124 |
+
|
125 |
+
# shift1
|
126 |
+
x = x.view(n*t,v*c)
|
127 |
+
x = torch.index_select(x, 1, self.shift_in)
|
128 |
+
x = x.view(n*t,v,c)
|
129 |
+
x = x * (torch.tanh(self.Feature_Mask)+1)
|
130 |
+
|
131 |
+
x = torch.einsum('nwc,cd->nwd', (x, self.Linear_weight)).contiguous() # nt,v,c
|
132 |
+
x = x + self.Linear_bias
|
133 |
+
|
134 |
+
# shift2
|
135 |
+
x = x.view(n*t,-1)
|
136 |
+
x = torch.index_select(x, 1, self.shift_out)
|
137 |
+
x = self.bn(x)
|
138 |
+
x = x.view(n,t,v,self.out_channels).permute(0,3,1,2) # n,c,t,v
|
139 |
+
|
140 |
+
x = x + self.down(x0)
|
141 |
+
x = self.relu(x)
|
142 |
+
return x
|
143 |
+
|
144 |
+
|
145 |
+
class TCN_GCN_unit(nn.Module):
|
146 |
+
def __init__(self, in_channels, out_channels, A, stride=1, residual=True):
|
147 |
+
super(TCN_GCN_unit, self).__init__()
|
148 |
+
self.gcn1 = Shift_gcn(in_channels, out_channels, A)
|
149 |
+
self.tcn1 = Shift_tcn(out_channels, out_channels, stride=stride)
|
150 |
+
self.relu = nn.ReLU()
|
151 |
+
|
152 |
+
if not residual:
|
153 |
+
self.residual = lambda x: 0
|
154 |
+
|
155 |
+
elif (in_channels == out_channels) and (stride == 1):
|
156 |
+
self.residual = lambda x: x
|
157 |
+
else:
|
158 |
+
self.residual = tcn(in_channels, out_channels, kernel_size=1, stride=stride)
|
159 |
+
|
160 |
+
def forward(self, x):
|
161 |
+
x = self.tcn1(self.gcn1(x)) + self.residual(x)
|
162 |
+
return self.relu(x)
|
163 |
+
|
164 |
+
|
165 |
+
class Model(nn.Module):
|
166 |
+
def __init__(self, num_class=60, num_point=25, num_person=2, graph=None, graph_args=dict(), in_channels=3):
|
167 |
+
super(Model, self).__init__()
|
168 |
+
|
169 |
+
if graph is None:
|
170 |
+
raise ValueError()
|
171 |
+
else:
|
172 |
+
Graph = import_class(graph)
|
173 |
+
self.graph = Graph(**graph_args)
|
174 |
+
|
175 |
+
A = self.graph.A
|
176 |
+
self.data_bn = nn.BatchNorm1d(num_person * in_channels * num_point)
|
177 |
+
|
178 |
+
self.l1 = TCN_GCN_unit(3, 64, A, residual=False)
|
179 |
+
self.l2 = TCN_GCN_unit(64, 64, A)
|
180 |
+
self.l3 = TCN_GCN_unit(64, 64, A)
|
181 |
+
self.l4 = TCN_GCN_unit(64, 64, A)
|
182 |
+
self.l5 = TCN_GCN_unit(64, 128, A, stride=2)
|
183 |
+
self.l6 = TCN_GCN_unit(128, 128, A)
|
184 |
+
self.l7 = TCN_GCN_unit(128, 128, A)
|
185 |
+
self.l8 = TCN_GCN_unit(128, 256, A, stride=2)
|
186 |
+
self.l9 = TCN_GCN_unit(256, 256, A)
|
187 |
+
self.l10 = TCN_GCN_unit(256, 256, A)
|
188 |
+
|
189 |
+
self.fc = nn.Linear(256, num_class)
|
190 |
+
nn.init.normal(self.fc.weight, 0, math.sqrt(2. / num_class))
|
191 |
+
bn_init(self.data_bn, 1)
|
192 |
+
|
193 |
+
def forward(self, x):
|
194 |
+
N, C, T, V, M = x.size()
|
195 |
+
|
196 |
+
x = x.permute(0, 4, 3, 1, 2).contiguous().view(N, M * V * C, T)
|
197 |
+
x = self.data_bn(x)
|
198 |
+
x = x.view(N, M, V, C, T).permute(0, 1, 3, 4, 2).contiguous().view(N * M, C, T, V)
|
199 |
+
|
200 |
+
x = self.l1(x)
|
201 |
+
x = self.l2(x)
|
202 |
+
x = self.l3(x)
|
203 |
+
x = self.l4(x)
|
204 |
+
x = self.l5(x)
|
205 |
+
x = self.l6(x)
|
206 |
+
x = self.l7(x)
|
207 |
+
x = self.l8(x)
|
208 |
+
x = self.l9(x)
|
209 |
+
x = self.l10(x)
|
210 |
+
|
211 |
+
# N*M,C,T,V
|
212 |
+
c_new = x.size(1)
|
213 |
+
x = x.view(N, M, c_new, -1)
|
214 |
+
x = x.mean(3).mean(1)
|
215 |
+
|
216 |
+
return self.fc(x)
|
ckpt/Others/Shift-GCN/ntu120_xset/ntu120_joint_motion_xset/config.yaml
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Experiment_name: ntu120_joint_motion_xset
|
2 |
+
base_lr: 0.1
|
3 |
+
batch_size: 64
|
4 |
+
config: ./config/ntu120_xset/train_joint_motion.yaml
|
5 |
+
device:
|
6 |
+
- 6
|
7 |
+
- 7
|
8 |
+
eval_interval: 5
|
9 |
+
feeder: feeders.feeder.Feeder
|
10 |
+
ignore_weights: []
|
11 |
+
log_interval: 100
|
12 |
+
model: model.shift_gcn.Model
|
13 |
+
model_args:
|
14 |
+
graph: graph.ntu_rgb_d.Graph
|
15 |
+
graph_args:
|
16 |
+
labeling_mode: spatial
|
17 |
+
num_class: 120
|
18 |
+
num_person: 2
|
19 |
+
num_point: 25
|
20 |
+
model_saved_name: ./save_models/ntu120_joint_motion_xset
|
21 |
+
nesterov: true
|
22 |
+
num_epoch: 140
|
23 |
+
num_worker: 32
|
24 |
+
only_train_epoch: 1
|
25 |
+
only_train_part: true
|
26 |
+
optimizer: SGD
|
27 |
+
phase: train
|
28 |
+
print_log: true
|
29 |
+
save_interval: 2
|
30 |
+
save_score: false
|
31 |
+
seed: 1
|
32 |
+
show_topk:
|
33 |
+
- 1
|
34 |
+
- 5
|
35 |
+
start_epoch: 0
|
36 |
+
step:
|
37 |
+
- 60
|
38 |
+
- 80
|
39 |
+
- 100
|
40 |
+
test_batch_size: 64
|
41 |
+
test_feeder_args:
|
42 |
+
data_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/val_data_joint_motion.npy
|
43 |
+
label_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/val_label.pkl
|
44 |
+
train_feeder_args:
|
45 |
+
data_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/train_data_joint_motion.npy
|
46 |
+
debug: false
|
47 |
+
label_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/train_label.pkl
|
48 |
+
normalization: false
|
49 |
+
random_choose: false
|
50 |
+
random_move: false
|
51 |
+
random_shift: false
|
52 |
+
window_size: -1
|
53 |
+
warm_up_epoch: 0
|
54 |
+
weight_decay: 0.0001
|
55 |
+
weights: null
|
56 |
+
work_dir: ./work_dir/ntu120_joint_motion_xset
|
ckpt/Others/Shift-GCN/ntu120_xset/ntu120_joint_motion_xset/eval_results/best_acc.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:58c173a511eb08702adf595bc87ee42b1d1116f33936bf7c6b79babd070abd96
|
3 |
+
size 34946665
|
ckpt/Others/Shift-GCN/ntu120_xset/ntu120_joint_motion_xset/log.txt
ADDED
@@ -0,0 +1,929 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[ Thu Sep 15 20:53:29 2022 ] Parameters:
|
2 |
+
{'work_dir': './work_dir/ntu120_joint_motion_xset', 'model_saved_name': './save_models/ntu120_joint_motion_xset', 'Experiment_name': 'ntu120_joint_motion_xset', 'config': './config/ntu120_xset/train_joint_motion.yaml', 'phase': 'train', 'save_score': False, 'seed': 1, 'log_interval': 100, 'save_interval': 2, 'eval_interval': 5, 'print_log': True, 'show_topk': [1, 5], 'feeder': 'feeders.feeder.Feeder', 'num_worker': 32, 'train_feeder_args': {'data_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/train_data_joint_motion.npy', 'label_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/train_label.pkl', 'debug': False, 'random_choose': False, 'random_shift': False, 'random_move': False, 'window_size': -1, 'normalization': False}, 'test_feeder_args': {'data_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/val_data_joint_motion.npy', 'label_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/val_label.pkl'}, 'model': 'model.shift_gcn.Model', 'model_args': {'num_class': 120, 'num_point': 25, 'num_person': 2, 'graph': 'graph.ntu_rgb_d.Graph', 'graph_args': {'labeling_mode': 'spatial'}}, 'weights': None, 'ignore_weights': [], 'base_lr': 0.1, 'step': [60, 80, 100], 'device': [6, 7], 'optimizer': 'SGD', 'nesterov': True, 'batch_size': 64, 'test_batch_size': 64, 'start_epoch': 0, 'num_epoch': 140, 'weight_decay': 0.0001, 'only_train_part': True, 'only_train_epoch': 1, 'warm_up_epoch': 0}
|
3 |
+
|
4 |
+
[ Thu Sep 15 20:53:29 2022 ] Training epoch: 1
|
5 |
+
[ Thu Sep 15 20:54:48 2022 ] Batch(99/162) done. Loss: 2.8867 lr:0.100000 network_time: 0.0295
|
6 |
+
[ Thu Sep 15 20:55:33 2022 ] Eval epoch: 1
|
7 |
+
[ Thu Sep 15 20:57:27 2022 ] Mean test loss of 930 batches: 5.0145583152771.
|
8 |
+
[ Thu Sep 15 20:57:27 2022 ] Top1: 12.30%
|
9 |
+
[ Thu Sep 15 20:57:27 2022 ] Top5: 33.00%
|
10 |
+
[ Thu Sep 15 20:57:28 2022 ] Training epoch: 2
|
11 |
+
[ Thu Sep 15 20:57:58 2022 ] Batch(37/162) done. Loss: 1.8791 lr:0.100000 network_time: 0.0267
|
12 |
+
[ Thu Sep 15 20:59:11 2022 ] Batch(137/162) done. Loss: 1.9913 lr:0.100000 network_time: 0.0547
|
13 |
+
[ Thu Sep 15 20:59:29 2022 ] Eval epoch: 2
|
14 |
+
[ Thu Sep 15 21:01:19 2022 ] Mean test loss of 930 batches: 5.094688892364502.
|
15 |
+
[ Thu Sep 15 21:01:20 2022 ] Top1: 15.49%
|
16 |
+
[ Thu Sep 15 21:01:20 2022 ] Top5: 39.50%
|
17 |
+
[ Thu Sep 15 21:01:20 2022 ] Training epoch: 3
|
18 |
+
[ Thu Sep 15 21:02:19 2022 ] Batch(75/162) done. Loss: 1.8336 lr:0.100000 network_time: 0.0302
|
19 |
+
[ Thu Sep 15 21:03:22 2022 ] Eval epoch: 3
|
20 |
+
[ Thu Sep 15 21:05:11 2022 ] Mean test loss of 930 batches: 3.7378287315368652.
|
21 |
+
[ Thu Sep 15 21:05:12 2022 ] Top1: 26.10%
|
22 |
+
[ Thu Sep 15 21:05:12 2022 ] Top5: 53.90%
|
23 |
+
[ Thu Sep 15 21:05:12 2022 ] Training epoch: 4
|
24 |
+
[ Thu Sep 15 21:05:25 2022 ] Batch(13/162) done. Loss: 1.5423 lr:0.100000 network_time: 0.0266
|
25 |
+
[ Thu Sep 15 21:06:38 2022 ] Batch(113/162) done. Loss: 1.6592 lr:0.100000 network_time: 0.0271
|
26 |
+
[ Thu Sep 15 21:07:13 2022 ] Eval epoch: 4
|
27 |
+
[ Thu Sep 15 21:09:04 2022 ] Mean test loss of 930 batches: 3.334031581878662.
|
28 |
+
[ Thu Sep 15 21:09:04 2022 ] Top1: 28.04%
|
29 |
+
[ Thu Sep 15 21:09:05 2022 ] Top5: 55.90%
|
30 |
+
[ Thu Sep 15 21:09:05 2022 ] Training epoch: 5
|
31 |
+
[ Thu Sep 15 21:09:46 2022 ] Batch(51/162) done. Loss: 1.5313 lr:0.100000 network_time: 0.0272
|
32 |
+
[ Thu Sep 15 21:10:58 2022 ] Batch(151/162) done. Loss: 1.5609 lr:0.100000 network_time: 0.0266
|
33 |
+
[ Thu Sep 15 21:11:06 2022 ] Eval epoch: 5
|
34 |
+
[ Thu Sep 15 21:12:56 2022 ] Mean test loss of 930 batches: 3.3112664222717285.
|
35 |
+
[ Thu Sep 15 21:12:56 2022 ] Top1: 31.94%
|
36 |
+
[ Thu Sep 15 21:12:57 2022 ] Top5: 61.28%
|
37 |
+
[ Thu Sep 15 21:12:57 2022 ] Training epoch: 6
|
38 |
+
[ Thu Sep 15 21:14:05 2022 ] Batch(89/162) done. Loss: 1.2561 lr:0.100000 network_time: 0.0255
|
39 |
+
[ Thu Sep 15 21:14:58 2022 ] Eval epoch: 6
|
40 |
+
[ Thu Sep 15 21:16:47 2022 ] Mean test loss of 930 batches: 3.7558095455169678.
|
41 |
+
[ Thu Sep 15 21:16:48 2022 ] Top1: 29.97%
|
42 |
+
[ Thu Sep 15 21:16:48 2022 ] Top5: 60.91%
|
43 |
+
[ Thu Sep 15 21:16:48 2022 ] Training epoch: 7
|
44 |
+
[ Thu Sep 15 21:17:12 2022 ] Batch(27/162) done. Loss: 1.4390 lr:0.100000 network_time: 0.0517
|
45 |
+
[ Thu Sep 15 21:18:24 2022 ] Batch(127/162) done. Loss: 0.6995 lr:0.100000 network_time: 0.0254
|
46 |
+
[ Thu Sep 15 21:18:49 2022 ] Eval epoch: 7
|
47 |
+
[ Thu Sep 15 21:20:39 2022 ] Mean test loss of 930 batches: 3.5645387172698975.
|
48 |
+
[ Thu Sep 15 21:20:39 2022 ] Top1: 34.81%
|
49 |
+
[ Thu Sep 15 21:20:40 2022 ] Top5: 65.19%
|
50 |
+
[ Thu Sep 15 21:20:40 2022 ] Training epoch: 8
|
51 |
+
[ Thu Sep 15 21:21:31 2022 ] Batch(65/162) done. Loss: 1.2151 lr:0.100000 network_time: 0.0459
|
52 |
+
[ Thu Sep 15 21:22:41 2022 ] Eval epoch: 8
|
53 |
+
[ Thu Sep 15 21:24:32 2022 ] Mean test loss of 930 batches: 3.345634937286377.
|
54 |
+
[ Thu Sep 15 21:24:32 2022 ] Top1: 37.25%
|
55 |
+
[ Thu Sep 15 21:24:33 2022 ] Top5: 66.65%
|
56 |
+
[ Thu Sep 15 21:24:33 2022 ] Training epoch: 9
|
57 |
+
[ Thu Sep 15 21:24:39 2022 ] Batch(3/162) done. Loss: 0.8029 lr:0.100000 network_time: 0.0305
|
58 |
+
[ Thu Sep 15 21:25:51 2022 ] Batch(103/162) done. Loss: 1.1043 lr:0.100000 network_time: 0.0442
|
59 |
+
[ Thu Sep 15 21:26:34 2022 ] Eval epoch: 9
|
60 |
+
[ Thu Sep 15 21:28:23 2022 ] Mean test loss of 930 batches: 3.5088706016540527.
|
61 |
+
[ Thu Sep 15 21:28:24 2022 ] Top1: 30.93%
|
62 |
+
[ Thu Sep 15 21:28:24 2022 ] Top5: 61.77%
|
63 |
+
[ Thu Sep 15 21:28:25 2022 ] Training epoch: 10
|
64 |
+
[ Thu Sep 15 21:28:58 2022 ] Batch(41/162) done. Loss: 0.9017 lr:0.100000 network_time: 0.0274
|
65 |
+
[ Thu Sep 15 21:30:11 2022 ] Batch(141/162) done. Loss: 1.0810 lr:0.100000 network_time: 0.0301
|
66 |
+
[ Thu Sep 15 21:30:26 2022 ] Eval epoch: 10
|
67 |
+
[ Thu Sep 15 21:32:16 2022 ] Mean test loss of 930 batches: 3.7960636615753174.
|
68 |
+
[ Thu Sep 15 21:32:16 2022 ] Top1: 37.34%
|
69 |
+
[ Thu Sep 15 21:32:17 2022 ] Top5: 68.48%
|
70 |
+
[ Thu Sep 15 21:32:17 2022 ] Training epoch: 11
|
71 |
+
[ Thu Sep 15 21:33:18 2022 ] Batch(79/162) done. Loss: 0.8720 lr:0.100000 network_time: 0.0274
|
72 |
+
[ Thu Sep 15 21:34:18 2022 ] Eval epoch: 11
|
73 |
+
[ Thu Sep 15 21:36:08 2022 ] Mean test loss of 930 batches: 3.196443796157837.
|
74 |
+
[ Thu Sep 15 21:36:09 2022 ] Top1: 37.54%
|
75 |
+
[ Thu Sep 15 21:36:09 2022 ] Top5: 66.85%
|
76 |
+
[ Thu Sep 15 21:36:09 2022 ] Training epoch: 12
|
77 |
+
[ Thu Sep 15 21:36:26 2022 ] Batch(17/162) done. Loss: 0.8167 lr:0.100000 network_time: 0.0310
|
78 |
+
[ Thu Sep 15 21:37:38 2022 ] Batch(117/162) done. Loss: 1.1508 lr:0.100000 network_time: 0.0308
|
79 |
+
[ Thu Sep 15 21:38:10 2022 ] Eval epoch: 12
|
80 |
+
[ Thu Sep 15 21:40:00 2022 ] Mean test loss of 930 batches: 3.6423709392547607.
|
81 |
+
[ Thu Sep 15 21:40:01 2022 ] Top1: 38.01%
|
82 |
+
[ Thu Sep 15 21:40:01 2022 ] Top5: 68.47%
|
83 |
+
[ Thu Sep 15 21:40:01 2022 ] Training epoch: 13
|
84 |
+
[ Thu Sep 15 21:40:45 2022 ] Batch(55/162) done. Loss: 0.6677 lr:0.100000 network_time: 0.0280
|
85 |
+
[ Thu Sep 15 21:41:58 2022 ] Batch(155/162) done. Loss: 0.8657 lr:0.100000 network_time: 0.0269
|
86 |
+
[ Thu Sep 15 21:42:02 2022 ] Eval epoch: 13
|
87 |
+
[ Thu Sep 15 21:43:52 2022 ] Mean test loss of 930 batches: 2.7829337120056152.
|
88 |
+
[ Thu Sep 15 21:43:53 2022 ] Top1: 43.47%
|
89 |
+
[ Thu Sep 15 21:43:53 2022 ] Top5: 75.32%
|
90 |
+
[ Thu Sep 15 21:43:53 2022 ] Training epoch: 14
|
91 |
+
[ Thu Sep 15 21:45:05 2022 ] Batch(93/162) done. Loss: 0.9714 lr:0.100000 network_time: 0.0326
|
92 |
+
[ Thu Sep 15 21:45:54 2022 ] Eval epoch: 14
|
93 |
+
[ Thu Sep 15 21:47:44 2022 ] Mean test loss of 930 batches: 2.5059609413146973.
|
94 |
+
[ Thu Sep 15 21:47:44 2022 ] Top1: 45.03%
|
95 |
+
[ Thu Sep 15 21:47:45 2022 ] Top5: 74.04%
|
96 |
+
[ Thu Sep 15 21:47:45 2022 ] Training epoch: 15
|
97 |
+
[ Thu Sep 15 21:48:11 2022 ] Batch(31/162) done. Loss: 0.5980 lr:0.100000 network_time: 0.0296
|
98 |
+
[ Thu Sep 15 21:49:24 2022 ] Batch(131/162) done. Loss: 0.6171 lr:0.100000 network_time: 0.0279
|
99 |
+
[ Thu Sep 15 21:49:46 2022 ] Eval epoch: 15
|
100 |
+
[ Thu Sep 15 21:51:37 2022 ] Mean test loss of 930 batches: 3.646928310394287.
|
101 |
+
[ Thu Sep 15 21:51:37 2022 ] Top1: 37.05%
|
102 |
+
[ Thu Sep 15 21:51:38 2022 ] Top5: 67.63%
|
103 |
+
[ Thu Sep 15 21:51:38 2022 ] Training epoch: 16
|
104 |
+
[ Thu Sep 15 21:52:32 2022 ] Batch(69/162) done. Loss: 0.7645 lr:0.100000 network_time: 0.0272
|
105 |
+
[ Thu Sep 15 21:53:39 2022 ] Eval epoch: 16
|
106 |
+
[ Thu Sep 15 21:55:29 2022 ] Mean test loss of 930 batches: 3.679865837097168.
|
107 |
+
[ Thu Sep 15 21:55:29 2022 ] Top1: 42.20%
|
108 |
+
[ Thu Sep 15 21:55:30 2022 ] Top5: 71.60%
|
109 |
+
[ Thu Sep 15 21:55:30 2022 ] Training epoch: 17
|
110 |
+
[ Thu Sep 15 21:55:39 2022 ] Batch(7/162) done. Loss: 0.8176 lr:0.100000 network_time: 0.0273
|
111 |
+
[ Thu Sep 15 21:56:52 2022 ] Batch(107/162) done. Loss: 0.8370 lr:0.100000 network_time: 0.0282
|
112 |
+
[ Thu Sep 15 21:57:31 2022 ] Eval epoch: 17
|
113 |
+
[ Thu Sep 15 21:59:21 2022 ] Mean test loss of 930 batches: 3.4497668743133545.
|
114 |
+
[ Thu Sep 15 21:59:21 2022 ] Top1: 42.82%
|
115 |
+
[ Thu Sep 15 21:59:22 2022 ] Top5: 72.71%
|
116 |
+
[ Thu Sep 15 21:59:22 2022 ] Training epoch: 18
|
117 |
+
[ Thu Sep 15 21:59:58 2022 ] Batch(45/162) done. Loss: 0.6977 lr:0.100000 network_time: 0.0271
|
118 |
+
[ Thu Sep 15 22:01:11 2022 ] Batch(145/162) done. Loss: 0.4468 lr:0.100000 network_time: 0.0284
|
119 |
+
[ Thu Sep 15 22:01:23 2022 ] Eval epoch: 18
|
120 |
+
[ Thu Sep 15 22:03:13 2022 ] Mean test loss of 930 batches: 3.5319061279296875.
|
121 |
+
[ Thu Sep 15 22:03:13 2022 ] Top1: 37.75%
|
122 |
+
[ Thu Sep 15 22:03:13 2022 ] Top5: 69.26%
|
123 |
+
[ Thu Sep 15 22:03:14 2022 ] Training epoch: 19
|
124 |
+
[ Thu Sep 15 22:04:18 2022 ] Batch(83/162) done. Loss: 0.2785 lr:0.100000 network_time: 0.0272
|
125 |
+
[ Thu Sep 15 22:05:15 2022 ] Eval epoch: 19
|
126 |
+
[ Thu Sep 15 22:07:05 2022 ] Mean test loss of 930 batches: 2.7543692588806152.
|
127 |
+
[ Thu Sep 15 22:07:05 2022 ] Top1: 45.21%
|
128 |
+
[ Thu Sep 15 22:07:06 2022 ] Top5: 76.62%
|
129 |
+
[ Thu Sep 15 22:07:06 2022 ] Training epoch: 20
|
130 |
+
[ Thu Sep 15 22:07:25 2022 ] Batch(21/162) done. Loss: 0.7290 lr:0.100000 network_time: 0.0274
|
131 |
+
[ Thu Sep 15 22:08:38 2022 ] Batch(121/162) done. Loss: 0.6042 lr:0.100000 network_time: 0.0347
|
132 |
+
[ Thu Sep 15 22:09:07 2022 ] Eval epoch: 20
|
133 |
+
[ Thu Sep 15 22:10:57 2022 ] Mean test loss of 930 batches: 3.4957778453826904.
|
134 |
+
[ Thu Sep 15 22:10:57 2022 ] Top1: 38.53%
|
135 |
+
[ Thu Sep 15 22:10:58 2022 ] Top5: 70.23%
|
136 |
+
[ Thu Sep 15 22:10:58 2022 ] Training epoch: 21
|
137 |
+
[ Thu Sep 15 22:11:45 2022 ] Batch(59/162) done. Loss: 0.5559 lr:0.100000 network_time: 0.0251
|
138 |
+
[ Thu Sep 15 22:12:58 2022 ] Batch(159/162) done. Loss: 0.7466 lr:0.100000 network_time: 0.0319
|
139 |
+
[ Thu Sep 15 22:12:59 2022 ] Eval epoch: 21
|
140 |
+
[ Thu Sep 15 22:14:48 2022 ] Mean test loss of 930 batches: 2.8289051055908203.
|
141 |
+
[ Thu Sep 15 22:14:49 2022 ] Top1: 45.09%
|
142 |
+
[ Thu Sep 15 22:14:49 2022 ] Top5: 74.70%
|
143 |
+
[ Thu Sep 15 22:14:50 2022 ] Training epoch: 22
|
144 |
+
[ Thu Sep 15 22:16:04 2022 ] Batch(97/162) done. Loss: 0.4766 lr:0.100000 network_time: 0.0273
|
145 |
+
[ Thu Sep 15 22:16:51 2022 ] Eval epoch: 22
|
146 |
+
[ Thu Sep 15 22:18:44 2022 ] Mean test loss of 930 batches: 3.316596746444702.
|
147 |
+
[ Thu Sep 15 22:18:45 2022 ] Top1: 43.31%
|
148 |
+
[ Thu Sep 15 22:18:45 2022 ] Top5: 72.96%
|
149 |
+
[ Thu Sep 15 22:18:46 2022 ] Training epoch: 23
|
150 |
+
[ Thu Sep 15 22:19:19 2022 ] Batch(35/162) done. Loss: 0.3969 lr:0.100000 network_time: 0.0273
|
151 |
+
[ Thu Sep 15 22:20:42 2022 ] Batch(135/162) done. Loss: 0.2837 lr:0.100000 network_time: 0.0277
|
152 |
+
[ Thu Sep 15 22:21:04 2022 ] Eval epoch: 23
|
153 |
+
[ Thu Sep 15 22:23:08 2022 ] Mean test loss of 930 batches: 3.197326421737671.
|
154 |
+
[ Thu Sep 15 22:23:08 2022 ] Top1: 42.93%
|
155 |
+
[ Thu Sep 15 22:23:09 2022 ] Top5: 71.72%
|
156 |
+
[ Thu Sep 15 22:23:09 2022 ] Training epoch: 24
|
157 |
+
[ Thu Sep 15 22:24:14 2022 ] Batch(73/162) done. Loss: 0.2647 lr:0.100000 network_time: 0.0311
|
158 |
+
[ Thu Sep 15 22:25:28 2022 ] Eval epoch: 24
|
159 |
+
[ Thu Sep 15 22:27:31 2022 ] Mean test loss of 930 batches: 3.7576260566711426.
|
160 |
+
[ Thu Sep 15 22:27:32 2022 ] Top1: 33.71%
|
161 |
+
[ Thu Sep 15 22:27:32 2022 ] Top5: 64.81%
|
162 |
+
[ Thu Sep 15 22:27:32 2022 ] Training epoch: 25
|
163 |
+
[ Thu Sep 15 22:27:46 2022 ] Batch(11/162) done. Loss: 0.2705 lr:0.100000 network_time: 0.0271
|
164 |
+
[ Thu Sep 15 22:29:10 2022 ] Batch(111/162) done. Loss: 0.6018 lr:0.100000 network_time: 0.0302
|
165 |
+
[ Thu Sep 15 22:29:52 2022 ] Eval epoch: 25
|
166 |
+
[ Thu Sep 15 22:31:55 2022 ] Mean test loss of 930 batches: 3.1339001655578613.
|
167 |
+
[ Thu Sep 15 22:31:55 2022 ] Top1: 43.27%
|
168 |
+
[ Thu Sep 15 22:31:56 2022 ] Top5: 72.67%
|
169 |
+
[ Thu Sep 15 22:31:56 2022 ] Training epoch: 26
|
170 |
+
[ Thu Sep 15 22:32:41 2022 ] Batch(49/162) done. Loss: 0.3780 lr:0.100000 network_time: 0.0269
|
171 |
+
[ Thu Sep 15 22:34:05 2022 ] Batch(149/162) done. Loss: 0.4230 lr:0.100000 network_time: 0.0272
|
172 |
+
[ Thu Sep 15 22:34:15 2022 ] Eval epoch: 26
|
173 |
+
[ Thu Sep 15 22:36:19 2022 ] Mean test loss of 930 batches: 2.8259902000427246.
|
174 |
+
[ Thu Sep 15 22:36:20 2022 ] Top1: 47.37%
|
175 |
+
[ Thu Sep 15 22:36:20 2022 ] Top5: 77.19%
|
176 |
+
[ Thu Sep 15 22:36:20 2022 ] Training epoch: 27
|
177 |
+
[ Thu Sep 15 22:37:37 2022 ] Batch(87/162) done. Loss: 0.1814 lr:0.100000 network_time: 0.0356
|
178 |
+
[ Thu Sep 15 22:38:40 2022 ] Eval epoch: 27
|
179 |
+
[ Thu Sep 15 22:40:43 2022 ] Mean test loss of 930 batches: 3.3106560707092285.
|
180 |
+
[ Thu Sep 15 22:40:43 2022 ] Top1: 41.29%
|
181 |
+
[ Thu Sep 15 22:40:44 2022 ] Top5: 71.07%
|
182 |
+
[ Thu Sep 15 22:40:44 2022 ] Training epoch: 28
|
183 |
+
[ Thu Sep 15 22:41:09 2022 ] Batch(25/162) done. Loss: 0.3237 lr:0.100000 network_time: 0.0281
|
184 |
+
[ Thu Sep 15 22:42:29 2022 ] Batch(125/162) done. Loss: 0.4479 lr:0.100000 network_time: 0.0267
|
185 |
+
[ Thu Sep 15 22:42:56 2022 ] Eval epoch: 28
|
186 |
+
[ Thu Sep 15 22:44:46 2022 ] Mean test loss of 930 batches: 3.0452048778533936.
|
187 |
+
[ Thu Sep 15 22:44:47 2022 ] Top1: 44.39%
|
188 |
+
[ Thu Sep 15 22:44:47 2022 ] Top5: 73.71%
|
189 |
+
[ Thu Sep 15 22:44:47 2022 ] Training epoch: 29
|
190 |
+
[ Thu Sep 15 22:45:37 2022 ] Batch(63/162) done. Loss: 0.4210 lr:0.100000 network_time: 0.0295
|
191 |
+
[ Thu Sep 15 22:46:49 2022 ] Eval epoch: 29
|
192 |
+
[ Thu Sep 15 22:48:38 2022 ] Mean test loss of 930 batches: 3.6561460494995117.
|
193 |
+
[ Thu Sep 15 22:48:38 2022 ] Top1: 42.24%
|
194 |
+
[ Thu Sep 15 22:48:39 2022 ] Top5: 71.71%
|
195 |
+
[ Thu Sep 15 22:48:39 2022 ] Training epoch: 30
|
196 |
+
[ Thu Sep 15 22:48:44 2022 ] Batch(1/162) done. Loss: 0.1475 lr:0.100000 network_time: 0.0268
|
197 |
+
[ Thu Sep 15 22:49:56 2022 ] Batch(101/162) done. Loss: 0.3633 lr:0.100000 network_time: 0.0277
|
198 |
+
[ Thu Sep 15 22:50:40 2022 ] Eval epoch: 30
|
199 |
+
[ Thu Sep 15 22:52:30 2022 ] Mean test loss of 930 batches: 3.4392001628875732.
|
200 |
+
[ Thu Sep 15 22:52:30 2022 ] Top1: 38.44%
|
201 |
+
[ Thu Sep 15 22:52:31 2022 ] Top5: 68.96%
|
202 |
+
[ Thu Sep 15 22:52:31 2022 ] Training epoch: 31
|
203 |
+
[ Thu Sep 15 22:53:03 2022 ] Batch(39/162) done. Loss: 0.2928 lr:0.100000 network_time: 0.0318
|
204 |
+
[ Thu Sep 15 22:54:16 2022 ] Batch(139/162) done. Loss: 0.3484 lr:0.100000 network_time: 0.0273
|
205 |
+
[ Thu Sep 15 22:54:32 2022 ] Eval epoch: 31
|
206 |
+
[ Thu Sep 15 22:56:22 2022 ] Mean test loss of 930 batches: 3.405987024307251.
|
207 |
+
[ Thu Sep 15 22:56:23 2022 ] Top1: 44.97%
|
208 |
+
[ Thu Sep 15 22:56:23 2022 ] Top5: 74.00%
|
209 |
+
[ Thu Sep 15 22:56:24 2022 ] Training epoch: 32
|
210 |
+
[ Thu Sep 15 22:57:23 2022 ] Batch(77/162) done. Loss: 0.3654 lr:0.100000 network_time: 0.0306
|
211 |
+
[ Thu Sep 15 22:58:24 2022 ] Eval epoch: 32
|
212 |
+
[ Thu Sep 15 23:00:14 2022 ] Mean test loss of 930 batches: 3.289426326751709.
|
213 |
+
[ Thu Sep 15 23:00:14 2022 ] Top1: 44.54%
|
214 |
+
[ Thu Sep 15 23:00:15 2022 ] Top5: 72.69%
|
215 |
+
[ Thu Sep 15 23:00:15 2022 ] Training epoch: 33
|
216 |
+
[ Thu Sep 15 23:00:30 2022 ] Batch(15/162) done. Loss: 0.2446 lr:0.100000 network_time: 0.0309
|
217 |
+
[ Thu Sep 15 23:01:43 2022 ] Batch(115/162) done. Loss: 0.6636 lr:0.100000 network_time: 0.0308
|
218 |
+
[ Thu Sep 15 23:02:16 2022 ] Eval epoch: 33
|
219 |
+
[ Thu Sep 15 23:04:06 2022 ] Mean test loss of 930 batches: 3.5604958534240723.
|
220 |
+
[ Thu Sep 15 23:04:06 2022 ] Top1: 43.77%
|
221 |
+
[ Thu Sep 15 23:04:07 2022 ] Top5: 73.33%
|
222 |
+
[ Thu Sep 15 23:04:07 2022 ] Training epoch: 34
|
223 |
+
[ Thu Sep 15 23:04:49 2022 ] Batch(53/162) done. Loss: 0.2863 lr:0.100000 network_time: 0.0322
|
224 |
+
[ Thu Sep 15 23:06:02 2022 ] Batch(153/162) done. Loss: 0.3649 lr:0.100000 network_time: 0.0314
|
225 |
+
[ Thu Sep 15 23:06:08 2022 ] Eval epoch: 34
|
226 |
+
[ Thu Sep 15 23:07:57 2022 ] Mean test loss of 930 batches: 3.1730799674987793.
|
227 |
+
[ Thu Sep 15 23:07:58 2022 ] Top1: 45.38%
|
228 |
+
[ Thu Sep 15 23:07:58 2022 ] Top5: 75.41%
|
229 |
+
[ Thu Sep 15 23:07:58 2022 ] Training epoch: 35
|
230 |
+
[ Thu Sep 15 23:09:08 2022 ] Batch(91/162) done. Loss: 0.2954 lr:0.100000 network_time: 0.0274
|
231 |
+
[ Thu Sep 15 23:09:59 2022 ] Eval epoch: 35
|
232 |
+
[ Thu Sep 15 23:11:49 2022 ] Mean test loss of 930 batches: 4.07279634475708.
|
233 |
+
[ Thu Sep 15 23:11:49 2022 ] Top1: 35.21%
|
234 |
+
[ Thu Sep 15 23:11:50 2022 ] Top5: 66.58%
|
235 |
+
[ Thu Sep 15 23:11:50 2022 ] Training epoch: 36
|
236 |
+
[ Thu Sep 15 23:12:15 2022 ] Batch(29/162) done. Loss: 0.2734 lr:0.100000 network_time: 0.0303
|
237 |
+
[ Thu Sep 15 23:13:28 2022 ] Batch(129/162) done. Loss: 0.2994 lr:0.100000 network_time: 0.0271
|
238 |
+
[ Thu Sep 15 23:13:51 2022 ] Eval epoch: 36
|
239 |
+
[ Thu Sep 15 23:15:41 2022 ] Mean test loss of 930 batches: 3.6304514408111572.
|
240 |
+
[ Thu Sep 15 23:15:41 2022 ] Top1: 45.32%
|
241 |
+
[ Thu Sep 15 23:15:42 2022 ] Top5: 75.04%
|
242 |
+
[ Thu Sep 15 23:15:42 2022 ] Training epoch: 37
|
243 |
+
[ Thu Sep 15 23:16:35 2022 ] Batch(67/162) done. Loss: 0.2511 lr:0.100000 network_time: 0.0298
|
244 |
+
[ Thu Sep 15 23:17:43 2022 ] Eval epoch: 37
|
245 |
+
[ Thu Sep 15 23:19:33 2022 ] Mean test loss of 930 batches: 3.6294195652008057.
|
246 |
+
[ Thu Sep 15 23:19:33 2022 ] Top1: 44.20%
|
247 |
+
[ Thu Sep 15 23:19:33 2022 ] Top5: 73.36%
|
248 |
+
[ Thu Sep 15 23:19:34 2022 ] Training epoch: 38
|
249 |
+
[ Thu Sep 15 23:19:41 2022 ] Batch(5/162) done. Loss: 0.2162 lr:0.100000 network_time: 0.0284
|
250 |
+
[ Thu Sep 15 23:20:54 2022 ] Batch(105/162) done. Loss: 0.1641 lr:0.100000 network_time: 0.0281
|
251 |
+
[ Thu Sep 15 23:21:35 2022 ] Eval epoch: 38
|
252 |
+
[ Thu Sep 15 23:23:24 2022 ] Mean test loss of 930 batches: 3.811417818069458.
|
253 |
+
[ Thu Sep 15 23:23:25 2022 ] Top1: 46.29%
|
254 |
+
[ Thu Sep 15 23:23:25 2022 ] Top5: 74.94%
|
255 |
+
[ Thu Sep 15 23:23:26 2022 ] Training epoch: 39
|
256 |
+
[ Thu Sep 15 23:24:01 2022 ] Batch(43/162) done. Loss: 0.1922 lr:0.100000 network_time: 0.0274
|
257 |
+
[ Thu Sep 15 23:25:13 2022 ] Batch(143/162) done. Loss: 0.4354 lr:0.100000 network_time: 0.0301
|
258 |
+
[ Thu Sep 15 23:25:27 2022 ] Eval epoch: 39
|
259 |
+
[ Thu Sep 15 23:27:16 2022 ] Mean test loss of 930 batches: 4.040771484375.
|
260 |
+
[ Thu Sep 15 23:27:17 2022 ] Top1: 39.84%
|
261 |
+
[ Thu Sep 15 23:27:17 2022 ] Top5: 69.56%
|
262 |
+
[ Thu Sep 15 23:27:18 2022 ] Training epoch: 40
|
263 |
+
[ Thu Sep 15 23:28:20 2022 ] Batch(81/162) done. Loss: 0.4334 lr:0.100000 network_time: 0.0281
|
264 |
+
[ Thu Sep 15 23:29:19 2022 ] Eval epoch: 40
|
265 |
+
[ Thu Sep 15 23:31:10 2022 ] Mean test loss of 930 batches: 3.5953073501586914.
|
266 |
+
[ Thu Sep 15 23:31:10 2022 ] Top1: 41.93%
|
267 |
+
[ Thu Sep 15 23:31:11 2022 ] Top5: 72.07%
|
268 |
+
[ Thu Sep 15 23:31:11 2022 ] Training epoch: 41
|
269 |
+
[ Thu Sep 15 23:31:29 2022 ] Batch(19/162) done. Loss: 0.1604 lr:0.100000 network_time: 0.0274
|
270 |
+
[ Thu Sep 15 23:32:46 2022 ] Batch(119/162) done. Loss: 0.3937 lr:0.100000 network_time: 0.0284
|
271 |
+
[ Thu Sep 15 23:33:17 2022 ] Eval epoch: 41
|
272 |
+
[ Thu Sep 15 23:35:09 2022 ] Mean test loss of 930 batches: 3.520280122756958.
|
273 |
+
[ Thu Sep 15 23:35:09 2022 ] Top1: 47.59%
|
274 |
+
[ Thu Sep 15 23:35:10 2022 ] Top5: 75.64%
|
275 |
+
[ Thu Sep 15 23:35:10 2022 ] Training epoch: 42
|
276 |
+
[ Thu Sep 15 23:35:57 2022 ] Batch(57/162) done. Loss: 0.1668 lr:0.100000 network_time: 0.0282
|
277 |
+
[ Thu Sep 15 23:37:09 2022 ] Batch(157/162) done. Loss: 0.2388 lr:0.100000 network_time: 0.0286
|
278 |
+
[ Thu Sep 15 23:37:12 2022 ] Eval epoch: 42
|
279 |
+
[ Thu Sep 15 23:39:02 2022 ] Mean test loss of 930 batches: 4.183106899261475.
|
280 |
+
[ Thu Sep 15 23:39:03 2022 ] Top1: 44.28%
|
281 |
+
[ Thu Sep 15 23:39:03 2022 ] Top5: 72.06%
|
282 |
+
[ Thu Sep 15 23:39:03 2022 ] Training epoch: 43
|
283 |
+
[ Thu Sep 15 23:40:17 2022 ] Batch(95/162) done. Loss: 0.2275 lr:0.100000 network_time: 0.0315
|
284 |
+
[ Thu Sep 15 23:41:05 2022 ] Eval epoch: 43
|
285 |
+
[ Thu Sep 15 23:42:55 2022 ] Mean test loss of 930 batches: 3.718573570251465.
|
286 |
+
[ Thu Sep 15 23:42:55 2022 ] Top1: 45.26%
|
287 |
+
[ Thu Sep 15 23:42:56 2022 ] Top5: 74.70%
|
288 |
+
[ Thu Sep 15 23:42:56 2022 ] Training epoch: 44
|
289 |
+
[ Thu Sep 15 23:43:24 2022 ] Batch(33/162) done. Loss: 0.1599 lr:0.100000 network_time: 0.0259
|
290 |
+
[ Thu Sep 15 23:44:36 2022 ] Batch(133/162) done. Loss: 0.3298 lr:0.100000 network_time: 0.0262
|
291 |
+
[ Thu Sep 15 23:44:57 2022 ] Eval epoch: 44
|
292 |
+
[ Thu Sep 15 23:46:47 2022 ] Mean test loss of 930 batches: 3.5274219512939453.
|
293 |
+
[ Thu Sep 15 23:46:47 2022 ] Top1: 45.58%
|
294 |
+
[ Thu Sep 15 23:46:48 2022 ] Top5: 74.79%
|
295 |
+
[ Thu Sep 15 23:46:48 2022 ] Training epoch: 45
|
296 |
+
[ Thu Sep 15 23:47:43 2022 ] Batch(71/162) done. Loss: 0.1845 lr:0.100000 network_time: 0.0271
|
297 |
+
[ Thu Sep 15 23:48:49 2022 ] Eval epoch: 45
|
298 |
+
[ Thu Sep 15 23:50:39 2022 ] Mean test loss of 930 batches: 3.1531949043273926.
|
299 |
+
[ Thu Sep 15 23:50:39 2022 ] Top1: 46.84%
|
300 |
+
[ Thu Sep 15 23:50:39 2022 ] Top5: 76.80%
|
301 |
+
[ Thu Sep 15 23:50:40 2022 ] Training epoch: 46
|
302 |
+
[ Thu Sep 15 23:50:50 2022 ] Batch(9/162) done. Loss: 0.1575 lr:0.100000 network_time: 0.0318
|
303 |
+
[ Thu Sep 15 23:52:03 2022 ] Batch(109/162) done. Loss: 0.1927 lr:0.100000 network_time: 0.0316
|
304 |
+
[ Thu Sep 15 23:52:41 2022 ] Eval epoch: 46
|
305 |
+
[ Thu Sep 15 23:54:31 2022 ] Mean test loss of 930 batches: 3.124375104904175.
|
306 |
+
[ Thu Sep 15 23:54:32 2022 ] Top1: 48.06%
|
307 |
+
[ Thu Sep 15 23:54:32 2022 ] Top5: 75.82%
|
308 |
+
[ Thu Sep 15 23:54:32 2022 ] Training epoch: 47
|
309 |
+
[ Thu Sep 15 23:55:10 2022 ] Batch(47/162) done. Loss: 0.1494 lr:0.100000 network_time: 0.0275
|
310 |
+
[ Thu Sep 15 23:56:23 2022 ] Batch(147/162) done. Loss: 0.1077 lr:0.100000 network_time: 0.0267
|
311 |
+
[ Thu Sep 15 23:56:33 2022 ] Eval epoch: 47
|
312 |
+
[ Thu Sep 15 23:58:23 2022 ] Mean test loss of 930 batches: 3.3888652324676514.
|
313 |
+
[ Thu Sep 15 23:58:23 2022 ] Top1: 46.95%
|
314 |
+
[ Thu Sep 15 23:58:24 2022 ] Top5: 75.08%
|
315 |
+
[ Thu Sep 15 23:58:24 2022 ] Training epoch: 48
|
316 |
+
[ Thu Sep 15 23:59:30 2022 ] Batch(85/162) done. Loss: 0.3500 lr:0.100000 network_time: 0.0327
|
317 |
+
[ Fri Sep 16 00:00:25 2022 ] Eval epoch: 48
|
318 |
+
[ Fri Sep 16 00:02:15 2022 ] Mean test loss of 930 batches: 3.2960240840911865.
|
319 |
+
[ Fri Sep 16 00:02:15 2022 ] Top1: 45.77%
|
320 |
+
[ Fri Sep 16 00:02:16 2022 ] Top5: 74.82%
|
321 |
+
[ Fri Sep 16 00:02:16 2022 ] Training epoch: 49
|
322 |
+
[ Fri Sep 16 00:02:37 2022 ] Batch(23/162) done. Loss: 0.1806 lr:0.100000 network_time: 0.0323
|
323 |
+
[ Fri Sep 16 00:03:49 2022 ] Batch(123/162) done. Loss: 0.2071 lr:0.100000 network_time: 0.0339
|
324 |
+
[ Fri Sep 16 00:04:17 2022 ] Eval epoch: 49
|
325 |
+
[ Fri Sep 16 00:06:07 2022 ] Mean test loss of 930 batches: 3.379523754119873.
|
326 |
+
[ Fri Sep 16 00:06:07 2022 ] Top1: 47.97%
|
327 |
+
[ Fri Sep 16 00:06:08 2022 ] Top5: 76.24%
|
328 |
+
[ Fri Sep 16 00:06:08 2022 ] Training epoch: 50
|
329 |
+
[ Fri Sep 16 00:06:56 2022 ] Batch(61/162) done. Loss: 0.1720 lr:0.100000 network_time: 0.0305
|
330 |
+
[ Fri Sep 16 00:08:09 2022 ] Batch(161/162) done. Loss: 0.1912 lr:0.100000 network_time: 0.0259
|
331 |
+
[ Fri Sep 16 00:08:09 2022 ] Eval epoch: 50
|
332 |
+
[ Fri Sep 16 00:09:58 2022 ] Mean test loss of 930 batches: 3.817385673522949.
|
333 |
+
[ Fri Sep 16 00:09:59 2022 ] Top1: 45.53%
|
334 |
+
[ Fri Sep 16 00:09:59 2022 ] Top5: 74.42%
|
335 |
+
[ Fri Sep 16 00:09:59 2022 ] Training epoch: 51
|
336 |
+
[ Fri Sep 16 00:11:15 2022 ] Batch(99/162) done. Loss: 0.3319 lr:0.100000 network_time: 0.0281
|
337 |
+
[ Fri Sep 16 00:12:00 2022 ] Eval epoch: 51
|
338 |
+
[ Fri Sep 16 00:13:50 2022 ] Mean test loss of 930 batches: 3.0376579761505127.
|
339 |
+
[ Fri Sep 16 00:13:50 2022 ] Top1: 46.97%
|
340 |
+
[ Fri Sep 16 00:13:51 2022 ] Top5: 77.13%
|
341 |
+
[ Fri Sep 16 00:13:51 2022 ] Training epoch: 52
|
342 |
+
[ Fri Sep 16 00:14:22 2022 ] Batch(37/162) done. Loss: 0.1760 lr:0.100000 network_time: 0.0277
|
343 |
+
[ Fri Sep 16 00:15:34 2022 ] Batch(137/162) done. Loss: 0.2859 lr:0.100000 network_time: 0.0304
|
344 |
+
[ Fri Sep 16 00:15:52 2022 ] Eval epoch: 52
|
345 |
+
[ Fri Sep 16 00:17:42 2022 ] Mean test loss of 930 batches: 2.975449800491333.
|
346 |
+
[ Fri Sep 16 00:17:42 2022 ] Top1: 48.78%
|
347 |
+
[ Fri Sep 16 00:17:43 2022 ] Top5: 76.65%
|
348 |
+
[ Fri Sep 16 00:17:43 2022 ] Training epoch: 53
|
349 |
+
[ Fri Sep 16 00:18:41 2022 ] Batch(75/162) done. Loss: 0.0967 lr:0.100000 network_time: 0.0260
|
350 |
+
[ Fri Sep 16 00:19:44 2022 ] Eval epoch: 53
|
351 |
+
[ Fri Sep 16 00:21:34 2022 ] Mean test loss of 930 batches: 3.7247111797332764.
|
352 |
+
[ Fri Sep 16 00:21:34 2022 ] Top1: 45.97%
|
353 |
+
[ Fri Sep 16 00:21:34 2022 ] Top5: 74.71%
|
354 |
+
[ Fri Sep 16 00:21:35 2022 ] Training epoch: 54
|
355 |
+
[ Fri Sep 16 00:21:48 2022 ] Batch(13/162) done. Loss: 0.1032 lr:0.100000 network_time: 0.0273
|
356 |
+
[ Fri Sep 16 00:23:01 2022 ] Batch(113/162) done. Loss: 0.2584 lr:0.100000 network_time: 0.0263
|
357 |
+
[ Fri Sep 16 00:23:36 2022 ] Eval epoch: 54
|
358 |
+
[ Fri Sep 16 00:25:26 2022 ] Mean test loss of 930 batches: 3.4403839111328125.
|
359 |
+
[ Fri Sep 16 00:25:26 2022 ] Top1: 46.47%
|
360 |
+
[ Fri Sep 16 00:25:26 2022 ] Top5: 74.89%
|
361 |
+
[ Fri Sep 16 00:25:27 2022 ] Training epoch: 55
|
362 |
+
[ Fri Sep 16 00:26:07 2022 ] Batch(51/162) done. Loss: 0.1137 lr:0.100000 network_time: 0.0272
|
363 |
+
[ Fri Sep 16 00:27:20 2022 ] Batch(151/162) done. Loss: 0.1669 lr:0.100000 network_time: 0.0255
|
364 |
+
[ Fri Sep 16 00:27:28 2022 ] Eval epoch: 55
|
365 |
+
[ Fri Sep 16 00:29:17 2022 ] Mean test loss of 930 batches: 3.3242578506469727.
|
366 |
+
[ Fri Sep 16 00:29:17 2022 ] Top1: 44.78%
|
367 |
+
[ Fri Sep 16 00:29:18 2022 ] Top5: 73.90%
|
368 |
+
[ Fri Sep 16 00:29:18 2022 ] Training epoch: 56
|
369 |
+
[ Fri Sep 16 00:30:27 2022 ] Batch(89/162) done. Loss: 0.1448 lr:0.100000 network_time: 0.0310
|
370 |
+
[ Fri Sep 16 00:31:19 2022 ] Eval epoch: 56
|
371 |
+
[ Fri Sep 16 00:33:10 2022 ] Mean test loss of 930 batches: 3.144345283508301.
|
372 |
+
[ Fri Sep 16 00:33:10 2022 ] Top1: 47.82%
|
373 |
+
[ Fri Sep 16 00:33:11 2022 ] Top5: 76.10%
|
374 |
+
[ Fri Sep 16 00:33:11 2022 ] Training epoch: 57
|
375 |
+
[ Fri Sep 16 00:33:35 2022 ] Batch(27/162) done. Loss: 0.2348 lr:0.100000 network_time: 0.0274
|
376 |
+
[ Fri Sep 16 00:34:47 2022 ] Batch(127/162) done. Loss: 0.1120 lr:0.100000 network_time: 0.0275
|
377 |
+
[ Fri Sep 16 00:35:12 2022 ] Eval epoch: 57
|
378 |
+
[ Fri Sep 16 00:37:02 2022 ] Mean test loss of 930 batches: 2.920133352279663.
|
379 |
+
[ Fri Sep 16 00:37:03 2022 ] Top1: 48.81%
|
380 |
+
[ Fri Sep 16 00:37:03 2022 ] Top5: 77.31%
|
381 |
+
[ Fri Sep 16 00:37:03 2022 ] Training epoch: 58
|
382 |
+
[ Fri Sep 16 00:37:54 2022 ] Batch(65/162) done. Loss: 0.3310 lr:0.100000 network_time: 0.0559
|
383 |
+
[ Fri Sep 16 00:39:05 2022 ] Eval epoch: 58
|
384 |
+
[ Fri Sep 16 00:40:55 2022 ] Mean test loss of 930 batches: 3.7737793922424316.
|
385 |
+
[ Fri Sep 16 00:40:55 2022 ] Top1: 43.11%
|
386 |
+
[ Fri Sep 16 00:40:56 2022 ] Top5: 70.58%
|
387 |
+
[ Fri Sep 16 00:40:56 2022 ] Training epoch: 59
|
388 |
+
[ Fri Sep 16 00:41:02 2022 ] Batch(3/162) done. Loss: 0.0720 lr:0.100000 network_time: 0.0316
|
389 |
+
[ Fri Sep 16 00:42:15 2022 ] Batch(103/162) done. Loss: 0.2959 lr:0.100000 network_time: 0.0284
|
390 |
+
[ Fri Sep 16 00:42:57 2022 ] Eval epoch: 59
|
391 |
+
[ Fri Sep 16 00:44:47 2022 ] Mean test loss of 930 batches: 3.2564449310302734.
|
392 |
+
[ Fri Sep 16 00:44:48 2022 ] Top1: 48.88%
|
393 |
+
[ Fri Sep 16 00:44:48 2022 ] Top5: 77.70%
|
394 |
+
[ Fri Sep 16 00:44:48 2022 ] Training epoch: 60
|
395 |
+
[ Fri Sep 16 00:45:22 2022 ] Batch(41/162) done. Loss: 0.1657 lr:0.100000 network_time: 0.0279
|
396 |
+
[ Fri Sep 16 00:46:35 2022 ] Batch(141/162) done. Loss: 0.1678 lr:0.100000 network_time: 0.0401
|
397 |
+
[ Fri Sep 16 00:46:50 2022 ] Eval epoch: 60
|
398 |
+
[ Fri Sep 16 00:48:40 2022 ] Mean test loss of 930 batches: 3.528254747390747.
|
399 |
+
[ Fri Sep 16 00:48:40 2022 ] Top1: 48.81%
|
400 |
+
[ Fri Sep 16 00:48:41 2022 ] Top5: 76.94%
|
401 |
+
[ Fri Sep 16 00:48:41 2022 ] Training epoch: 61
|
402 |
+
[ Fri Sep 16 00:49:42 2022 ] Batch(79/162) done. Loss: 0.1274 lr:0.010000 network_time: 0.0277
|
403 |
+
[ Fri Sep 16 00:50:42 2022 ] Eval epoch: 61
|
404 |
+
[ Fri Sep 16 00:52:32 2022 ] Mean test loss of 930 batches: 3.0551934242248535.
|
405 |
+
[ Fri Sep 16 00:52:32 2022 ] Top1: 52.95%
|
406 |
+
[ Fri Sep 16 00:52:33 2022 ] Top5: 80.04%
|
407 |
+
[ Fri Sep 16 00:52:33 2022 ] Training epoch: 62
|
408 |
+
[ Fri Sep 16 00:52:49 2022 ] Batch(17/162) done. Loss: 0.0102 lr:0.010000 network_time: 0.0322
|
409 |
+
[ Fri Sep 16 00:54:02 2022 ] Batch(117/162) done. Loss: 0.0097 lr:0.010000 network_time: 0.0277
|
410 |
+
[ Fri Sep 16 00:54:34 2022 ] Eval epoch: 62
|
411 |
+
[ Fri Sep 16 00:56:24 2022 ] Mean test loss of 930 batches: 2.7636544704437256.
|
412 |
+
[ Fri Sep 16 00:56:24 2022 ] Top1: 54.60%
|
413 |
+
[ Fri Sep 16 00:56:25 2022 ] Top5: 80.99%
|
414 |
+
[ Fri Sep 16 00:56:25 2022 ] Training epoch: 63
|
415 |
+
[ Fri Sep 16 00:57:09 2022 ] Batch(55/162) done. Loss: 0.0137 lr:0.010000 network_time: 0.0319
|
416 |
+
[ Fri Sep 16 00:58:22 2022 ] Batch(155/162) done. Loss: 0.0272 lr:0.010000 network_time: 0.0269
|
417 |
+
[ Fri Sep 16 00:58:26 2022 ] Eval epoch: 63
|
418 |
+
[ Fri Sep 16 01:00:16 2022 ] Mean test loss of 930 batches: 2.9170336723327637.
|
419 |
+
[ Fri Sep 16 01:00:17 2022 ] Top1: 54.68%
|
420 |
+
[ Fri Sep 16 01:00:17 2022 ] Top5: 81.01%
|
421 |
+
[ Fri Sep 16 01:00:18 2022 ] Training epoch: 64
|
422 |
+
[ Fri Sep 16 01:01:29 2022 ] Batch(93/162) done. Loss: 0.0298 lr:0.010000 network_time: 0.0277
|
423 |
+
[ Fri Sep 16 01:02:19 2022 ] Eval epoch: 64
|
424 |
+
[ Fri Sep 16 01:04:09 2022 ] Mean test loss of 930 batches: 2.8463385105133057.
|
425 |
+
[ Fri Sep 16 01:04:09 2022 ] Top1: 53.52%
|
426 |
+
[ Fri Sep 16 01:04:09 2022 ] Top5: 80.42%
|
427 |
+
[ Fri Sep 16 01:04:10 2022 ] Training epoch: 65
|
428 |
+
[ Fri Sep 16 01:04:36 2022 ] Batch(31/162) done. Loss: 0.0082 lr:0.010000 network_time: 0.0256
|
429 |
+
[ Fri Sep 16 01:05:49 2022 ] Batch(131/162) done. Loss: 0.0156 lr:0.010000 network_time: 0.0266
|
430 |
+
[ Fri Sep 16 01:06:11 2022 ] Eval epoch: 65
|
431 |
+
[ Fri Sep 16 01:08:01 2022 ] Mean test loss of 930 batches: 2.7530834674835205.
|
432 |
+
[ Fri Sep 16 01:08:01 2022 ] Top1: 54.70%
|
433 |
+
[ Fri Sep 16 01:08:02 2022 ] Top5: 81.44%
|
434 |
+
[ Fri Sep 16 01:08:02 2022 ] Training epoch: 66
|
435 |
+
[ Fri Sep 16 01:08:56 2022 ] Batch(69/162) done. Loss: 0.0330 lr:0.010000 network_time: 0.0282
|
436 |
+
[ Fri Sep 16 01:10:03 2022 ] Eval epoch: 66
|
437 |
+
[ Fri Sep 16 01:11:52 2022 ] Mean test loss of 930 batches: 2.835975408554077.
|
438 |
+
[ Fri Sep 16 01:11:53 2022 ] Top1: 54.82%
|
439 |
+
[ Fri Sep 16 01:11:53 2022 ] Top5: 81.14%
|
440 |
+
[ Fri Sep 16 01:11:53 2022 ] Training epoch: 67
|
441 |
+
[ Fri Sep 16 01:12:02 2022 ] Batch(7/162) done. Loss: 0.0208 lr:0.010000 network_time: 0.0344
|
442 |
+
[ Fri Sep 16 01:13:15 2022 ] Batch(107/162) done. Loss: 0.0075 lr:0.010000 network_time: 0.0270
|
443 |
+
[ Fri Sep 16 01:13:55 2022 ] Eval epoch: 67
|
444 |
+
[ Fri Sep 16 01:15:44 2022 ] Mean test loss of 930 batches: 2.7904841899871826.
|
445 |
+
[ Fri Sep 16 01:15:45 2022 ] Top1: 54.78%
|
446 |
+
[ Fri Sep 16 01:15:45 2022 ] Top5: 81.29%
|
447 |
+
[ Fri Sep 16 01:15:45 2022 ] Training epoch: 68
|
448 |
+
[ Fri Sep 16 01:16:22 2022 ] Batch(45/162) done. Loss: 0.0099 lr:0.010000 network_time: 0.0278
|
449 |
+
[ Fri Sep 16 01:17:35 2022 ] Batch(145/162) done. Loss: 0.0066 lr:0.010000 network_time: 0.0277
|
450 |
+
[ Fri Sep 16 01:17:47 2022 ] Eval epoch: 68
|
451 |
+
[ Fri Sep 16 01:19:36 2022 ] Mean test loss of 930 batches: 2.7633280754089355.
|
452 |
+
[ Fri Sep 16 01:19:37 2022 ] Top1: 54.63%
|
453 |
+
[ Fri Sep 16 01:19:37 2022 ] Top5: 81.23%
|
454 |
+
[ Fri Sep 16 01:19:38 2022 ] Training epoch: 69
|
455 |
+
[ Fri Sep 16 01:20:42 2022 ] Batch(83/162) done. Loss: 0.0115 lr:0.010000 network_time: 0.0280
|
456 |
+
[ Fri Sep 16 01:21:39 2022 ] Eval epoch: 69
|
457 |
+
[ Fri Sep 16 01:23:29 2022 ] Mean test loss of 930 batches: 2.717859983444214.
|
458 |
+
[ Fri Sep 16 01:23:29 2022 ] Top1: 54.13%
|
459 |
+
[ Fri Sep 16 01:23:30 2022 ] Top5: 80.91%
|
460 |
+
[ Fri Sep 16 01:23:30 2022 ] Training epoch: 70
|
461 |
+
[ Fri Sep 16 01:23:49 2022 ] Batch(21/162) done. Loss: 0.0243 lr:0.010000 network_time: 0.0261
|
462 |
+
[ Fri Sep 16 01:25:01 2022 ] Batch(121/162) done. Loss: 0.0246 lr:0.010000 network_time: 0.0312
|
463 |
+
[ Fri Sep 16 01:25:31 2022 ] Eval epoch: 70
|
464 |
+
[ Fri Sep 16 01:27:21 2022 ] Mean test loss of 930 batches: 2.8249881267547607.
|
465 |
+
[ Fri Sep 16 01:27:21 2022 ] Top1: 55.01%
|
466 |
+
[ Fri Sep 16 01:27:22 2022 ] Top5: 81.17%
|
467 |
+
[ Fri Sep 16 01:27:22 2022 ] Training epoch: 71
|
468 |
+
[ Fri Sep 16 01:28:09 2022 ] Batch(59/162) done. Loss: 0.0115 lr:0.010000 network_time: 0.0270
|
469 |
+
[ Fri Sep 16 01:29:21 2022 ] Batch(159/162) done. Loss: 0.0081 lr:0.010000 network_time: 0.0281
|
470 |
+
[ Fri Sep 16 01:29:23 2022 ] Eval epoch: 71
|
471 |
+
[ Fri Sep 16 01:31:13 2022 ] Mean test loss of 930 batches: 2.6873366832733154.
|
472 |
+
[ Fri Sep 16 01:31:14 2022 ] Top1: 54.78%
|
473 |
+
[ Fri Sep 16 01:31:14 2022 ] Top5: 81.29%
|
474 |
+
[ Fri Sep 16 01:31:14 2022 ] Training epoch: 72
|
475 |
+
[ Fri Sep 16 01:32:28 2022 ] Batch(97/162) done. Loss: 0.0124 lr:0.010000 network_time: 0.0311
|
476 |
+
[ Fri Sep 16 01:33:15 2022 ] Eval epoch: 72
|
477 |
+
[ Fri Sep 16 01:35:05 2022 ] Mean test loss of 930 batches: 2.838772773742676.
|
478 |
+
[ Fri Sep 16 01:35:06 2022 ] Top1: 55.18%
|
479 |
+
[ Fri Sep 16 01:35:06 2022 ] Top5: 81.33%
|
480 |
+
[ Fri Sep 16 01:35:06 2022 ] Training epoch: 73
|
481 |
+
[ Fri Sep 16 01:35:35 2022 ] Batch(35/162) done. Loss: 0.0055 lr:0.010000 network_time: 0.0290
|
482 |
+
[ Fri Sep 16 01:36:48 2022 ] Batch(135/162) done. Loss: 0.0075 lr:0.010000 network_time: 0.0303
|
483 |
+
[ Fri Sep 16 01:37:07 2022 ] Eval epoch: 73
|
484 |
+
[ Fri Sep 16 01:38:57 2022 ] Mean test loss of 930 batches: 2.8878660202026367.
|
485 |
+
[ Fri Sep 16 01:38:58 2022 ] Top1: 55.20%
|
486 |
+
[ Fri Sep 16 01:38:58 2022 ] Top5: 81.34%
|
487 |
+
[ Fri Sep 16 01:38:58 2022 ] Training epoch: 74
|
488 |
+
[ Fri Sep 16 01:39:55 2022 ] Batch(73/162) done. Loss: 0.0124 lr:0.010000 network_time: 0.0287
|
489 |
+
[ Fri Sep 16 01:40:59 2022 ] Eval epoch: 74
|
490 |
+
[ Fri Sep 16 01:42:49 2022 ] Mean test loss of 930 batches: 2.664907455444336.
|
491 |
+
[ Fri Sep 16 01:42:50 2022 ] Top1: 55.28%
|
492 |
+
[ Fri Sep 16 01:42:50 2022 ] Top5: 81.36%
|
493 |
+
[ Fri Sep 16 01:42:51 2022 ] Training epoch: 75
|
494 |
+
[ Fri Sep 16 01:43:02 2022 ] Batch(11/162) done. Loss: 0.0043 lr:0.010000 network_time: 0.0273
|
495 |
+
[ Fri Sep 16 01:44:15 2022 ] Batch(111/162) done. Loss: 0.0047 lr:0.010000 network_time: 0.0333
|
496 |
+
[ Fri Sep 16 01:44:52 2022 ] Eval epoch: 75
|
497 |
+
[ Fri Sep 16 01:46:41 2022 ] Mean test loss of 930 batches: 2.6683382987976074.
|
498 |
+
[ Fri Sep 16 01:46:42 2022 ] Top1: 54.45%
|
499 |
+
[ Fri Sep 16 01:46:42 2022 ] Top5: 80.98%
|
500 |
+
[ Fri Sep 16 01:46:42 2022 ] Training epoch: 76
|
501 |
+
[ Fri Sep 16 01:47:22 2022 ] Batch(49/162) done. Loss: 0.0093 lr:0.010000 network_time: 0.0279
|
502 |
+
[ Fri Sep 16 01:48:35 2022 ] Batch(149/162) done. Loss: 0.0145 lr:0.010000 network_time: 0.0253
|
503 |
+
[ Fri Sep 16 01:48:44 2022 ] Eval epoch: 76
|
504 |
+
[ Fri Sep 16 01:50:33 2022 ] Mean test loss of 930 batches: 2.8474338054656982.
|
505 |
+
[ Fri Sep 16 01:50:34 2022 ] Top1: 55.17%
|
506 |
+
[ Fri Sep 16 01:50:34 2022 ] Top5: 81.17%
|
507 |
+
[ Fri Sep 16 01:50:34 2022 ] Training epoch: 77
|
508 |
+
[ Fri Sep 16 01:51:42 2022 ] Batch(87/162) done. Loss: 0.0102 lr:0.010000 network_time: 0.0264
|
509 |
+
[ Fri Sep 16 01:52:36 2022 ] Eval epoch: 77
|
510 |
+
[ Fri Sep 16 01:54:25 2022 ] Mean test loss of 930 batches: 2.8973159790039062.
|
511 |
+
[ Fri Sep 16 01:54:26 2022 ] Top1: 55.34%
|
512 |
+
[ Fri Sep 16 01:54:26 2022 ] Top5: 81.56%
|
513 |
+
[ Fri Sep 16 01:54:26 2022 ] Training epoch: 78
|
514 |
+
[ Fri Sep 16 01:54:48 2022 ] Batch(25/162) done. Loss: 0.0102 lr:0.010000 network_time: 0.0296
|
515 |
+
[ Fri Sep 16 01:56:01 2022 ] Batch(125/162) done. Loss: 0.0087 lr:0.010000 network_time: 0.0272
|
516 |
+
[ Fri Sep 16 01:56:28 2022 ] Eval epoch: 78
|
517 |
+
[ Fri Sep 16 01:58:17 2022 ] Mean test loss of 930 batches: 2.6789896488189697.
|
518 |
+
[ Fri Sep 16 01:58:18 2022 ] Top1: 54.80%
|
519 |
+
[ Fri Sep 16 01:58:18 2022 ] Top5: 81.20%
|
520 |
+
[ Fri Sep 16 01:58:18 2022 ] Training epoch: 79
|
521 |
+
[ Fri Sep 16 01:59:08 2022 ] Batch(63/162) done. Loss: 0.0068 lr:0.010000 network_time: 0.0500
|
522 |
+
[ Fri Sep 16 02:00:19 2022 ] Eval epoch: 79
|
523 |
+
[ Fri Sep 16 02:02:09 2022 ] Mean test loss of 930 batches: 2.7858283519744873.
|
524 |
+
[ Fri Sep 16 02:02:09 2022 ] Top1: 54.91%
|
525 |
+
[ Fri Sep 16 02:02:10 2022 ] Top5: 81.21%
|
526 |
+
[ Fri Sep 16 02:02:10 2022 ] Training epoch: 80
|
527 |
+
[ Fri Sep 16 02:02:15 2022 ] Batch(1/162) done. Loss: 0.0035 lr:0.010000 network_time: 0.0303
|
528 |
+
[ Fri Sep 16 02:03:27 2022 ] Batch(101/162) done. Loss: 0.0141 lr:0.010000 network_time: 0.0399
|
529 |
+
[ Fri Sep 16 02:04:11 2022 ] Eval epoch: 80
|
530 |
+
[ Fri Sep 16 02:06:01 2022 ] Mean test loss of 930 batches: 2.8534252643585205.
|
531 |
+
[ Fri Sep 16 02:06:02 2022 ] Top1: 55.02%
|
532 |
+
[ Fri Sep 16 02:06:02 2022 ] Top5: 81.41%
|
533 |
+
[ Fri Sep 16 02:06:02 2022 ] Training epoch: 81
|
534 |
+
[ Fri Sep 16 02:06:34 2022 ] Batch(39/162) done. Loss: 0.0035 lr:0.001000 network_time: 0.0254
|
535 |
+
[ Fri Sep 16 02:07:47 2022 ] Batch(139/162) done. Loss: 0.0039 lr:0.001000 network_time: 0.0233
|
536 |
+
[ Fri Sep 16 02:08:03 2022 ] Eval epoch: 81
|
537 |
+
[ Fri Sep 16 02:09:52 2022 ] Mean test loss of 930 batches: 2.6803336143493652.
|
538 |
+
[ Fri Sep 16 02:09:53 2022 ] Top1: 55.20%
|
539 |
+
[ Fri Sep 16 02:09:53 2022 ] Top5: 81.48%
|
540 |
+
[ Fri Sep 16 02:09:53 2022 ] Training epoch: 82
|
541 |
+
[ Fri Sep 16 02:10:53 2022 ] Batch(77/162) done. Loss: 0.0049 lr:0.001000 network_time: 0.0262
|
542 |
+
[ Fri Sep 16 02:11:54 2022 ] Eval epoch: 82
|
543 |
+
[ Fri Sep 16 02:13:44 2022 ] Mean test loss of 930 batches: 2.7156152725219727.
|
544 |
+
[ Fri Sep 16 02:13:44 2022 ] Top1: 55.67%
|
545 |
+
[ Fri Sep 16 02:13:45 2022 ] Top5: 81.66%
|
546 |
+
[ Fri Sep 16 02:13:45 2022 ] Training epoch: 83
|
547 |
+
[ Fri Sep 16 02:14:00 2022 ] Batch(15/162) done. Loss: 0.0084 lr:0.001000 network_time: 0.0341
|
548 |
+
[ Fri Sep 16 02:15:12 2022 ] Batch(115/162) done. Loss: 0.0417 lr:0.001000 network_time: 0.0321
|
549 |
+
[ Fri Sep 16 02:15:46 2022 ] Eval epoch: 83
|
550 |
+
[ Fri Sep 16 02:17:36 2022 ] Mean test loss of 930 batches: 2.685029983520508.
|
551 |
+
[ Fri Sep 16 02:17:36 2022 ] Top1: 54.72%
|
552 |
+
[ Fri Sep 16 02:17:37 2022 ] Top5: 81.19%
|
553 |
+
[ Fri Sep 16 02:17:37 2022 ] Training epoch: 84
|
554 |
+
[ Fri Sep 16 02:18:19 2022 ] Batch(53/162) done. Loss: 0.0095 lr:0.001000 network_time: 0.0280
|
555 |
+
[ Fri Sep 16 02:19:32 2022 ] Batch(153/162) done. Loss: 0.0193 lr:0.001000 network_time: 0.0274
|
556 |
+
[ Fri Sep 16 02:19:38 2022 ] Eval epoch: 84
|
557 |
+
[ Fri Sep 16 02:21:28 2022 ] Mean test loss of 930 batches: 2.905918598175049.
|
558 |
+
[ Fri Sep 16 02:21:28 2022 ] Top1: 55.23%
|
559 |
+
[ Fri Sep 16 02:21:29 2022 ] Top5: 81.10%
|
560 |
+
[ Fri Sep 16 02:21:29 2022 ] Training epoch: 85
|
561 |
+
[ Fri Sep 16 02:22:39 2022 ] Batch(91/162) done. Loss: 0.0063 lr:0.001000 network_time: 0.0309
|
562 |
+
[ Fri Sep 16 02:23:30 2022 ] Eval epoch: 85
|
563 |
+
[ Fri Sep 16 02:25:20 2022 ] Mean test loss of 930 batches: 2.808967351913452.
|
564 |
+
[ Fri Sep 16 02:25:20 2022 ] Top1: 55.04%
|
565 |
+
[ Fri Sep 16 02:25:21 2022 ] Top5: 81.41%
|
566 |
+
[ Fri Sep 16 02:25:21 2022 ] Training epoch: 86
|
567 |
+
[ Fri Sep 16 02:25:46 2022 ] Batch(29/162) done. Loss: 0.0053 lr:0.001000 network_time: 0.0268
|
568 |
+
[ Fri Sep 16 02:26:59 2022 ] Batch(129/162) done. Loss: 0.0089 lr:0.001000 network_time: 0.0285
|
569 |
+
[ Fri Sep 16 02:27:22 2022 ] Eval epoch: 86
|
570 |
+
[ Fri Sep 16 02:29:12 2022 ] Mean test loss of 930 batches: 2.6798934936523438.
|
571 |
+
[ Fri Sep 16 02:29:12 2022 ] Top1: 54.68%
|
572 |
+
[ Fri Sep 16 02:29:13 2022 ] Top5: 81.19%
|
573 |
+
[ Fri Sep 16 02:29:13 2022 ] Training epoch: 87
|
574 |
+
[ Fri Sep 16 02:30:05 2022 ] Batch(67/162) done. Loss: 0.0089 lr:0.001000 network_time: 0.0313
|
575 |
+
[ Fri Sep 16 02:31:14 2022 ] Eval epoch: 87
|
576 |
+
[ Fri Sep 16 02:33:04 2022 ] Mean test loss of 930 batches: 2.7120673656463623.
|
577 |
+
[ Fri Sep 16 02:33:04 2022 ] Top1: 55.48%
|
578 |
+
[ Fri Sep 16 02:33:04 2022 ] Top5: 81.55%
|
579 |
+
[ Fri Sep 16 02:33:05 2022 ] Training epoch: 88
|
580 |
+
[ Fri Sep 16 02:33:12 2022 ] Batch(5/162) done. Loss: 0.0106 lr:0.001000 network_time: 0.0268
|
581 |
+
[ Fri Sep 16 02:34:25 2022 ] Batch(105/162) done. Loss: 0.0082 lr:0.001000 network_time: 0.0269
|
582 |
+
[ Fri Sep 16 02:35:06 2022 ] Eval epoch: 88
|
583 |
+
[ Fri Sep 16 02:36:55 2022 ] Mean test loss of 930 batches: 2.6429519653320312.
|
584 |
+
[ Fri Sep 16 02:36:55 2022 ] Top1: 55.39%
|
585 |
+
[ Fri Sep 16 02:36:56 2022 ] Top5: 81.70%
|
586 |
+
[ Fri Sep 16 02:36:56 2022 ] Training epoch: 89
|
587 |
+
[ Fri Sep 16 02:37:31 2022 ] Batch(43/162) done. Loss: 0.0084 lr:0.001000 network_time: 0.0294
|
588 |
+
[ Fri Sep 16 02:38:44 2022 ] Batch(143/162) done. Loss: 0.0078 lr:0.001000 network_time: 0.0392
|
589 |
+
[ Fri Sep 16 02:38:57 2022 ] Eval epoch: 89
|
590 |
+
[ Fri Sep 16 02:40:47 2022 ] Mean test loss of 930 batches: 2.7270517349243164.
|
591 |
+
[ Fri Sep 16 02:40:47 2022 ] Top1: 54.51%
|
592 |
+
[ Fri Sep 16 02:40:48 2022 ] Top5: 81.10%
|
593 |
+
[ Fri Sep 16 02:40:48 2022 ] Training epoch: 90
|
594 |
+
[ Fri Sep 16 02:41:50 2022 ] Batch(81/162) done. Loss: 0.0173 lr:0.001000 network_time: 0.0349
|
595 |
+
[ Fri Sep 16 02:42:49 2022 ] Eval epoch: 90
|
596 |
+
[ Fri Sep 16 02:44:39 2022 ] Mean test loss of 930 batches: 2.8094165325164795.
|
597 |
+
[ Fri Sep 16 02:44:39 2022 ] Top1: 54.99%
|
598 |
+
[ Fri Sep 16 02:44:40 2022 ] Top5: 81.39%
|
599 |
+
[ Fri Sep 16 02:44:40 2022 ] Training epoch: 91
|
600 |
+
[ Fri Sep 16 02:44:57 2022 ] Batch(19/162) done. Loss: 0.0077 lr:0.001000 network_time: 0.0302
|
601 |
+
[ Fri Sep 16 02:46:10 2022 ] Batch(119/162) done. Loss: 0.0108 lr:0.001000 network_time: 0.0271
|
602 |
+
[ Fri Sep 16 02:46:41 2022 ] Eval epoch: 91
|
603 |
+
[ Fri Sep 16 02:48:31 2022 ] Mean test loss of 930 batches: 2.7365074157714844.
|
604 |
+
[ Fri Sep 16 02:48:31 2022 ] Top1: 55.28%
|
605 |
+
[ Fri Sep 16 02:48:32 2022 ] Top5: 81.50%
|
606 |
+
[ Fri Sep 16 02:48:32 2022 ] Training epoch: 92
|
607 |
+
[ Fri Sep 16 02:49:17 2022 ] Batch(57/162) done. Loss: 0.0151 lr:0.001000 network_time: 0.0319
|
608 |
+
[ Fri Sep 16 02:50:30 2022 ] Batch(157/162) done. Loss: 0.0383 lr:0.001000 network_time: 0.0283
|
609 |
+
[ Fri Sep 16 02:50:33 2022 ] Eval epoch: 92
|
610 |
+
[ Fri Sep 16 02:52:22 2022 ] Mean test loss of 930 batches: 2.6518261432647705.
|
611 |
+
[ Fri Sep 16 02:52:23 2022 ] Top1: 54.07%
|
612 |
+
[ Fri Sep 16 02:52:23 2022 ] Top5: 81.02%
|
613 |
+
[ Fri Sep 16 02:52:23 2022 ] Training epoch: 93
|
614 |
+
[ Fri Sep 16 02:53:36 2022 ] Batch(95/162) done. Loss: 0.0064 lr:0.001000 network_time: 0.0273
|
615 |
+
[ Fri Sep 16 02:54:24 2022 ] Eval epoch: 93
|
616 |
+
[ Fri Sep 16 02:56:14 2022 ] Mean test loss of 930 batches: 2.8818185329437256.
|
617 |
+
[ Fri Sep 16 02:56:14 2022 ] Top1: 54.94%
|
618 |
+
[ Fri Sep 16 02:56:15 2022 ] Top5: 81.20%
|
619 |
+
[ Fri Sep 16 02:56:15 2022 ] Training epoch: 94
|
620 |
+
[ Fri Sep 16 02:56:43 2022 ] Batch(33/162) done. Loss: 0.0079 lr:0.001000 network_time: 0.0273
|
621 |
+
[ Fri Sep 16 02:57:55 2022 ] Batch(133/162) done. Loss: 0.0125 lr:0.001000 network_time: 0.0282
|
622 |
+
[ Fri Sep 16 02:58:16 2022 ] Eval epoch: 94
|
623 |
+
[ Fri Sep 16 03:00:05 2022 ] Mean test loss of 930 batches: 2.7161922454833984.
|
624 |
+
[ Fri Sep 16 03:00:06 2022 ] Top1: 55.58%
|
625 |
+
[ Fri Sep 16 03:00:06 2022 ] Top5: 81.59%
|
626 |
+
[ Fri Sep 16 03:00:06 2022 ] Training epoch: 95
|
627 |
+
[ Fri Sep 16 03:01:02 2022 ] Batch(71/162) done. Loss: 0.0110 lr:0.001000 network_time: 0.0322
|
628 |
+
[ Fri Sep 16 03:02:07 2022 ] Eval epoch: 95
|
629 |
+
[ Fri Sep 16 03:03:57 2022 ] Mean test loss of 930 batches: 2.7197964191436768.
|
630 |
+
[ Fri Sep 16 03:03:57 2022 ] Top1: 55.39%
|
631 |
+
[ Fri Sep 16 03:03:58 2022 ] Top5: 81.45%
|
632 |
+
[ Fri Sep 16 03:03:58 2022 ] Training epoch: 96
|
633 |
+
[ Fri Sep 16 03:04:08 2022 ] Batch(9/162) done. Loss: 0.0097 lr:0.001000 network_time: 0.0274
|
634 |
+
[ Fri Sep 16 03:05:21 2022 ] Batch(109/162) done. Loss: 0.0032 lr:0.001000 network_time: 0.0272
|
635 |
+
[ Fri Sep 16 03:05:59 2022 ] Eval epoch: 96
|
636 |
+
[ Fri Sep 16 03:07:49 2022 ] Mean test loss of 930 batches: 2.823249578475952.
|
637 |
+
[ Fri Sep 16 03:07:49 2022 ] Top1: 53.73%
|
638 |
+
[ Fri Sep 16 03:07:50 2022 ] Top5: 80.80%
|
639 |
+
[ Fri Sep 16 03:07:50 2022 ] Training epoch: 97
|
640 |
+
[ Fri Sep 16 03:08:28 2022 ] Batch(47/162) done. Loss: 0.0206 lr:0.001000 network_time: 0.0288
|
641 |
+
[ Fri Sep 16 03:09:41 2022 ] Batch(147/162) done. Loss: 0.0045 lr:0.001000 network_time: 0.0276
|
642 |
+
[ Fri Sep 16 03:09:51 2022 ] Eval epoch: 97
|
643 |
+
[ Fri Sep 16 03:11:41 2022 ] Mean test loss of 930 batches: 2.73584246635437.
|
644 |
+
[ Fri Sep 16 03:11:41 2022 ] Top1: 55.20%
|
645 |
+
[ Fri Sep 16 03:11:41 2022 ] Top5: 81.49%
|
646 |
+
[ Fri Sep 16 03:11:42 2022 ] Training epoch: 98
|
647 |
+
[ Fri Sep 16 03:12:47 2022 ] Batch(85/162) done. Loss: 0.0076 lr:0.001000 network_time: 0.0250
|
648 |
+
[ Fri Sep 16 03:13:43 2022 ] Eval epoch: 98
|
649 |
+
[ Fri Sep 16 03:15:32 2022 ] Mean test loss of 930 batches: 2.759752035140991.
|
650 |
+
[ Fri Sep 16 03:15:33 2022 ] Top1: 54.60%
|
651 |
+
[ Fri Sep 16 03:15:33 2022 ] Top5: 81.10%
|
652 |
+
[ Fri Sep 16 03:15:33 2022 ] Training epoch: 99
|
653 |
+
[ Fri Sep 16 03:15:54 2022 ] Batch(23/162) done. Loss: 0.0042 lr:0.001000 network_time: 0.0276
|
654 |
+
[ Fri Sep 16 03:17:06 2022 ] Batch(123/162) done. Loss: 0.0093 lr:0.001000 network_time: 0.0273
|
655 |
+
[ Fri Sep 16 03:17:34 2022 ] Eval epoch: 99
|
656 |
+
[ Fri Sep 16 03:19:24 2022 ] Mean test loss of 930 batches: 2.6689939498901367.
|
657 |
+
[ Fri Sep 16 03:19:24 2022 ] Top1: 53.70%
|
658 |
+
[ Fri Sep 16 03:19:24 2022 ] Top5: 80.66%
|
659 |
+
[ Fri Sep 16 03:19:25 2022 ] Training epoch: 100
|
660 |
+
[ Fri Sep 16 03:20:13 2022 ] Batch(61/162) done. Loss: 0.0058 lr:0.001000 network_time: 0.0324
|
661 |
+
[ Fri Sep 16 03:21:25 2022 ] Batch(161/162) done. Loss: 0.0059 lr:0.001000 network_time: 0.0423
|
662 |
+
[ Fri Sep 16 03:21:26 2022 ] Eval epoch: 100
|
663 |
+
[ Fri Sep 16 03:23:15 2022 ] Mean test loss of 930 batches: 2.663466691970825.
|
664 |
+
[ Fri Sep 16 03:23:15 2022 ] Top1: 54.84%
|
665 |
+
[ Fri Sep 16 03:23:16 2022 ] Top5: 81.30%
|
666 |
+
[ Fri Sep 16 03:23:16 2022 ] Training epoch: 101
|
667 |
+
[ Fri Sep 16 03:24:31 2022 ] Batch(99/162) done. Loss: 0.0043 lr:0.000100 network_time: 0.0320
|
668 |
+
[ Fri Sep 16 03:25:17 2022 ] Eval epoch: 101
|
669 |
+
[ Fri Sep 16 03:27:06 2022 ] Mean test loss of 930 batches: 2.7768349647521973.
|
670 |
+
[ Fri Sep 16 03:27:07 2022 ] Top1: 55.20%
|
671 |
+
[ Fri Sep 16 03:27:07 2022 ] Top5: 81.58%
|
672 |
+
[ Fri Sep 16 03:27:07 2022 ] Training epoch: 102
|
673 |
+
[ Fri Sep 16 03:27:38 2022 ] Batch(37/162) done. Loss: 0.0066 lr:0.000100 network_time: 0.0269
|
674 |
+
[ Fri Sep 16 03:28:51 2022 ] Batch(137/162) done. Loss: 0.0044 lr:0.000100 network_time: 0.0440
|
675 |
+
[ Fri Sep 16 03:29:08 2022 ] Eval epoch: 102
|
676 |
+
[ Fri Sep 16 03:30:58 2022 ] Mean test loss of 930 batches: 2.6662395000457764.
|
677 |
+
[ Fri Sep 16 03:30:58 2022 ] Top1: 54.99%
|
678 |
+
[ Fri Sep 16 03:30:58 2022 ] Top5: 81.35%
|
679 |
+
[ Fri Sep 16 03:30:59 2022 ] Training epoch: 103
|
680 |
+
[ Fri Sep 16 03:31:57 2022 ] Batch(75/162) done. Loss: 0.0094 lr:0.000100 network_time: 0.0336
|
681 |
+
[ Fri Sep 16 03:32:59 2022 ] Eval epoch: 103
|
682 |
+
[ Fri Sep 16 03:34:49 2022 ] Mean test loss of 930 batches: 2.8566136360168457.
|
683 |
+
[ Fri Sep 16 03:34:50 2022 ] Top1: 55.30%
|
684 |
+
[ Fri Sep 16 03:34:50 2022 ] Top5: 81.46%
|
685 |
+
[ Fri Sep 16 03:34:50 2022 ] Training epoch: 104
|
686 |
+
[ Fri Sep 16 03:35:04 2022 ] Batch(13/162) done. Loss: 0.0033 lr:0.000100 network_time: 0.0313
|
687 |
+
[ Fri Sep 16 03:36:16 2022 ] Batch(113/162) done. Loss: 0.0040 lr:0.000100 network_time: 0.0251
|
688 |
+
[ Fri Sep 16 03:36:52 2022 ] Eval epoch: 104
|
689 |
+
[ Fri Sep 16 03:38:41 2022 ] Mean test loss of 930 batches: 2.852644681930542.
|
690 |
+
[ Fri Sep 16 03:38:41 2022 ] Top1: 55.15%
|
691 |
+
[ Fri Sep 16 03:38:42 2022 ] Top5: 81.41%
|
692 |
+
[ Fri Sep 16 03:38:42 2022 ] Training epoch: 105
|
693 |
+
[ Fri Sep 16 03:39:23 2022 ] Batch(51/162) done. Loss: 0.0089 lr:0.000100 network_time: 0.0280
|
694 |
+
[ Fri Sep 16 03:40:36 2022 ] Batch(151/162) done. Loss: 0.0130 lr:0.000100 network_time: 0.0296
|
695 |
+
[ Fri Sep 16 03:40:43 2022 ] Eval epoch: 105
|
696 |
+
[ Fri Sep 16 03:42:33 2022 ] Mean test loss of 930 batches: 2.7096853256225586.
|
697 |
+
[ Fri Sep 16 03:42:33 2022 ] Top1: 54.55%
|
698 |
+
[ Fri Sep 16 03:42:34 2022 ] Top5: 81.34%
|
699 |
+
[ Fri Sep 16 03:42:34 2022 ] Training epoch: 106
|
700 |
+
[ Fri Sep 16 03:43:42 2022 ] Batch(89/162) done. Loss: 0.0056 lr:0.000100 network_time: 0.0260
|
701 |
+
[ Fri Sep 16 03:44:35 2022 ] Eval epoch: 106
|
702 |
+
[ Fri Sep 16 03:46:24 2022 ] Mean test loss of 930 batches: 2.6621322631835938.
|
703 |
+
[ Fri Sep 16 03:46:25 2022 ] Top1: 55.51%
|
704 |
+
[ Fri Sep 16 03:46:25 2022 ] Top5: 81.55%
|
705 |
+
[ Fri Sep 16 03:46:25 2022 ] Training epoch: 107
|
706 |
+
[ Fri Sep 16 03:46:49 2022 ] Batch(27/162) done. Loss: 0.0082 lr:0.000100 network_time: 0.0310
|
707 |
+
[ Fri Sep 16 03:48:02 2022 ] Batch(127/162) done. Loss: 0.0041 lr:0.000100 network_time: 0.0255
|
708 |
+
[ Fri Sep 16 03:48:27 2022 ] Eval epoch: 107
|
709 |
+
[ Fri Sep 16 03:50:16 2022 ] Mean test loss of 930 batches: 2.7165894508361816.
|
710 |
+
[ Fri Sep 16 03:50:16 2022 ] Top1: 55.25%
|
711 |
+
[ Fri Sep 16 03:50:17 2022 ] Top5: 81.56%
|
712 |
+
[ Fri Sep 16 03:50:17 2022 ] Training epoch: 108
|
713 |
+
[ Fri Sep 16 03:51:08 2022 ] Batch(65/162) done. Loss: 0.0049 lr:0.000100 network_time: 0.0263
|
714 |
+
[ Fri Sep 16 03:52:18 2022 ] Eval epoch: 108
|
715 |
+
[ Fri Sep 16 03:54:08 2022 ] Mean test loss of 930 batches: 2.8998818397521973.
|
716 |
+
[ Fri Sep 16 03:54:08 2022 ] Top1: 55.12%
|
717 |
+
[ Fri Sep 16 03:54:08 2022 ] Top5: 81.39%
|
718 |
+
[ Fri Sep 16 03:54:09 2022 ] Training epoch: 109
|
719 |
+
[ Fri Sep 16 03:54:15 2022 ] Batch(3/162) done. Loss: 0.0049 lr:0.000100 network_time: 0.0276
|
720 |
+
[ Fri Sep 16 03:55:27 2022 ] Batch(103/162) done. Loss: 0.0049 lr:0.000100 network_time: 0.0318
|
721 |
+
[ Fri Sep 16 03:56:10 2022 ] Eval epoch: 109
|
722 |
+
[ Fri Sep 16 03:58:00 2022 ] Mean test loss of 930 batches: 2.7563014030456543.
|
723 |
+
[ Fri Sep 16 03:58:00 2022 ] Top1: 54.75%
|
724 |
+
[ Fri Sep 16 03:58:01 2022 ] Top5: 81.21%
|
725 |
+
[ Fri Sep 16 03:58:01 2022 ] Training epoch: 110
|
726 |
+
[ Fri Sep 16 03:58:34 2022 ] Batch(41/162) done. Loss: 0.0130 lr:0.000100 network_time: 0.0276
|
727 |
+
[ Fri Sep 16 03:59:47 2022 ] Batch(141/162) done. Loss: 0.0035 lr:0.000100 network_time: 0.0289
|
728 |
+
[ Fri Sep 16 04:00:02 2022 ] Eval epoch: 110
|
729 |
+
[ Fri Sep 16 04:01:51 2022 ] Mean test loss of 930 batches: 2.6887638568878174.
|
730 |
+
[ Fri Sep 16 04:01:52 2022 ] Top1: 54.75%
|
731 |
+
[ Fri Sep 16 04:01:52 2022 ] Top5: 81.20%
|
732 |
+
[ Fri Sep 16 04:01:53 2022 ] Training epoch: 111
|
733 |
+
[ Fri Sep 16 04:02:54 2022 ] Batch(79/162) done. Loss: 0.0023 lr:0.000100 network_time: 0.0279
|
734 |
+
[ Fri Sep 16 04:03:53 2022 ] Eval epoch: 111
|
735 |
+
[ Fri Sep 16 04:05:43 2022 ] Mean test loss of 930 batches: 2.7811808586120605.
|
736 |
+
[ Fri Sep 16 04:05:43 2022 ] Top1: 53.83%
|
737 |
+
[ Fri Sep 16 04:05:43 2022 ] Top5: 80.74%
|
738 |
+
[ Fri Sep 16 04:05:44 2022 ] Training epoch: 112
|
739 |
+
[ Fri Sep 16 04:05:59 2022 ] Batch(17/162) done. Loss: 0.0050 lr:0.000100 network_time: 0.0267
|
740 |
+
[ Fri Sep 16 04:07:12 2022 ] Batch(117/162) done. Loss: 0.0069 lr:0.000100 network_time: 0.0230
|
741 |
+
[ Fri Sep 16 04:07:44 2022 ] Eval epoch: 112
|
742 |
+
[ Fri Sep 16 04:09:34 2022 ] Mean test loss of 930 batches: 2.7857918739318848.
|
743 |
+
[ Fri Sep 16 04:09:34 2022 ] Top1: 55.56%
|
744 |
+
[ Fri Sep 16 04:09:35 2022 ] Top5: 81.54%
|
745 |
+
[ Fri Sep 16 04:09:35 2022 ] Training epoch: 113
|
746 |
+
[ Fri Sep 16 04:10:19 2022 ] Batch(55/162) done. Loss: 0.0080 lr:0.000100 network_time: 0.0274
|
747 |
+
[ Fri Sep 16 04:11:31 2022 ] Batch(155/162) done. Loss: 0.0046 lr:0.000100 network_time: 0.0267
|
748 |
+
[ Fri Sep 16 04:11:36 2022 ] Eval epoch: 113
|
749 |
+
[ Fri Sep 16 04:13:25 2022 ] Mean test loss of 930 batches: 2.7522940635681152.
|
750 |
+
[ Fri Sep 16 04:13:26 2022 ] Top1: 52.42%
|
751 |
+
[ Fri Sep 16 04:13:26 2022 ] Top5: 79.89%
|
752 |
+
[ Fri Sep 16 04:13:27 2022 ] Training epoch: 114
|
753 |
+
[ Fri Sep 16 04:14:38 2022 ] Batch(93/162) done. Loss: 0.0080 lr:0.000100 network_time: 0.0279
|
754 |
+
[ Fri Sep 16 04:15:28 2022 ] Eval epoch: 114
|
755 |
+
[ Fri Sep 16 04:17:17 2022 ] Mean test loss of 930 batches: 2.7601916790008545.
|
756 |
+
[ Fri Sep 16 04:17:18 2022 ] Top1: 55.44%
|
757 |
+
[ Fri Sep 16 04:17:18 2022 ] Top5: 81.62%
|
758 |
+
[ Fri Sep 16 04:17:18 2022 ] Training epoch: 115
|
759 |
+
[ Fri Sep 16 04:17:44 2022 ] Batch(31/162) done. Loss: 0.0056 lr:0.000100 network_time: 0.0279
|
760 |
+
[ Fri Sep 16 04:18:57 2022 ] Batch(131/162) done. Loss: 0.0066 lr:0.000100 network_time: 0.0255
|
761 |
+
[ Fri Sep 16 04:19:19 2022 ] Eval epoch: 115
|
762 |
+
[ Fri Sep 16 04:21:09 2022 ] Mean test loss of 930 batches: 2.7520415782928467.
|
763 |
+
[ Fri Sep 16 04:21:10 2022 ] Top1: 55.05%
|
764 |
+
[ Fri Sep 16 04:21:10 2022 ] Top5: 81.05%
|
765 |
+
[ Fri Sep 16 04:21:10 2022 ] Training epoch: 116
|
766 |
+
[ Fri Sep 16 04:22:04 2022 ] Batch(69/162) done. Loss: 0.0031 lr:0.000100 network_time: 0.0274
|
767 |
+
[ Fri Sep 16 04:23:11 2022 ] Eval epoch: 116
|
768 |
+
[ Fri Sep 16 04:25:01 2022 ] Mean test loss of 930 batches: 2.7753899097442627.
|
769 |
+
[ Fri Sep 16 04:25:01 2022 ] Top1: 55.38%
|
770 |
+
[ Fri Sep 16 04:25:02 2022 ] Top5: 81.63%
|
771 |
+
[ Fri Sep 16 04:25:02 2022 ] Training epoch: 117
|
772 |
+
[ Fri Sep 16 04:25:11 2022 ] Batch(7/162) done. Loss: 0.0121 lr:0.000100 network_time: 0.0308
|
773 |
+
[ Fri Sep 16 04:26:24 2022 ] Batch(107/162) done. Loss: 0.0023 lr:0.000100 network_time: 0.0230
|
774 |
+
[ Fri Sep 16 04:27:03 2022 ] Eval epoch: 117
|
775 |
+
[ Fri Sep 16 04:28:52 2022 ] Mean test loss of 930 batches: 2.677675724029541.
|
776 |
+
[ Fri Sep 16 04:28:53 2022 ] Top1: 55.50%
|
777 |
+
[ Fri Sep 16 04:28:53 2022 ] Top5: 81.51%
|
778 |
+
[ Fri Sep 16 04:28:53 2022 ] Training epoch: 118
|
779 |
+
[ Fri Sep 16 04:29:30 2022 ] Batch(45/162) done. Loss: 0.0061 lr:0.000100 network_time: 0.0275
|
780 |
+
[ Fri Sep 16 04:30:42 2022 ] Batch(145/162) done. Loss: 0.0047 lr:0.000100 network_time: 0.0271
|
781 |
+
[ Fri Sep 16 04:30:54 2022 ] Eval epoch: 118
|
782 |
+
[ Fri Sep 16 04:32:44 2022 ] Mean test loss of 930 batches: 2.7359731197357178.
|
783 |
+
[ Fri Sep 16 04:32:44 2022 ] Top1: 55.38%
|
784 |
+
[ Fri Sep 16 04:32:45 2022 ] Top5: 81.53%
|
785 |
+
[ Fri Sep 16 04:32:45 2022 ] Training epoch: 119
|
786 |
+
[ Fri Sep 16 04:33:49 2022 ] Batch(83/162) done. Loss: 0.0051 lr:0.000100 network_time: 0.0273
|
787 |
+
[ Fri Sep 16 04:34:46 2022 ] Eval epoch: 119
|
788 |
+
[ Fri Sep 16 04:36:36 2022 ] Mean test loss of 930 batches: 2.6921119689941406.
|
789 |
+
[ Fri Sep 16 04:36:36 2022 ] Top1: 55.72%
|
790 |
+
[ Fri Sep 16 04:36:36 2022 ] Top5: 81.66%
|
791 |
+
[ Fri Sep 16 04:36:37 2022 ] Training epoch: 120
|
792 |
+
[ Fri Sep 16 04:36:56 2022 ] Batch(21/162) done. Loss: 0.0079 lr:0.000100 network_time: 0.0326
|
793 |
+
[ Fri Sep 16 04:38:09 2022 ] Batch(121/162) done. Loss: 0.0039 lr:0.000100 network_time: 0.0281
|
794 |
+
[ Fri Sep 16 04:38:38 2022 ] Eval epoch: 120
|
795 |
+
[ Fri Sep 16 04:40:27 2022 ] Mean test loss of 930 batches: 2.6823599338531494.
|
796 |
+
[ Fri Sep 16 04:40:28 2022 ] Top1: 55.41%
|
797 |
+
[ Fri Sep 16 04:40:28 2022 ] Top5: 81.65%
|
798 |
+
[ Fri Sep 16 04:40:29 2022 ] Training epoch: 121
|
799 |
+
[ Fri Sep 16 04:41:15 2022 ] Batch(59/162) done. Loss: 0.0046 lr:0.000100 network_time: 0.0319
|
800 |
+
[ Fri Sep 16 04:42:28 2022 ] Batch(159/162) done. Loss: 0.0268 lr:0.000100 network_time: 0.0277
|
801 |
+
[ Fri Sep 16 04:42:30 2022 ] Eval epoch: 121
|
802 |
+
[ Fri Sep 16 04:44:19 2022 ] Mean test loss of 930 batches: 2.6829521656036377.
|
803 |
+
[ Fri Sep 16 04:44:20 2022 ] Top1: 55.41%
|
804 |
+
[ Fri Sep 16 04:44:20 2022 ] Top5: 81.51%
|
805 |
+
[ Fri Sep 16 04:44:20 2022 ] Training epoch: 122
|
806 |
+
[ Fri Sep 16 04:45:35 2022 ] Batch(97/162) done. Loss: 0.0045 lr:0.000100 network_time: 0.0272
|
807 |
+
[ Fri Sep 16 04:46:21 2022 ] Eval epoch: 122
|
808 |
+
[ Fri Sep 16 04:48:11 2022 ] Mean test loss of 930 batches: 2.6855432987213135.
|
809 |
+
[ Fri Sep 16 04:48:12 2022 ] Top1: 55.09%
|
810 |
+
[ Fri Sep 16 04:48:12 2022 ] Top5: 81.43%
|
811 |
+
[ Fri Sep 16 04:48:12 2022 ] Training epoch: 123
|
812 |
+
[ Fri Sep 16 04:48:41 2022 ] Batch(35/162) done. Loss: 0.0065 lr:0.000100 network_time: 0.0278
|
813 |
+
[ Fri Sep 16 04:49:54 2022 ] Batch(135/162) done. Loss: 0.0055 lr:0.000100 network_time: 0.0276
|
814 |
+
[ Fri Sep 16 04:50:13 2022 ] Eval epoch: 123
|
815 |
+
[ Fri Sep 16 04:52:03 2022 ] Mean test loss of 930 batches: 2.808767557144165.
|
816 |
+
[ Fri Sep 16 04:52:03 2022 ] Top1: 54.43%
|
817 |
+
[ Fri Sep 16 04:52:04 2022 ] Top5: 81.16%
|
818 |
+
[ Fri Sep 16 04:52:04 2022 ] Training epoch: 124
|
819 |
+
[ Fri Sep 16 04:53:01 2022 ] Batch(73/162) done. Loss: 0.0041 lr:0.000100 network_time: 0.0274
|
820 |
+
[ Fri Sep 16 04:54:05 2022 ] Eval epoch: 124
|
821 |
+
[ Fri Sep 16 04:55:55 2022 ] Mean test loss of 930 batches: 2.7997090816497803.
|
822 |
+
[ Fri Sep 16 04:55:55 2022 ] Top1: 55.73%
|
823 |
+
[ Fri Sep 16 04:55:56 2022 ] Top5: 81.60%
|
824 |
+
[ Fri Sep 16 04:55:56 2022 ] Training epoch: 125
|
825 |
+
[ Fri Sep 16 04:56:08 2022 ] Batch(11/162) done. Loss: 0.0022 lr:0.000100 network_time: 0.0291
|
826 |
+
[ Fri Sep 16 04:57:21 2022 ] Batch(111/162) done. Loss: 0.0030 lr:0.000100 network_time: 0.0370
|
827 |
+
[ Fri Sep 16 04:57:57 2022 ] Eval epoch: 125
|
828 |
+
[ Fri Sep 16 04:59:46 2022 ] Mean test loss of 930 batches: 2.8247811794281006.
|
829 |
+
[ Fri Sep 16 04:59:47 2022 ] Top1: 54.96%
|
830 |
+
[ Fri Sep 16 04:59:47 2022 ] Top5: 81.33%
|
831 |
+
[ Fri Sep 16 04:59:48 2022 ] Training epoch: 126
|
832 |
+
[ Fri Sep 16 05:00:27 2022 ] Batch(49/162) done. Loss: 0.0083 lr:0.000100 network_time: 0.0265
|
833 |
+
[ Fri Sep 16 05:01:40 2022 ] Batch(149/162) done. Loss: 0.0065 lr:0.000100 network_time: 0.0265
|
834 |
+
[ Fri Sep 16 05:01:49 2022 ] Eval epoch: 126
|
835 |
+
[ Fri Sep 16 05:03:38 2022 ] Mean test loss of 930 batches: 2.709444046020508.
|
836 |
+
[ Fri Sep 16 05:03:38 2022 ] Top1: 54.90%
|
837 |
+
[ Fri Sep 16 05:03:39 2022 ] Top5: 81.36%
|
838 |
+
[ Fri Sep 16 05:03:39 2022 ] Training epoch: 127
|
839 |
+
[ Fri Sep 16 05:04:46 2022 ] Batch(87/162) done. Loss: 0.0068 lr:0.000100 network_time: 0.0284
|
840 |
+
[ Fri Sep 16 05:05:40 2022 ] Eval epoch: 127
|
841 |
+
[ Fri Sep 16 05:07:29 2022 ] Mean test loss of 930 batches: 2.721369743347168.
|
842 |
+
[ Fri Sep 16 05:07:30 2022 ] Top1: 55.40%
|
843 |
+
[ Fri Sep 16 05:07:30 2022 ] Top5: 81.58%
|
844 |
+
[ Fri Sep 16 05:07:31 2022 ] Training epoch: 128
|
845 |
+
[ Fri Sep 16 05:07:52 2022 ] Batch(25/162) done. Loss: 0.0107 lr:0.000100 network_time: 0.0350
|
846 |
+
[ Fri Sep 16 05:09:05 2022 ] Batch(125/162) done. Loss: 0.0059 lr:0.000100 network_time: 0.0300
|
847 |
+
[ Fri Sep 16 05:09:32 2022 ] Eval epoch: 128
|
848 |
+
[ Fri Sep 16 05:11:21 2022 ] Mean test loss of 930 batches: 2.696549892425537.
|
849 |
+
[ Fri Sep 16 05:11:21 2022 ] Top1: 55.42%
|
850 |
+
[ Fri Sep 16 05:11:22 2022 ] Top5: 81.51%
|
851 |
+
[ Fri Sep 16 05:11:22 2022 ] Training epoch: 129
|
852 |
+
[ Fri Sep 16 05:12:11 2022 ] Batch(63/162) done. Loss: 0.0023 lr:0.000100 network_time: 0.0281
|
853 |
+
[ Fri Sep 16 05:13:23 2022 ] Eval epoch: 129
|
854 |
+
[ Fri Sep 16 05:15:12 2022 ] Mean test loss of 930 batches: 2.860775947570801.
|
855 |
+
[ Fri Sep 16 05:15:13 2022 ] Top1: 55.20%
|
856 |
+
[ Fri Sep 16 05:15:13 2022 ] Top5: 81.41%
|
857 |
+
[ Fri Sep 16 05:15:13 2022 ] Training epoch: 130
|
858 |
+
[ Fri Sep 16 05:15:18 2022 ] Batch(1/162) done. Loss: 0.0050 lr:0.000100 network_time: 0.0282
|
859 |
+
[ Fri Sep 16 05:16:30 2022 ] Batch(101/162) done. Loss: 0.0149 lr:0.000100 network_time: 0.0232
|
860 |
+
[ Fri Sep 16 05:17:14 2022 ] Eval epoch: 130
|
861 |
+
[ Fri Sep 16 05:19:04 2022 ] Mean test loss of 930 batches: 2.670889139175415.
|
862 |
+
[ Fri Sep 16 05:19:04 2022 ] Top1: 55.61%
|
863 |
+
[ Fri Sep 16 05:19:04 2022 ] Top5: 81.70%
|
864 |
+
[ Fri Sep 16 05:19:05 2022 ] Training epoch: 131
|
865 |
+
[ Fri Sep 16 05:19:37 2022 ] Batch(39/162) done. Loss: 0.0060 lr:0.000100 network_time: 0.0342
|
866 |
+
[ Fri Sep 16 05:20:50 2022 ] Batch(139/162) done. Loss: 0.0074 lr:0.000100 network_time: 0.0274
|
867 |
+
[ Fri Sep 16 05:21:06 2022 ] Eval epoch: 131
|
868 |
+
[ Fri Sep 16 05:22:55 2022 ] Mean test loss of 930 batches: 2.783825397491455.
|
869 |
+
[ Fri Sep 16 05:22:56 2022 ] Top1: 55.61%
|
870 |
+
[ Fri Sep 16 05:22:56 2022 ] Top5: 81.69%
|
871 |
+
[ Fri Sep 16 05:22:57 2022 ] Training epoch: 132
|
872 |
+
[ Fri Sep 16 05:23:56 2022 ] Batch(77/162) done. Loss: 0.0043 lr:0.000100 network_time: 0.0273
|
873 |
+
[ Fri Sep 16 05:24:58 2022 ] Eval epoch: 132
|
874 |
+
[ Fri Sep 16 05:26:47 2022 ] Mean test loss of 930 batches: 2.690352201461792.
|
875 |
+
[ Fri Sep 16 05:26:47 2022 ] Top1: 54.85%
|
876 |
+
[ Fri Sep 16 05:26:48 2022 ] Top5: 81.45%
|
877 |
+
[ Fri Sep 16 05:26:48 2022 ] Training epoch: 133
|
878 |
+
[ Fri Sep 16 05:27:03 2022 ] Batch(15/162) done. Loss: 0.0041 lr:0.000100 network_time: 0.0273
|
879 |
+
[ Fri Sep 16 05:28:15 2022 ] Batch(115/162) done. Loss: 0.0088 lr:0.000100 network_time: 0.0270
|
880 |
+
[ Fri Sep 16 05:28:49 2022 ] Eval epoch: 133
|
881 |
+
[ Fri Sep 16 05:30:39 2022 ] Mean test loss of 930 batches: 2.7724499702453613.
|
882 |
+
[ Fri Sep 16 05:30:39 2022 ] Top1: 53.06%
|
883 |
+
[ Fri Sep 16 05:30:39 2022 ] Top5: 80.30%
|
884 |
+
[ Fri Sep 16 05:30:40 2022 ] Training epoch: 134
|
885 |
+
[ Fri Sep 16 05:31:22 2022 ] Batch(53/162) done. Loss: 0.0106 lr:0.000100 network_time: 0.0274
|
886 |
+
[ Fri Sep 16 05:32:35 2022 ] Batch(153/162) done. Loss: 0.0159 lr:0.000100 network_time: 0.0266
|
887 |
+
[ Fri Sep 16 05:32:41 2022 ] Eval epoch: 134
|
888 |
+
[ Fri Sep 16 05:34:30 2022 ] Mean test loss of 930 batches: 2.824082136154175.
|
889 |
+
[ Fri Sep 16 05:34:31 2022 ] Top1: 53.24%
|
890 |
+
[ Fri Sep 16 05:34:31 2022 ] Top5: 80.41%
|
891 |
+
[ Fri Sep 16 05:34:31 2022 ] Training epoch: 135
|
892 |
+
[ Fri Sep 16 05:35:41 2022 ] Batch(91/162) done. Loss: 0.0025 lr:0.000100 network_time: 0.0316
|
893 |
+
[ Fri Sep 16 05:36:32 2022 ] Eval epoch: 135
|
894 |
+
[ Fri Sep 16 05:38:21 2022 ] Mean test loss of 930 batches: 2.7413904666900635.
|
895 |
+
[ Fri Sep 16 05:38:22 2022 ] Top1: 55.46%
|
896 |
+
[ Fri Sep 16 05:38:22 2022 ] Top5: 81.65%
|
897 |
+
[ Fri Sep 16 05:38:22 2022 ] Training epoch: 136
|
898 |
+
[ Fri Sep 16 05:38:47 2022 ] Batch(29/162) done. Loss: 0.0073 lr:0.000100 network_time: 0.0287
|
899 |
+
[ Fri Sep 16 05:40:00 2022 ] Batch(129/162) done. Loss: 0.0043 lr:0.000100 network_time: 0.0282
|
900 |
+
[ Fri Sep 16 05:40:23 2022 ] Eval epoch: 136
|
901 |
+
[ Fri Sep 16 05:42:13 2022 ] Mean test loss of 930 batches: 2.650205373764038.
|
902 |
+
[ Fri Sep 16 05:42:13 2022 ] Top1: 55.57%
|
903 |
+
[ Fri Sep 16 05:42:14 2022 ] Top5: 81.71%
|
904 |
+
[ Fri Sep 16 05:42:14 2022 ] Training epoch: 137
|
905 |
+
[ Fri Sep 16 05:43:07 2022 ] Batch(67/162) done. Loss: 0.0036 lr:0.000100 network_time: 0.0311
|
906 |
+
[ Fri Sep 16 05:44:16 2022 ] Eval epoch: 137
|
907 |
+
[ Fri Sep 16 05:46:05 2022 ] Mean test loss of 930 batches: 2.8283350467681885.
|
908 |
+
[ Fri Sep 16 05:46:05 2022 ] Top1: 55.00%
|
909 |
+
[ Fri Sep 16 05:46:06 2022 ] Top5: 81.16%
|
910 |
+
[ Fri Sep 16 05:46:06 2022 ] Training epoch: 138
|
911 |
+
[ Fri Sep 16 05:46:14 2022 ] Batch(5/162) done. Loss: 0.0037 lr:0.000100 network_time: 0.0520
|
912 |
+
[ Fri Sep 16 05:47:26 2022 ] Batch(105/162) done. Loss: 0.0045 lr:0.000100 network_time: 0.0287
|
913 |
+
[ Fri Sep 16 05:48:07 2022 ] Eval epoch: 138
|
914 |
+
[ Fri Sep 16 05:49:57 2022 ] Mean test loss of 930 batches: 2.746467113494873.
|
915 |
+
[ Fri Sep 16 05:49:57 2022 ] Top1: 55.47%
|
916 |
+
[ Fri Sep 16 05:49:57 2022 ] Top5: 81.55%
|
917 |
+
[ Fri Sep 16 05:49:58 2022 ] Training epoch: 139
|
918 |
+
[ Fri Sep 16 05:50:33 2022 ] Batch(43/162) done. Loss: 0.0108 lr:0.000100 network_time: 0.0343
|
919 |
+
[ Fri Sep 16 05:51:46 2022 ] Batch(143/162) done. Loss: 0.0025 lr:0.000100 network_time: 0.0269
|
920 |
+
[ Fri Sep 16 05:51:59 2022 ] Eval epoch: 139
|
921 |
+
[ Fri Sep 16 05:53:48 2022 ] Mean test loss of 930 batches: 2.8351552486419678.
|
922 |
+
[ Fri Sep 16 05:53:49 2022 ] Top1: 54.96%
|
923 |
+
[ Fri Sep 16 05:53:49 2022 ] Top5: 81.28%
|
924 |
+
[ Fri Sep 16 05:53:49 2022 ] Training epoch: 140
|
925 |
+
[ Fri Sep 16 05:54:52 2022 ] Batch(81/162) done. Loss: 0.0037 lr:0.000100 network_time: 0.0271
|
926 |
+
[ Fri Sep 16 05:55:50 2022 ] Eval epoch: 140
|
927 |
+
[ Fri Sep 16 05:57:39 2022 ] Mean test loss of 930 batches: 2.6571571826934814.
|
928 |
+
[ Fri Sep 16 05:57:39 2022 ] Top1: 54.60%
|
929 |
+
[ Fri Sep 16 05:57:40 2022 ] Top5: 81.13%
|
ckpt/Others/Shift-GCN/ntu120_xset/ntu120_joint_motion_xset/shift_gcn.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torch.autograd import Variable
|
5 |
+
import numpy as np
|
6 |
+
import math
|
7 |
+
|
8 |
+
import sys
|
9 |
+
sys.path.append("./model/Temporal_shift/")
|
10 |
+
|
11 |
+
from cuda.shift import Shift
|
12 |
+
|
13 |
+
|
14 |
+
def import_class(name):
|
15 |
+
components = name.split('.')
|
16 |
+
mod = __import__(components[0])
|
17 |
+
for comp in components[1:]:
|
18 |
+
mod = getattr(mod, comp)
|
19 |
+
return mod
|
20 |
+
|
21 |
+
def conv_init(conv):
|
22 |
+
nn.init.kaiming_normal(conv.weight, mode='fan_out')
|
23 |
+
nn.init.constant(conv.bias, 0)
|
24 |
+
|
25 |
+
|
26 |
+
def bn_init(bn, scale):
|
27 |
+
nn.init.constant(bn.weight, scale)
|
28 |
+
nn.init.constant(bn.bias, 0)
|
29 |
+
|
30 |
+
|
31 |
+
class tcn(nn.Module):
|
32 |
+
def __init__(self, in_channels, out_channels, kernel_size=9, stride=1):
|
33 |
+
super(tcn, self).__init__()
|
34 |
+
pad = int((kernel_size - 1) / 2)
|
35 |
+
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=(kernel_size, 1), padding=(pad, 0),
|
36 |
+
stride=(stride, 1))
|
37 |
+
|
38 |
+
self.bn = nn.BatchNorm2d(out_channels)
|
39 |
+
self.relu = nn.ReLU()
|
40 |
+
conv_init(self.conv)
|
41 |
+
bn_init(self.bn, 1)
|
42 |
+
|
43 |
+
def forward(self, x):
|
44 |
+
x = self.bn(self.conv(x))
|
45 |
+
return x
|
46 |
+
|
47 |
+
|
48 |
+
class Shift_tcn(nn.Module):
|
49 |
+
def __init__(self, in_channels, out_channels, kernel_size=9, stride=1):
|
50 |
+
super(Shift_tcn, self).__init__()
|
51 |
+
|
52 |
+
self.in_channels = in_channels
|
53 |
+
self.out_channels = out_channels
|
54 |
+
|
55 |
+
self.bn = nn.BatchNorm2d(in_channels)
|
56 |
+
self.bn2 = nn.BatchNorm2d(in_channels)
|
57 |
+
bn_init(self.bn2, 1)
|
58 |
+
self.relu = nn.ReLU(inplace=True)
|
59 |
+
self.shift_in = Shift(channel=in_channels, stride=1, init_scale=1)
|
60 |
+
self.shift_out = Shift(channel=out_channels, stride=stride, init_scale=1)
|
61 |
+
|
62 |
+
self.temporal_linear = nn.Conv2d(in_channels, out_channels, 1)
|
63 |
+
nn.init.kaiming_normal(self.temporal_linear.weight, mode='fan_out')
|
64 |
+
|
65 |
+
def forward(self, x):
|
66 |
+
x = self.bn(x)
|
67 |
+
# shift1
|
68 |
+
x = self.shift_in(x)
|
69 |
+
x = self.temporal_linear(x)
|
70 |
+
x = self.relu(x)
|
71 |
+
# shift2
|
72 |
+
x = self.shift_out(x)
|
73 |
+
x = self.bn2(x)
|
74 |
+
return x
|
75 |
+
|
76 |
+
|
77 |
+
class Shift_gcn(nn.Module):
|
78 |
+
def __init__(self, in_channels, out_channels, A, coff_embedding=4, num_subset=3):
|
79 |
+
super(Shift_gcn, self).__init__()
|
80 |
+
self.in_channels = in_channels
|
81 |
+
self.out_channels = out_channels
|
82 |
+
if in_channels != out_channels:
|
83 |
+
self.down = nn.Sequential(
|
84 |
+
nn.Conv2d(in_channels, out_channels, 1),
|
85 |
+
nn.BatchNorm2d(out_channels)
|
86 |
+
)
|
87 |
+
else:
|
88 |
+
self.down = lambda x: x
|
89 |
+
|
90 |
+
self.Linear_weight = nn.Parameter(torch.zeros(in_channels, out_channels, requires_grad=True, device='cuda'), requires_grad=True)
|
91 |
+
nn.init.normal_(self.Linear_weight, 0,math.sqrt(1.0/out_channels))
|
92 |
+
|
93 |
+
self.Linear_bias = nn.Parameter(torch.zeros(1,1,out_channels,requires_grad=True,device='cuda'),requires_grad=True)
|
94 |
+
nn.init.constant(self.Linear_bias, 0)
|
95 |
+
|
96 |
+
self.Feature_Mask = nn.Parameter(torch.ones(1,25,in_channels, requires_grad=True,device='cuda'),requires_grad=True)
|
97 |
+
nn.init.constant(self.Feature_Mask, 0)
|
98 |
+
|
99 |
+
self.bn = nn.BatchNorm1d(25*out_channels)
|
100 |
+
self.relu = nn.ReLU()
|
101 |
+
|
102 |
+
for m in self.modules():
|
103 |
+
if isinstance(m, nn.Conv2d):
|
104 |
+
conv_init(m)
|
105 |
+
elif isinstance(m, nn.BatchNorm2d):
|
106 |
+
bn_init(m, 1)
|
107 |
+
|
108 |
+
index_array = np.empty(25*in_channels).astype(np.int)
|
109 |
+
for i in range(25):
|
110 |
+
for j in range(in_channels):
|
111 |
+
index_array[i*in_channels + j] = (i*in_channels + j + j*in_channels)%(in_channels*25)
|
112 |
+
self.shift_in = nn.Parameter(torch.from_numpy(index_array),requires_grad=False)
|
113 |
+
|
114 |
+
index_array = np.empty(25*out_channels).astype(np.int)
|
115 |
+
for i in range(25):
|
116 |
+
for j in range(out_channels):
|
117 |
+
index_array[i*out_channels + j] = (i*out_channels + j - j*out_channels)%(out_channels*25)
|
118 |
+
self.shift_out = nn.Parameter(torch.from_numpy(index_array),requires_grad=False)
|
119 |
+
|
120 |
+
|
121 |
+
def forward(self, x0):
|
122 |
+
n, c, t, v = x0.size()
|
123 |
+
x = x0.permute(0,2,3,1).contiguous()
|
124 |
+
|
125 |
+
# shift1
|
126 |
+
x = x.view(n*t,v*c)
|
127 |
+
x = torch.index_select(x, 1, self.shift_in)
|
128 |
+
x = x.view(n*t,v,c)
|
129 |
+
x = x * (torch.tanh(self.Feature_Mask)+1)
|
130 |
+
|
131 |
+
x = torch.einsum('nwc,cd->nwd', (x, self.Linear_weight)).contiguous() # nt,v,c
|
132 |
+
x = x + self.Linear_bias
|
133 |
+
|
134 |
+
# shift2
|
135 |
+
x = x.view(n*t,-1)
|
136 |
+
x = torch.index_select(x, 1, self.shift_out)
|
137 |
+
x = self.bn(x)
|
138 |
+
x = x.view(n,t,v,self.out_channels).permute(0,3,1,2) # n,c,t,v
|
139 |
+
|
140 |
+
x = x + self.down(x0)
|
141 |
+
x = self.relu(x)
|
142 |
+
return x
|
143 |
+
|
144 |
+
|
145 |
+
class TCN_GCN_unit(nn.Module):
|
146 |
+
def __init__(self, in_channels, out_channels, A, stride=1, residual=True):
|
147 |
+
super(TCN_GCN_unit, self).__init__()
|
148 |
+
self.gcn1 = Shift_gcn(in_channels, out_channels, A)
|
149 |
+
self.tcn1 = Shift_tcn(out_channels, out_channels, stride=stride)
|
150 |
+
self.relu = nn.ReLU()
|
151 |
+
|
152 |
+
if not residual:
|
153 |
+
self.residual = lambda x: 0
|
154 |
+
|
155 |
+
elif (in_channels == out_channels) and (stride == 1):
|
156 |
+
self.residual = lambda x: x
|
157 |
+
else:
|
158 |
+
self.residual = tcn(in_channels, out_channels, kernel_size=1, stride=stride)
|
159 |
+
|
160 |
+
def forward(self, x):
|
161 |
+
x = self.tcn1(self.gcn1(x)) + self.residual(x)
|
162 |
+
return self.relu(x)
|
163 |
+
|
164 |
+
|
165 |
+
class Model(nn.Module):
|
166 |
+
def __init__(self, num_class=60, num_point=25, num_person=2, graph=None, graph_args=dict(), in_channels=3):
|
167 |
+
super(Model, self).__init__()
|
168 |
+
|
169 |
+
if graph is None:
|
170 |
+
raise ValueError()
|
171 |
+
else:
|
172 |
+
Graph = import_class(graph)
|
173 |
+
self.graph = Graph(**graph_args)
|
174 |
+
|
175 |
+
A = self.graph.A
|
176 |
+
self.data_bn = nn.BatchNorm1d(num_person * in_channels * num_point)
|
177 |
+
|
178 |
+
self.l1 = TCN_GCN_unit(3, 64, A, residual=False)
|
179 |
+
self.l2 = TCN_GCN_unit(64, 64, A)
|
180 |
+
self.l3 = TCN_GCN_unit(64, 64, A)
|
181 |
+
self.l4 = TCN_GCN_unit(64, 64, A)
|
182 |
+
self.l5 = TCN_GCN_unit(64, 128, A, stride=2)
|
183 |
+
self.l6 = TCN_GCN_unit(128, 128, A)
|
184 |
+
self.l7 = TCN_GCN_unit(128, 128, A)
|
185 |
+
self.l8 = TCN_GCN_unit(128, 256, A, stride=2)
|
186 |
+
self.l9 = TCN_GCN_unit(256, 256, A)
|
187 |
+
self.l10 = TCN_GCN_unit(256, 256, A)
|
188 |
+
|
189 |
+
self.fc = nn.Linear(256, num_class)
|
190 |
+
nn.init.normal(self.fc.weight, 0, math.sqrt(2. / num_class))
|
191 |
+
bn_init(self.data_bn, 1)
|
192 |
+
|
193 |
+
def forward(self, x):
|
194 |
+
N, C, T, V, M = x.size()
|
195 |
+
|
196 |
+
x = x.permute(0, 4, 3, 1, 2).contiguous().view(N, M * V * C, T)
|
197 |
+
x = self.data_bn(x)
|
198 |
+
x = x.view(N, M, V, C, T).permute(0, 1, 3, 4, 2).contiguous().view(N * M, C, T, V)
|
199 |
+
|
200 |
+
x = self.l1(x)
|
201 |
+
x = self.l2(x)
|
202 |
+
x = self.l3(x)
|
203 |
+
x = self.l4(x)
|
204 |
+
x = self.l5(x)
|
205 |
+
x = self.l6(x)
|
206 |
+
x = self.l7(x)
|
207 |
+
x = self.l8(x)
|
208 |
+
x = self.l9(x)
|
209 |
+
x = self.l10(x)
|
210 |
+
|
211 |
+
# N*M,C,T,V
|
212 |
+
c_new = x.size(1)
|
213 |
+
x = x.view(N, M, c_new, -1)
|
214 |
+
x = x.mean(3).mean(1)
|
215 |
+
|
216 |
+
return self.fc(x)
|
ckpt/Others/Shift-GCN/ntu120_xset/ntu120_joint_xset/config.yaml
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Experiment_name: ntu120_joint_xset
|
2 |
+
base_lr: 0.1
|
3 |
+
batch_size: 64
|
4 |
+
config: ./config/ntu120_xset/train_joint.yaml
|
5 |
+
device:
|
6 |
+
- 4
|
7 |
+
- 5
|
8 |
+
eval_interval: 5
|
9 |
+
feeder: feeders.feeder.Feeder
|
10 |
+
ignore_weights: []
|
11 |
+
log_interval: 100
|
12 |
+
model: model.shift_gcn.Model
|
13 |
+
model_args:
|
14 |
+
graph: graph.ntu_rgb_d.Graph
|
15 |
+
graph_args:
|
16 |
+
labeling_mode: spatial
|
17 |
+
num_class: 120
|
18 |
+
num_person: 2
|
19 |
+
num_point: 25
|
20 |
+
model_saved_name: ./save_models/ntu120_joint_xset
|
21 |
+
nesterov: true
|
22 |
+
num_epoch: 140
|
23 |
+
num_worker: 32
|
24 |
+
only_train_epoch: 1
|
25 |
+
only_train_part: true
|
26 |
+
optimizer: SGD
|
27 |
+
phase: train
|
28 |
+
print_log: true
|
29 |
+
save_interval: 2
|
30 |
+
save_score: false
|
31 |
+
seed: 1
|
32 |
+
show_topk:
|
33 |
+
- 1
|
34 |
+
- 5
|
35 |
+
start_epoch: 0
|
36 |
+
step:
|
37 |
+
- 60
|
38 |
+
- 80
|
39 |
+
- 100
|
40 |
+
test_batch_size: 64
|
41 |
+
test_feeder_args:
|
42 |
+
data_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/val_data_joint.npy
|
43 |
+
label_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/val_label.pkl
|
44 |
+
train_feeder_args:
|
45 |
+
data_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/train_data_joint.npy
|
46 |
+
debug: false
|
47 |
+
label_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/train_label.pkl
|
48 |
+
normalization: false
|
49 |
+
random_choose: false
|
50 |
+
random_move: false
|
51 |
+
random_shift: false
|
52 |
+
window_size: -1
|
53 |
+
warm_up_epoch: 0
|
54 |
+
weight_decay: 0.0001
|
55 |
+
weights: null
|
56 |
+
work_dir: ./work_dir/ntu120_joint_xset
|
ckpt/Others/Shift-GCN/ntu120_xset/ntu120_joint_xset/eval_results/best_acc.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:491e9c65f6add18507396ed4656525a266bcb9d27d032137752a84ee32646935
|
3 |
+
size 34946665
|
ckpt/Others/Shift-GCN/ntu120_xset/ntu120_joint_xset/log.txt
ADDED
@@ -0,0 +1,929 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[ Thu Sep 15 20:53:21 2022 ] Parameters:
|
2 |
+
{'work_dir': './work_dir/ntu120_joint_xset', 'model_saved_name': './save_models/ntu120_joint_xset', 'Experiment_name': 'ntu120_joint_xset', 'config': './config/ntu120_xset/train_joint.yaml', 'phase': 'train', 'save_score': False, 'seed': 1, 'log_interval': 100, 'save_interval': 2, 'eval_interval': 5, 'print_log': True, 'show_topk': [1, 5], 'feeder': 'feeders.feeder.Feeder', 'num_worker': 32, 'train_feeder_args': {'data_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/train_data_joint.npy', 'label_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/train_label.pkl', 'debug': False, 'random_choose': False, 'random_shift': False, 'random_move': False, 'window_size': -1, 'normalization': False}, 'test_feeder_args': {'data_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/val_data_joint.npy', 'label_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xset/val_label.pkl'}, 'model': 'model.shift_gcn.Model', 'model_args': {'num_class': 120, 'num_point': 25, 'num_person': 2, 'graph': 'graph.ntu_rgb_d.Graph', 'graph_args': {'labeling_mode': 'spatial'}}, 'weights': None, 'ignore_weights': [], 'base_lr': 0.1, 'step': [60, 80, 100], 'device': [4, 5], 'optimizer': 'SGD', 'nesterov': True, 'batch_size': 64, 'test_batch_size': 64, 'start_epoch': 0, 'num_epoch': 140, 'weight_decay': 0.0001, 'only_train_part': True, 'only_train_epoch': 1, 'warm_up_epoch': 0}
|
3 |
+
|
4 |
+
[ Thu Sep 15 20:53:21 2022 ] Training epoch: 1
|
5 |
+
[ Thu Sep 15 20:54:39 2022 ] Batch(99/162) done. Loss: 3.0592 lr:0.100000 network_time: 0.0311
|
6 |
+
[ Thu Sep 15 20:55:24 2022 ] Eval epoch: 1
|
7 |
+
[ Thu Sep 15 20:57:13 2022 ] Mean test loss of 930 batches: 4.616232872009277.
|
8 |
+
[ Thu Sep 15 20:57:14 2022 ] Top1: 9.34%
|
9 |
+
[ Thu Sep 15 20:57:14 2022 ] Top5: 28.52%
|
10 |
+
[ Thu Sep 15 20:57:14 2022 ] Training epoch: 2
|
11 |
+
[ Thu Sep 15 20:57:45 2022 ] Batch(37/162) done. Loss: 2.1872 lr:0.100000 network_time: 0.0261
|
12 |
+
[ Thu Sep 15 20:58:58 2022 ] Batch(137/162) done. Loss: 2.5467 lr:0.100000 network_time: 0.0305
|
13 |
+
[ Thu Sep 15 20:59:16 2022 ] Eval epoch: 2
|
14 |
+
[ Thu Sep 15 21:01:04 2022 ] Mean test loss of 930 batches: 4.0941853523254395.
|
15 |
+
[ Thu Sep 15 21:01:04 2022 ] Top1: 17.66%
|
16 |
+
[ Thu Sep 15 21:01:05 2022 ] Top5: 40.94%
|
17 |
+
[ Thu Sep 15 21:01:05 2022 ] Training epoch: 3
|
18 |
+
[ Thu Sep 15 21:02:04 2022 ] Batch(75/162) done. Loss: 2.1980 lr:0.100000 network_time: 0.0310
|
19 |
+
[ Thu Sep 15 21:03:07 2022 ] Eval epoch: 3
|
20 |
+
[ Thu Sep 15 21:04:56 2022 ] Mean test loss of 930 batches: 3.8105180263519287.
|
21 |
+
[ Thu Sep 15 21:04:57 2022 ] Top1: 22.06%
|
22 |
+
[ Thu Sep 15 21:04:57 2022 ] Top5: 46.13%
|
23 |
+
[ Thu Sep 15 21:04:57 2022 ] Training epoch: 4
|
24 |
+
[ Thu Sep 15 21:05:11 2022 ] Batch(13/162) done. Loss: 2.1092 lr:0.100000 network_time: 0.0317
|
25 |
+
[ Thu Sep 15 21:06:24 2022 ] Batch(113/162) done. Loss: 2.0003 lr:0.100000 network_time: 0.0312
|
26 |
+
[ Thu Sep 15 21:06:59 2022 ] Eval epoch: 4
|
27 |
+
[ Thu Sep 15 21:08:48 2022 ] Mean test loss of 930 batches: 3.274050235748291.
|
28 |
+
[ Thu Sep 15 21:08:48 2022 ] Top1: 25.47%
|
29 |
+
[ Thu Sep 15 21:08:49 2022 ] Top5: 52.02%
|
30 |
+
[ Thu Sep 15 21:08:49 2022 ] Training epoch: 5
|
31 |
+
[ Thu Sep 15 21:09:30 2022 ] Batch(51/162) done. Loss: 1.7818 lr:0.100000 network_time: 0.0321
|
32 |
+
[ Thu Sep 15 21:10:43 2022 ] Batch(151/162) done. Loss: 2.0315 lr:0.100000 network_time: 0.0261
|
33 |
+
[ Thu Sep 15 21:10:50 2022 ] Eval epoch: 5
|
34 |
+
[ Thu Sep 15 21:12:39 2022 ] Mean test loss of 930 batches: 3.1566548347473145.
|
35 |
+
[ Thu Sep 15 21:12:39 2022 ] Top1: 30.55%
|
36 |
+
[ Thu Sep 15 21:12:40 2022 ] Top5: 57.31%
|
37 |
+
[ Thu Sep 15 21:12:40 2022 ] Training epoch: 6
|
38 |
+
[ Thu Sep 15 21:13:49 2022 ] Batch(89/162) done. Loss: 1.6567 lr:0.100000 network_time: 0.0264
|
39 |
+
[ Thu Sep 15 21:14:41 2022 ] Eval epoch: 6
|
40 |
+
[ Thu Sep 15 21:16:30 2022 ] Mean test loss of 930 batches: 3.1373534202575684.
|
41 |
+
[ Thu Sep 15 21:16:30 2022 ] Top1: 30.52%
|
42 |
+
[ Thu Sep 15 21:16:31 2022 ] Top5: 59.38%
|
43 |
+
[ Thu Sep 15 21:16:31 2022 ] Training epoch: 7
|
44 |
+
[ Thu Sep 15 21:16:55 2022 ] Batch(27/162) done. Loss: 1.5083 lr:0.100000 network_time: 0.0271
|
45 |
+
[ Thu Sep 15 21:18:07 2022 ] Batch(127/162) done. Loss: 1.1499 lr:0.100000 network_time: 0.0273
|
46 |
+
[ Thu Sep 15 21:18:32 2022 ] Eval epoch: 7
|
47 |
+
[ Thu Sep 15 21:20:21 2022 ] Mean test loss of 930 batches: 2.8039331436157227.
|
48 |
+
[ Thu Sep 15 21:20:22 2022 ] Top1: 33.04%
|
49 |
+
[ Thu Sep 15 21:20:22 2022 ] Top5: 64.04%
|
50 |
+
[ Thu Sep 15 21:20:22 2022 ] Training epoch: 8
|
51 |
+
[ Thu Sep 15 21:21:13 2022 ] Batch(65/162) done. Loss: 1.4526 lr:0.100000 network_time: 0.0333
|
52 |
+
[ Thu Sep 15 21:22:23 2022 ] Eval epoch: 8
|
53 |
+
[ Thu Sep 15 21:24:13 2022 ] Mean test loss of 930 batches: 2.763702392578125.
|
54 |
+
[ Thu Sep 15 21:24:13 2022 ] Top1: 34.54%
|
55 |
+
[ Thu Sep 15 21:24:14 2022 ] Top5: 65.50%
|
56 |
+
[ Thu Sep 15 21:24:14 2022 ] Training epoch: 9
|
57 |
+
[ Thu Sep 15 21:24:20 2022 ] Batch(3/162) done. Loss: 0.9275 lr:0.100000 network_time: 0.0312
|
58 |
+
[ Thu Sep 15 21:25:33 2022 ] Batch(103/162) done. Loss: 1.3035 lr:0.100000 network_time: 0.0286
|
59 |
+
[ Thu Sep 15 21:26:15 2022 ] Eval epoch: 9
|
60 |
+
[ Thu Sep 15 21:28:04 2022 ] Mean test loss of 930 batches: 2.8759517669677734.
|
61 |
+
[ Thu Sep 15 21:28:04 2022 ] Top1: 35.49%
|
62 |
+
[ Thu Sep 15 21:28:05 2022 ] Top5: 66.09%
|
63 |
+
[ Thu Sep 15 21:28:05 2022 ] Training epoch: 10
|
64 |
+
[ Thu Sep 15 21:28:39 2022 ] Batch(41/162) done. Loss: 1.0014 lr:0.100000 network_time: 0.0270
|
65 |
+
[ Thu Sep 15 21:29:51 2022 ] Batch(141/162) done. Loss: 1.1646 lr:0.100000 network_time: 0.0262
|
66 |
+
[ Thu Sep 15 21:30:06 2022 ] Eval epoch: 10
|
67 |
+
[ Thu Sep 15 21:31:55 2022 ] Mean test loss of 930 batches: 2.6339988708496094.
|
68 |
+
[ Thu Sep 15 21:31:55 2022 ] Top1: 38.66%
|
69 |
+
[ Thu Sep 15 21:31:56 2022 ] Top5: 68.13%
|
70 |
+
[ Thu Sep 15 21:31:56 2022 ] Training epoch: 11
|
71 |
+
[ Thu Sep 15 21:32:57 2022 ] Batch(79/162) done. Loss: 1.1789 lr:0.100000 network_time: 0.0293
|
72 |
+
[ Thu Sep 15 21:33:57 2022 ] Eval epoch: 11
|
73 |
+
[ Thu Sep 15 21:35:45 2022 ] Mean test loss of 930 batches: 3.1947619915008545.
|
74 |
+
[ Thu Sep 15 21:35:45 2022 ] Top1: 34.92%
|
75 |
+
[ Thu Sep 15 21:35:46 2022 ] Top5: 66.34%
|
76 |
+
[ Thu Sep 15 21:35:46 2022 ] Training epoch: 12
|
77 |
+
[ Thu Sep 15 21:36:02 2022 ] Batch(17/162) done. Loss: 0.9280 lr:0.100000 network_time: 0.0267
|
78 |
+
[ Thu Sep 15 21:37:15 2022 ] Batch(117/162) done. Loss: 1.1294 lr:0.100000 network_time: 0.0273
|
79 |
+
[ Thu Sep 15 21:37:47 2022 ] Eval epoch: 12
|
80 |
+
[ Thu Sep 15 21:39:35 2022 ] Mean test loss of 930 batches: 2.5820627212524414.
|
81 |
+
[ Thu Sep 15 21:39:36 2022 ] Top1: 40.86%
|
82 |
+
[ Thu Sep 15 21:39:36 2022 ] Top5: 71.07%
|
83 |
+
[ Thu Sep 15 21:39:36 2022 ] Training epoch: 13
|
84 |
+
[ Thu Sep 15 21:40:20 2022 ] Batch(55/162) done. Loss: 0.7400 lr:0.100000 network_time: 0.0305
|
85 |
+
[ Thu Sep 15 21:41:33 2022 ] Batch(155/162) done. Loss: 0.9805 lr:0.100000 network_time: 0.0278
|
86 |
+
[ Thu Sep 15 21:41:38 2022 ] Eval epoch: 13
|
87 |
+
[ Thu Sep 15 21:43:27 2022 ] Mean test loss of 930 batches: 2.6807053089141846.
|
88 |
+
[ Thu Sep 15 21:43:27 2022 ] Top1: 38.93%
|
89 |
+
[ Thu Sep 15 21:43:28 2022 ] Top5: 71.42%
|
90 |
+
[ Thu Sep 15 21:43:28 2022 ] Training epoch: 14
|
91 |
+
[ Thu Sep 15 21:44:40 2022 ] Batch(93/162) done. Loss: 1.1675 lr:0.100000 network_time: 0.0270
|
92 |
+
[ Thu Sep 15 21:45:29 2022 ] Eval epoch: 14
|
93 |
+
[ Thu Sep 15 21:47:19 2022 ] Mean test loss of 930 batches: 2.6006383895874023.
|
94 |
+
[ Thu Sep 15 21:47:19 2022 ] Top1: 41.03%
|
95 |
+
[ Thu Sep 15 21:47:20 2022 ] Top5: 71.68%
|
96 |
+
[ Thu Sep 15 21:47:20 2022 ] Training epoch: 15
|
97 |
+
[ Thu Sep 15 21:47:47 2022 ] Batch(31/162) done. Loss: 0.9053 lr:0.100000 network_time: 0.0286
|
98 |
+
[ Thu Sep 15 21:48:59 2022 ] Batch(131/162) done. Loss: 0.7565 lr:0.100000 network_time: 0.0318
|
99 |
+
[ Thu Sep 15 21:49:22 2022 ] Eval epoch: 15
|
100 |
+
[ Thu Sep 15 21:51:11 2022 ] Mean test loss of 930 batches: 2.5753092765808105.
|
101 |
+
[ Thu Sep 15 21:51:11 2022 ] Top1: 41.86%
|
102 |
+
[ Thu Sep 15 21:51:12 2022 ] Top5: 71.00%
|
103 |
+
[ Thu Sep 15 21:51:12 2022 ] Training epoch: 16
|
104 |
+
[ Thu Sep 15 21:52:06 2022 ] Batch(69/162) done. Loss: 0.9629 lr:0.100000 network_time: 0.0280
|
105 |
+
[ Thu Sep 15 21:53:13 2022 ] Eval epoch: 16
|
106 |
+
[ Thu Sep 15 21:55:02 2022 ] Mean test loss of 930 batches: 2.642726182937622.
|
107 |
+
[ Thu Sep 15 21:55:02 2022 ] Top1: 42.77%
|
108 |
+
[ Thu Sep 15 21:55:03 2022 ] Top5: 73.14%
|
109 |
+
[ Thu Sep 15 21:55:03 2022 ] Training epoch: 17
|
110 |
+
[ Thu Sep 15 21:55:12 2022 ] Batch(7/162) done. Loss: 0.7531 lr:0.100000 network_time: 0.0267
|
111 |
+
[ Thu Sep 15 21:56:25 2022 ] Batch(107/162) done. Loss: 0.9298 lr:0.100000 network_time: 0.0305
|
112 |
+
[ Thu Sep 15 21:57:04 2022 ] Eval epoch: 17
|
113 |
+
[ Thu Sep 15 21:58:52 2022 ] Mean test loss of 930 batches: 2.701462984085083.
|
114 |
+
[ Thu Sep 15 21:58:53 2022 ] Top1: 41.56%
|
115 |
+
[ Thu Sep 15 21:58:53 2022 ] Top5: 72.56%
|
116 |
+
[ Thu Sep 15 21:58:54 2022 ] Training epoch: 18
|
117 |
+
[ Thu Sep 15 21:59:30 2022 ] Batch(45/162) done. Loss: 0.9319 lr:0.100000 network_time: 0.0270
|
118 |
+
[ Thu Sep 15 22:00:43 2022 ] Batch(145/162) done. Loss: 0.5295 lr:0.100000 network_time: 0.0275
|
119 |
+
[ Thu Sep 15 22:00:55 2022 ] Eval epoch: 18
|
120 |
+
[ Thu Sep 15 22:02:43 2022 ] Mean test loss of 930 batches: 2.777517080307007.
|
121 |
+
[ Thu Sep 15 22:02:43 2022 ] Top1: 42.65%
|
122 |
+
[ Thu Sep 15 22:02:43 2022 ] Top5: 73.63%
|
123 |
+
[ Thu Sep 15 22:02:44 2022 ] Training epoch: 19
|
124 |
+
[ Thu Sep 15 22:03:48 2022 ] Batch(83/162) done. Loss: 0.5384 lr:0.100000 network_time: 0.0337
|
125 |
+
[ Thu Sep 15 22:04:45 2022 ] Eval epoch: 19
|
126 |
+
[ Thu Sep 15 22:06:33 2022 ] Mean test loss of 930 batches: 2.634265422821045.
|
127 |
+
[ Thu Sep 15 22:06:34 2022 ] Top1: 43.27%
|
128 |
+
[ Thu Sep 15 22:06:34 2022 ] Top5: 73.45%
|
129 |
+
[ Thu Sep 15 22:06:34 2022 ] Training epoch: 20
|
130 |
+
[ Thu Sep 15 22:06:54 2022 ] Batch(21/162) done. Loss: 0.9205 lr:0.100000 network_time: 0.0314
|
131 |
+
[ Thu Sep 15 22:08:07 2022 ] Batch(121/162) done. Loss: 0.5672 lr:0.100000 network_time: 0.0334
|
132 |
+
[ Thu Sep 15 22:08:36 2022 ] Eval epoch: 20
|
133 |
+
[ Thu Sep 15 22:10:24 2022 ] Mean test loss of 930 batches: 2.6961050033569336.
|
134 |
+
[ Thu Sep 15 22:10:24 2022 ] Top1: 42.92%
|
135 |
+
[ Thu Sep 15 22:10:25 2022 ] Top5: 73.06%
|
136 |
+
[ Thu Sep 15 22:10:25 2022 ] Training epoch: 21
|
137 |
+
[ Thu Sep 15 22:11:12 2022 ] Batch(59/162) done. Loss: 0.4838 lr:0.100000 network_time: 0.0336
|
138 |
+
[ Thu Sep 15 22:12:25 2022 ] Batch(159/162) done. Loss: 0.8854 lr:0.100000 network_time: 0.0309
|
139 |
+
[ Thu Sep 15 22:12:27 2022 ] Eval epoch: 21
|
140 |
+
[ Thu Sep 15 22:14:15 2022 ] Mean test loss of 930 batches: 2.5363717079162598.
|
141 |
+
[ Thu Sep 15 22:14:16 2022 ] Top1: 43.11%
|
142 |
+
[ Thu Sep 15 22:14:16 2022 ] Top5: 73.08%
|
143 |
+
[ Thu Sep 15 22:14:16 2022 ] Training epoch: 22
|
144 |
+
[ Thu Sep 15 22:15:31 2022 ] Batch(97/162) done. Loss: 0.6675 lr:0.100000 network_time: 0.0303
|
145 |
+
[ Thu Sep 15 22:16:18 2022 ] Eval epoch: 22
|
146 |
+
[ Thu Sep 15 22:18:07 2022 ] Mean test loss of 930 batches: 2.5331027507781982.
|
147 |
+
[ Thu Sep 15 22:18:07 2022 ] Top1: 45.46%
|
148 |
+
[ Thu Sep 15 22:18:07 2022 ] Top5: 73.80%
|
149 |
+
[ Thu Sep 15 22:18:08 2022 ] Training epoch: 23
|
150 |
+
[ Thu Sep 15 22:18:37 2022 ] Batch(35/162) done. Loss: 0.6239 lr:0.100000 network_time: 0.0270
|
151 |
+
[ Thu Sep 15 22:19:49 2022 ] Batch(135/162) done. Loss: 0.4228 lr:0.100000 network_time: 0.0261
|
152 |
+
[ Thu Sep 15 22:20:08 2022 ] Eval epoch: 23
|
153 |
+
[ Thu Sep 15 22:21:56 2022 ] Mean test loss of 930 batches: 2.4731662273406982.
|
154 |
+
[ Thu Sep 15 22:21:57 2022 ] Top1: 44.55%
|
155 |
+
[ Thu Sep 15 22:21:57 2022 ] Top5: 74.01%
|
156 |
+
[ Thu Sep 15 22:21:58 2022 ] Training epoch: 24
|
157 |
+
[ Thu Sep 15 22:22:55 2022 ] Batch(73/162) done. Loss: 0.4733 lr:0.100000 network_time: 0.0276
|
158 |
+
[ Thu Sep 15 22:23:59 2022 ] Eval epoch: 24
|
159 |
+
[ Thu Sep 15 22:25:47 2022 ] Mean test loss of 930 batches: 2.79464054107666.
|
160 |
+
[ Thu Sep 15 22:25:47 2022 ] Top1: 44.01%
|
161 |
+
[ Thu Sep 15 22:25:48 2022 ] Top5: 73.97%
|
162 |
+
[ Thu Sep 15 22:25:48 2022 ] Training epoch: 25
|
163 |
+
[ Thu Sep 15 22:26:00 2022 ] Batch(11/162) done. Loss: 0.4082 lr:0.100000 network_time: 0.0352
|
164 |
+
[ Thu Sep 15 22:27:13 2022 ] Batch(111/162) done. Loss: 0.5356 lr:0.100000 network_time: 0.0281
|
165 |
+
[ Thu Sep 15 22:27:49 2022 ] Eval epoch: 25
|
166 |
+
[ Thu Sep 15 22:29:37 2022 ] Mean test loss of 930 batches: 2.302302598953247.
|
167 |
+
[ Thu Sep 15 22:29:38 2022 ] Top1: 46.27%
|
168 |
+
[ Thu Sep 15 22:29:38 2022 ] Top5: 76.14%
|
169 |
+
[ Thu Sep 15 22:29:38 2022 ] Training epoch: 26
|
170 |
+
[ Thu Sep 15 22:30:18 2022 ] Batch(49/162) done. Loss: 0.4845 lr:0.100000 network_time: 0.0290
|
171 |
+
[ Thu Sep 15 22:31:30 2022 ] Batch(149/162) done. Loss: 0.7163 lr:0.100000 network_time: 0.0271
|
172 |
+
[ Thu Sep 15 22:31:39 2022 ] Eval epoch: 26
|
173 |
+
[ Thu Sep 15 22:33:27 2022 ] Mean test loss of 930 batches: 2.5283055305480957.
|
174 |
+
[ Thu Sep 15 22:33:28 2022 ] Top1: 47.49%
|
175 |
+
[ Thu Sep 15 22:33:28 2022 ] Top5: 77.84%
|
176 |
+
[ Thu Sep 15 22:33:28 2022 ] Training epoch: 27
|
177 |
+
[ Thu Sep 15 22:34:36 2022 ] Batch(87/162) done. Loss: 0.5433 lr:0.100000 network_time: 0.0330
|
178 |
+
[ Thu Sep 15 22:35:30 2022 ] Eval epoch: 27
|
179 |
+
[ Thu Sep 15 22:37:18 2022 ] Mean test loss of 930 batches: 2.756495714187622.
|
180 |
+
[ Thu Sep 15 22:37:18 2022 ] Top1: 43.80%
|
181 |
+
[ Thu Sep 15 22:37:19 2022 ] Top5: 73.11%
|
182 |
+
[ Thu Sep 15 22:37:19 2022 ] Training epoch: 28
|
183 |
+
[ Thu Sep 15 22:37:41 2022 ] Batch(25/162) done. Loss: 0.3972 lr:0.100000 network_time: 0.0268
|
184 |
+
[ Thu Sep 15 22:38:54 2022 ] Batch(125/162) done. Loss: 0.6571 lr:0.100000 network_time: 0.0271
|
185 |
+
[ Thu Sep 15 22:39:20 2022 ] Eval epoch: 28
|
186 |
+
[ Thu Sep 15 22:41:08 2022 ] Mean test loss of 930 batches: 2.6355648040771484.
|
187 |
+
[ Thu Sep 15 22:41:08 2022 ] Top1: 46.46%
|
188 |
+
[ Thu Sep 15 22:41:09 2022 ] Top5: 75.25%
|
189 |
+
[ Thu Sep 15 22:41:09 2022 ] Training epoch: 29
|
190 |
+
[ Thu Sep 15 22:41:59 2022 ] Batch(63/162) done. Loss: 0.4874 lr:0.100000 network_time: 0.0272
|
191 |
+
[ Thu Sep 15 22:43:10 2022 ] Eval epoch: 29
|
192 |
+
[ Thu Sep 15 22:44:58 2022 ] Mean test loss of 930 batches: 2.8874144554138184.
|
193 |
+
[ Thu Sep 15 22:44:58 2022 ] Top1: 44.57%
|
194 |
+
[ Thu Sep 15 22:44:59 2022 ] Top5: 74.14%
|
195 |
+
[ Thu Sep 15 22:44:59 2022 ] Training epoch: 30
|
196 |
+
[ Thu Sep 15 22:45:03 2022 ] Batch(1/162) done. Loss: 0.3427 lr:0.100000 network_time: 0.0323
|
197 |
+
[ Thu Sep 15 22:46:16 2022 ] Batch(101/162) done. Loss: 0.4298 lr:0.100000 network_time: 0.0261
|
198 |
+
[ Thu Sep 15 22:47:00 2022 ] Eval epoch: 30
|
199 |
+
[ Thu Sep 15 22:48:48 2022 ] Mean test loss of 930 batches: 2.7167603969573975.
|
200 |
+
[ Thu Sep 15 22:48:48 2022 ] Top1: 45.86%
|
201 |
+
[ Thu Sep 15 22:48:48 2022 ] Top5: 74.97%
|
202 |
+
[ Thu Sep 15 22:48:49 2022 ] Training epoch: 31
|
203 |
+
[ Thu Sep 15 22:49:21 2022 ] Batch(39/162) done. Loss: 0.3104 lr:0.100000 network_time: 0.0259
|
204 |
+
[ Thu Sep 15 22:50:34 2022 ] Batch(139/162) done. Loss: 0.5252 lr:0.100000 network_time: 0.0329
|
205 |
+
[ Thu Sep 15 22:50:50 2022 ] Eval epoch: 31
|
206 |
+
[ Thu Sep 15 22:52:38 2022 ] Mean test loss of 930 batches: 2.8605589866638184.
|
207 |
+
[ Thu Sep 15 22:52:39 2022 ] Top1: 44.77%
|
208 |
+
[ Thu Sep 15 22:52:39 2022 ] Top5: 73.49%
|
209 |
+
[ Thu Sep 15 22:52:39 2022 ] Training epoch: 32
|
210 |
+
[ Thu Sep 15 22:53:39 2022 ] Batch(77/162) done. Loss: 0.3644 lr:0.100000 network_time: 0.0301
|
211 |
+
[ Thu Sep 15 22:54:40 2022 ] Eval epoch: 32
|
212 |
+
[ Thu Sep 15 22:56:28 2022 ] Mean test loss of 930 batches: 2.744288682937622.
|
213 |
+
[ Thu Sep 15 22:56:29 2022 ] Top1: 45.83%
|
214 |
+
[ Thu Sep 15 22:56:29 2022 ] Top5: 74.21%
|
215 |
+
[ Thu Sep 15 22:56:29 2022 ] Training epoch: 33
|
216 |
+
[ Thu Sep 15 22:56:44 2022 ] Batch(15/162) done. Loss: 0.2899 lr:0.100000 network_time: 0.0267
|
217 |
+
[ Thu Sep 15 22:57:57 2022 ] Batch(115/162) done. Loss: 0.9063 lr:0.100000 network_time: 0.0266
|
218 |
+
[ Thu Sep 15 22:58:30 2022 ] Eval epoch: 33
|
219 |
+
[ Thu Sep 15 23:00:19 2022 ] Mean test loss of 930 batches: 2.8654515743255615.
|
220 |
+
[ Thu Sep 15 23:00:19 2022 ] Top1: 46.32%
|
221 |
+
[ Thu Sep 15 23:00:20 2022 ] Top5: 75.20%
|
222 |
+
[ Thu Sep 15 23:00:20 2022 ] Training epoch: 34
|
223 |
+
[ Thu Sep 15 23:01:02 2022 ] Batch(53/162) done. Loss: 0.5861 lr:0.100000 network_time: 0.0301
|
224 |
+
[ Thu Sep 15 23:02:15 2022 ] Batch(153/162) done. Loss: 0.5252 lr:0.100000 network_time: 0.0274
|
225 |
+
[ Thu Sep 15 23:02:21 2022 ] Eval epoch: 34
|
226 |
+
[ Thu Sep 15 23:04:10 2022 ] Mean test loss of 930 batches: 2.6413774490356445.
|
227 |
+
[ Thu Sep 15 23:04:10 2022 ] Top1: 48.05%
|
228 |
+
[ Thu Sep 15 23:04:10 2022 ] Top5: 76.22%
|
229 |
+
[ Thu Sep 15 23:04:11 2022 ] Training epoch: 35
|
230 |
+
[ Thu Sep 15 23:05:20 2022 ] Batch(91/162) done. Loss: 0.7987 lr:0.100000 network_time: 0.0278
|
231 |
+
[ Thu Sep 15 23:06:11 2022 ] Eval epoch: 35
|
232 |
+
[ Thu Sep 15 23:07:59 2022 ] Mean test loss of 930 batches: 3.157620906829834.
|
233 |
+
[ Thu Sep 15 23:08:00 2022 ] Top1: 44.87%
|
234 |
+
[ Thu Sep 15 23:08:00 2022 ] Top5: 74.35%
|
235 |
+
[ Thu Sep 15 23:08:01 2022 ] Training epoch: 36
|
236 |
+
[ Thu Sep 15 23:08:25 2022 ] Batch(29/162) done. Loss: 0.3202 lr:0.100000 network_time: 0.0271
|
237 |
+
[ Thu Sep 15 23:09:38 2022 ] Batch(129/162) done. Loss: 0.3796 lr:0.100000 network_time: 0.0313
|
238 |
+
[ Thu Sep 15 23:10:01 2022 ] Eval epoch: 36
|
239 |
+
[ Thu Sep 15 23:11:49 2022 ] Mean test loss of 930 batches: 2.9143733978271484.
|
240 |
+
[ Thu Sep 15 23:11:50 2022 ] Top1: 46.78%
|
241 |
+
[ Thu Sep 15 23:11:50 2022 ] Top5: 75.46%
|
242 |
+
[ Thu Sep 15 23:11:50 2022 ] Training epoch: 37
|
243 |
+
[ Thu Sep 15 23:12:43 2022 ] Batch(67/162) done. Loss: 0.3318 lr:0.100000 network_time: 0.0267
|
244 |
+
[ Thu Sep 15 23:13:52 2022 ] Eval epoch: 37
|
245 |
+
[ Thu Sep 15 23:15:40 2022 ] Mean test loss of 930 batches: 2.5134196281433105.
|
246 |
+
[ Thu Sep 15 23:15:40 2022 ] Top1: 47.01%
|
247 |
+
[ Thu Sep 15 23:15:40 2022 ] Top5: 75.64%
|
248 |
+
[ Thu Sep 15 23:15:41 2022 ] Training epoch: 38
|
249 |
+
[ Thu Sep 15 23:15:48 2022 ] Batch(5/162) done. Loss: 0.4636 lr:0.100000 network_time: 0.0310
|
250 |
+
[ Thu Sep 15 23:17:01 2022 ] Batch(105/162) done. Loss: 0.2994 lr:0.100000 network_time: 0.0606
|
251 |
+
[ Thu Sep 15 23:17:42 2022 ] Eval epoch: 38
|
252 |
+
[ Thu Sep 15 23:19:30 2022 ] Mean test loss of 930 batches: 2.8436739444732666.
|
253 |
+
[ Thu Sep 15 23:19:30 2022 ] Top1: 46.69%
|
254 |
+
[ Thu Sep 15 23:19:31 2022 ] Top5: 75.47%
|
255 |
+
[ Thu Sep 15 23:19:31 2022 ] Training epoch: 39
|
256 |
+
[ Thu Sep 15 23:20:06 2022 ] Batch(43/162) done. Loss: 0.1927 lr:0.100000 network_time: 0.0289
|
257 |
+
[ Thu Sep 15 23:21:19 2022 ] Batch(143/162) done. Loss: 0.4042 lr:0.100000 network_time: 0.0264
|
258 |
+
[ Thu Sep 15 23:21:32 2022 ] Eval epoch: 39
|
259 |
+
[ Thu Sep 15 23:23:20 2022 ] Mean test loss of 930 batches: 2.809511423110962.
|
260 |
+
[ Thu Sep 15 23:23:20 2022 ] Top1: 45.66%
|
261 |
+
[ Thu Sep 15 23:23:21 2022 ] Top5: 74.96%
|
262 |
+
[ Thu Sep 15 23:23:21 2022 ] Training epoch: 40
|
263 |
+
[ Thu Sep 15 23:24:24 2022 ] Batch(81/162) done. Loss: 0.3760 lr:0.100000 network_time: 0.0407
|
264 |
+
[ Thu Sep 15 23:25:22 2022 ] Eval epoch: 40
|
265 |
+
[ Thu Sep 15 23:27:11 2022 ] Mean test loss of 930 batches: 2.7429559230804443.
|
266 |
+
[ Thu Sep 15 23:27:11 2022 ] Top1: 45.55%
|
267 |
+
[ Thu Sep 15 23:27:12 2022 ] Top5: 74.78%
|
268 |
+
[ Thu Sep 15 23:27:12 2022 ] Training epoch: 41
|
269 |
+
[ Thu Sep 15 23:27:30 2022 ] Batch(19/162) done. Loss: 0.5173 lr:0.100000 network_time: 0.0312
|
270 |
+
[ Thu Sep 15 23:28:43 2022 ] Batch(119/162) done. Loss: 0.6124 lr:0.100000 network_time: 0.0272
|
271 |
+
[ Thu Sep 15 23:29:13 2022 ] Eval epoch: 41
|
272 |
+
[ Thu Sep 15 23:31:01 2022 ] Mean test loss of 930 batches: 2.9963934421539307.
|
273 |
+
[ Thu Sep 15 23:31:01 2022 ] Top1: 45.14%
|
274 |
+
[ Thu Sep 15 23:31:02 2022 ] Top5: 74.59%
|
275 |
+
[ Thu Sep 15 23:31:02 2022 ] Training epoch: 42
|
276 |
+
[ Thu Sep 15 23:31:47 2022 ] Batch(57/162) done. Loss: 0.4068 lr:0.100000 network_time: 0.0283
|
277 |
+
[ Thu Sep 15 23:33:00 2022 ] Batch(157/162) done. Loss: 0.3797 lr:0.100000 network_time: 0.0312
|
278 |
+
[ Thu Sep 15 23:33:03 2022 ] Eval epoch: 42
|
279 |
+
[ Thu Sep 15 23:34:51 2022 ] Mean test loss of 930 batches: 2.8139801025390625.
|
280 |
+
[ Thu Sep 15 23:34:52 2022 ] Top1: 46.93%
|
281 |
+
[ Thu Sep 15 23:34:52 2022 ] Top5: 75.50%
|
282 |
+
[ Thu Sep 15 23:34:52 2022 ] Training epoch: 43
|
283 |
+
[ Thu Sep 15 23:36:05 2022 ] Batch(95/162) done. Loss: 0.3201 lr:0.100000 network_time: 0.0307
|
284 |
+
[ Thu Sep 15 23:36:53 2022 ] Eval epoch: 43
|
285 |
+
[ Thu Sep 15 23:38:42 2022 ] Mean test loss of 930 batches: 3.052001953125.
|
286 |
+
[ Thu Sep 15 23:38:42 2022 ] Top1: 42.91%
|
287 |
+
[ Thu Sep 15 23:38:43 2022 ] Top5: 74.33%
|
288 |
+
[ Thu Sep 15 23:38:43 2022 ] Training epoch: 44
|
289 |
+
[ Thu Sep 15 23:39:11 2022 ] Batch(33/162) done. Loss: 0.1518 lr:0.100000 network_time: 0.0299
|
290 |
+
[ Thu Sep 15 23:40:24 2022 ] Batch(133/162) done. Loss: 0.3774 lr:0.100000 network_time: 0.0262
|
291 |
+
[ Thu Sep 15 23:40:44 2022 ] Eval epoch: 44
|
292 |
+
[ Thu Sep 15 23:42:33 2022 ] Mean test loss of 930 batches: 2.9345126152038574.
|
293 |
+
[ Thu Sep 15 23:42:33 2022 ] Top1: 47.30%
|
294 |
+
[ Thu Sep 15 23:42:34 2022 ] Top5: 75.75%
|
295 |
+
[ Thu Sep 15 23:42:34 2022 ] Training epoch: 45
|
296 |
+
[ Thu Sep 15 23:43:29 2022 ] Batch(71/162) done. Loss: 0.4863 lr:0.100000 network_time: 0.0283
|
297 |
+
[ Thu Sep 15 23:44:35 2022 ] Eval epoch: 45
|
298 |
+
[ Thu Sep 15 23:46:23 2022 ] Mean test loss of 930 batches: 2.7627146244049072.
|
299 |
+
[ Thu Sep 15 23:46:24 2022 ] Top1: 47.54%
|
300 |
+
[ Thu Sep 15 23:46:24 2022 ] Top5: 76.17%
|
301 |
+
[ Thu Sep 15 23:46:24 2022 ] Training epoch: 46
|
302 |
+
[ Thu Sep 15 23:46:34 2022 ] Batch(9/162) done. Loss: 0.2246 lr:0.100000 network_time: 0.0265
|
303 |
+
[ Thu Sep 15 23:47:47 2022 ] Batch(109/162) done. Loss: 0.5166 lr:0.100000 network_time: 0.0274
|
304 |
+
[ Thu Sep 15 23:48:25 2022 ] Eval epoch: 46
|
305 |
+
[ Thu Sep 15 23:50:13 2022 ] Mean test loss of 930 batches: 2.7105462551116943.
|
306 |
+
[ Thu Sep 15 23:50:14 2022 ] Top1: 47.83%
|
307 |
+
[ Thu Sep 15 23:50:14 2022 ] Top5: 77.36%
|
308 |
+
[ Thu Sep 15 23:50:15 2022 ] Training epoch: 47
|
309 |
+
[ Thu Sep 15 23:50:52 2022 ] Batch(47/162) done. Loss: 0.2201 lr:0.100000 network_time: 0.0276
|
310 |
+
[ Thu Sep 15 23:52:05 2022 ] Batch(147/162) done. Loss: 0.3085 lr:0.100000 network_time: 0.0307
|
311 |
+
[ Thu Sep 15 23:52:16 2022 ] Eval epoch: 47
|
312 |
+
[ Thu Sep 15 23:54:04 2022 ] Mean test loss of 930 batches: 2.8468735218048096.
|
313 |
+
[ Thu Sep 15 23:54:04 2022 ] Top1: 46.37%
|
314 |
+
[ Thu Sep 15 23:54:05 2022 ] Top5: 75.79%
|
315 |
+
[ Thu Sep 15 23:54:05 2022 ] Training epoch: 48
|
316 |
+
[ Thu Sep 15 23:55:11 2022 ] Batch(85/162) done. Loss: 0.4530 lr:0.100000 network_time: 0.0276
|
317 |
+
[ Thu Sep 15 23:56:06 2022 ] Eval epoch: 48
|
318 |
+
[ Thu Sep 15 23:57:54 2022 ] Mean test loss of 930 batches: 2.7094438076019287.
|
319 |
+
[ Thu Sep 15 23:57:55 2022 ] Top1: 47.79%
|
320 |
+
[ Thu Sep 15 23:57:55 2022 ] Top5: 76.91%
|
321 |
+
[ Thu Sep 15 23:57:55 2022 ] Training epoch: 49
|
322 |
+
[ Thu Sep 15 23:58:16 2022 ] Batch(23/162) done. Loss: 0.3716 lr:0.100000 network_time: 0.0382
|
323 |
+
[ Thu Sep 15 23:59:29 2022 ] Batch(123/162) done. Loss: 0.2848 lr:0.100000 network_time: 0.0328
|
324 |
+
[ Thu Sep 15 23:59:57 2022 ] Eval epoch: 49
|
325 |
+
[ Fri Sep 16 00:01:45 2022 ] Mean test loss of 930 batches: 3.2839035987854004.
|
326 |
+
[ Fri Sep 16 00:01:45 2022 ] Top1: 44.72%
|
327 |
+
[ Fri Sep 16 00:01:46 2022 ] Top5: 72.77%
|
328 |
+
[ Fri Sep 16 00:01:46 2022 ] Training epoch: 50
|
329 |
+
[ Fri Sep 16 00:02:34 2022 ] Batch(61/162) done. Loss: 0.3227 lr:0.100000 network_time: 0.0309
|
330 |
+
[ Fri Sep 16 00:03:47 2022 ] Batch(161/162) done. Loss: 0.3406 lr:0.100000 network_time: 0.0273
|
331 |
+
[ Fri Sep 16 00:03:47 2022 ] Eval epoch: 50
|
332 |
+
[ Fri Sep 16 00:05:35 2022 ] Mean test loss of 930 batches: 2.811931848526001.
|
333 |
+
[ Fri Sep 16 00:05:35 2022 ] Top1: 48.72%
|
334 |
+
[ Fri Sep 16 00:05:36 2022 ] Top5: 77.38%
|
335 |
+
[ Fri Sep 16 00:05:36 2022 ] Training epoch: 51
|
336 |
+
[ Fri Sep 16 00:06:52 2022 ] Batch(99/162) done. Loss: 0.3076 lr:0.100000 network_time: 0.0271
|
337 |
+
[ Fri Sep 16 00:07:37 2022 ] Eval epoch: 51
|
338 |
+
[ Fri Sep 16 00:09:26 2022 ] Mean test loss of 930 batches: 3.179542064666748.
|
339 |
+
[ Fri Sep 16 00:09:26 2022 ] Top1: 45.92%
|
340 |
+
[ Fri Sep 16 00:09:27 2022 ] Top5: 74.47%
|
341 |
+
[ Fri Sep 16 00:09:27 2022 ] Training epoch: 52
|
342 |
+
[ Fri Sep 16 00:09:57 2022 ] Batch(37/162) done. Loss: 0.1807 lr:0.100000 network_time: 0.0298
|
343 |
+
[ Fri Sep 16 00:11:10 2022 ] Batch(137/162) done. Loss: 0.4173 lr:0.100000 network_time: 0.0274
|
344 |
+
[ Fri Sep 16 00:11:28 2022 ] Eval epoch: 52
|
345 |
+
[ Fri Sep 16 00:13:16 2022 ] Mean test loss of 930 batches: 2.9092044830322266.
|
346 |
+
[ Fri Sep 16 00:13:16 2022 ] Top1: 45.58%
|
347 |
+
[ Fri Sep 16 00:13:17 2022 ] Top5: 74.35%
|
348 |
+
[ Fri Sep 16 00:13:17 2022 ] Training epoch: 53
|
349 |
+
[ Fri Sep 16 00:14:15 2022 ] Batch(75/162) done. Loss: 0.3810 lr:0.100000 network_time: 0.0316
|
350 |
+
[ Fri Sep 16 00:15:18 2022 ] Eval epoch: 53
|
351 |
+
[ Fri Sep 16 00:17:06 2022 ] Mean test loss of 930 batches: 3.3449065685272217.
|
352 |
+
[ Fri Sep 16 00:17:06 2022 ] Top1: 44.76%
|
353 |
+
[ Fri Sep 16 00:17:07 2022 ] Top5: 74.22%
|
354 |
+
[ Fri Sep 16 00:17:07 2022 ] Training epoch: 54
|
355 |
+
[ Fri Sep 16 00:17:20 2022 ] Batch(13/162) done. Loss: 0.0814 lr:0.100000 network_time: 0.0300
|
356 |
+
[ Fri Sep 16 00:18:33 2022 ] Batch(113/162) done. Loss: 0.2477 lr:0.100000 network_time: 0.0257
|
357 |
+
[ Fri Sep 16 00:19:08 2022 ] Eval epoch: 54
|
358 |
+
[ Fri Sep 16 00:20:56 2022 ] Mean test loss of 930 batches: 2.650818109512329.
|
359 |
+
[ Fri Sep 16 00:20:56 2022 ] Top1: 47.98%
|
360 |
+
[ Fri Sep 16 00:20:57 2022 ] Top5: 77.17%
|
361 |
+
[ Fri Sep 16 00:20:57 2022 ] Training epoch: 55
|
362 |
+
[ Fri Sep 16 00:21:38 2022 ] Batch(51/162) done. Loss: 0.1965 lr:0.100000 network_time: 0.0275
|
363 |
+
[ Fri Sep 16 00:22:51 2022 ] Batch(151/162) done. Loss: 0.2623 lr:0.100000 network_time: 0.0273
|
364 |
+
[ Fri Sep 16 00:22:58 2022 ] Eval epoch: 55
|
365 |
+
[ Fri Sep 16 00:24:46 2022 ] Mean test loss of 930 batches: 2.9719905853271484.
|
366 |
+
[ Fri Sep 16 00:24:47 2022 ] Top1: 47.19%
|
367 |
+
[ Fri Sep 16 00:24:47 2022 ] Top5: 75.58%
|
368 |
+
[ Fri Sep 16 00:24:47 2022 ] Training epoch: 56
|
369 |
+
[ Fri Sep 16 00:25:56 2022 ] Batch(89/162) done. Loss: 0.1470 lr:0.100000 network_time: 0.0261
|
370 |
+
[ Fri Sep 16 00:26:48 2022 ] Eval epoch: 56
|
371 |
+
[ Fri Sep 16 00:28:37 2022 ] Mean test loss of 930 batches: 2.853518009185791.
|
372 |
+
[ Fri Sep 16 00:28:37 2022 ] Top1: 46.27%
|
373 |
+
[ Fri Sep 16 00:28:38 2022 ] Top5: 76.19%
|
374 |
+
[ Fri Sep 16 00:28:38 2022 ] Training epoch: 57
|
375 |
+
[ Fri Sep 16 00:29:01 2022 ] Batch(27/162) done. Loss: 0.1605 lr:0.100000 network_time: 0.0288
|
376 |
+
[ Fri Sep 16 00:30:14 2022 ] Batch(127/162) done. Loss: 0.2337 lr:0.100000 network_time: 0.0265
|
377 |
+
[ Fri Sep 16 00:30:39 2022 ] Eval epoch: 57
|
378 |
+
[ Fri Sep 16 00:32:27 2022 ] Mean test loss of 930 batches: 2.9228341579437256.
|
379 |
+
[ Fri Sep 16 00:32:27 2022 ] Top1: 45.10%
|
380 |
+
[ Fri Sep 16 00:32:28 2022 ] Top5: 75.00%
|
381 |
+
[ Fri Sep 16 00:32:28 2022 ] Training epoch: 58
|
382 |
+
[ Fri Sep 16 00:33:19 2022 ] Batch(65/162) done. Loss: 0.1659 lr:0.100000 network_time: 0.0264
|
383 |
+
[ Fri Sep 16 00:34:29 2022 ] Eval epoch: 58
|
384 |
+
[ Fri Sep 16 00:36:17 2022 ] Mean test loss of 930 batches: 3.072599172592163.
|
385 |
+
[ Fri Sep 16 00:36:17 2022 ] Top1: 46.37%
|
386 |
+
[ Fri Sep 16 00:36:18 2022 ] Top5: 74.37%
|
387 |
+
[ Fri Sep 16 00:36:18 2022 ] Training epoch: 59
|
388 |
+
[ Fri Sep 16 00:36:23 2022 ] Batch(3/162) done. Loss: 0.1019 lr:0.100000 network_time: 0.0279
|
389 |
+
[ Fri Sep 16 00:37:36 2022 ] Batch(103/162) done. Loss: 0.2214 lr:0.100000 network_time: 0.0281
|
390 |
+
[ Fri Sep 16 00:38:19 2022 ] Eval epoch: 59
|
391 |
+
[ Fri Sep 16 00:40:07 2022 ] Mean test loss of 930 batches: 2.779177188873291.
|
392 |
+
[ Fri Sep 16 00:40:07 2022 ] Top1: 46.86%
|
393 |
+
[ Fri Sep 16 00:40:08 2022 ] Top5: 75.80%
|
394 |
+
[ Fri Sep 16 00:40:08 2022 ] Training epoch: 60
|
395 |
+
[ Fri Sep 16 00:40:41 2022 ] Batch(41/162) done. Loss: 0.2597 lr:0.100000 network_time: 0.0280
|
396 |
+
[ Fri Sep 16 00:41:54 2022 ] Batch(141/162) done. Loss: 0.1924 lr:0.100000 network_time: 0.0312
|
397 |
+
[ Fri Sep 16 00:42:09 2022 ] Eval epoch: 60
|
398 |
+
[ Fri Sep 16 00:43:57 2022 ] Mean test loss of 930 batches: 2.9837682247161865.
|
399 |
+
[ Fri Sep 16 00:43:58 2022 ] Top1: 47.59%
|
400 |
+
[ Fri Sep 16 00:43:58 2022 ] Top5: 76.13%
|
401 |
+
[ Fri Sep 16 00:43:58 2022 ] Training epoch: 61
|
402 |
+
[ Fri Sep 16 00:44:59 2022 ] Batch(79/162) done. Loss: 0.1124 lr:0.010000 network_time: 0.0279
|
403 |
+
[ Fri Sep 16 00:45:59 2022 ] Eval epoch: 61
|
404 |
+
[ Fri Sep 16 00:47:48 2022 ] Mean test loss of 930 batches: 2.455381155014038.
|
405 |
+
[ Fri Sep 16 00:47:48 2022 ] Top1: 53.95%
|
406 |
+
[ Fri Sep 16 00:47:49 2022 ] Top5: 80.31%
|
407 |
+
[ Fri Sep 16 00:47:49 2022 ] Training epoch: 62
|
408 |
+
[ Fri Sep 16 00:48:05 2022 ] Batch(17/162) done. Loss: 0.0396 lr:0.010000 network_time: 0.0237
|
409 |
+
[ Fri Sep 16 00:49:18 2022 ] Batch(117/162) done. Loss: 0.0511 lr:0.010000 network_time: 0.0274
|
410 |
+
[ Fri Sep 16 00:49:50 2022 ] Eval epoch: 62
|
411 |
+
[ Fri Sep 16 00:51:39 2022 ] Mean test loss of 930 batches: 2.414081335067749.
|
412 |
+
[ Fri Sep 16 00:51:40 2022 ] Top1: 54.59%
|
413 |
+
[ Fri Sep 16 00:51:40 2022 ] Top5: 80.92%
|
414 |
+
[ Fri Sep 16 00:51:40 2022 ] Training epoch: 63
|
415 |
+
[ Fri Sep 16 00:52:24 2022 ] Batch(55/162) done. Loss: 0.0494 lr:0.010000 network_time: 0.0276
|
416 |
+
[ Fri Sep 16 00:53:37 2022 ] Batch(155/162) done. Loss: 0.0421 lr:0.010000 network_time: 0.0271
|
417 |
+
[ Fri Sep 16 00:53:41 2022 ] Eval epoch: 63
|
418 |
+
[ Fri Sep 16 00:55:30 2022 ] Mean test loss of 930 batches: 2.435600996017456.
|
419 |
+
[ Fri Sep 16 00:55:30 2022 ] Top1: 54.98%
|
420 |
+
[ Fri Sep 16 00:55:31 2022 ] Top5: 81.13%
|
421 |
+
[ Fri Sep 16 00:55:31 2022 ] Training epoch: 64
|
422 |
+
[ Fri Sep 16 00:56:42 2022 ] Batch(93/162) done. Loss: 0.0951 lr:0.010000 network_time: 0.0278
|
423 |
+
[ Fri Sep 16 00:57:32 2022 ] Eval epoch: 64
|
424 |
+
[ Fri Sep 16 00:59:20 2022 ] Mean test loss of 930 batches: 2.467794418334961.
|
425 |
+
[ Fri Sep 16 00:59:21 2022 ] Top1: 54.78%
|
426 |
+
[ Fri Sep 16 00:59:21 2022 ] Top5: 81.15%
|
427 |
+
[ Fri Sep 16 00:59:21 2022 ] Training epoch: 65
|
428 |
+
[ Fri Sep 16 00:59:47 2022 ] Batch(31/162) done. Loss: 0.0189 lr:0.010000 network_time: 0.0267
|
429 |
+
[ Fri Sep 16 01:01:00 2022 ] Batch(131/162) done. Loss: 0.0475 lr:0.010000 network_time: 0.0311
|
430 |
+
[ Fri Sep 16 01:01:22 2022 ] Eval epoch: 65
|
431 |
+
[ Fri Sep 16 01:03:11 2022 ] Mean test loss of 930 batches: 2.487011194229126.
|
432 |
+
[ Fri Sep 16 01:03:11 2022 ] Top1: 54.64%
|
433 |
+
[ Fri Sep 16 01:03:12 2022 ] Top5: 80.91%
|
434 |
+
[ Fri Sep 16 01:03:12 2022 ] Training epoch: 66
|
435 |
+
[ Fri Sep 16 01:04:06 2022 ] Batch(69/162) done. Loss: 0.0478 lr:0.010000 network_time: 0.0262
|
436 |
+
[ Fri Sep 16 01:05:13 2022 ] Eval epoch: 66
|
437 |
+
[ Fri Sep 16 01:07:00 2022 ] Mean test loss of 930 batches: 2.487764596939087.
|
438 |
+
[ Fri Sep 16 01:07:01 2022 ] Top1: 54.90%
|
439 |
+
[ Fri Sep 16 01:07:01 2022 ] Top5: 81.02%
|
440 |
+
[ Fri Sep 16 01:07:02 2022 ] Training epoch: 67
|
441 |
+
[ Fri Sep 16 01:07:10 2022 ] Batch(7/162) done. Loss: 0.0119 lr:0.010000 network_time: 0.0318
|
442 |
+
[ Fri Sep 16 01:08:23 2022 ] Batch(107/162) done. Loss: 0.0186 lr:0.010000 network_time: 0.0270
|
443 |
+
[ Fri Sep 16 01:09:03 2022 ] Eval epoch: 67
|
444 |
+
[ Fri Sep 16 01:10:51 2022 ] Mean test loss of 930 batches: 2.4871976375579834.
|
445 |
+
[ Fri Sep 16 01:10:51 2022 ] Top1: 55.07%
|
446 |
+
[ Fri Sep 16 01:10:52 2022 ] Top5: 81.23%
|
447 |
+
[ Fri Sep 16 01:10:52 2022 ] Training epoch: 68
|
448 |
+
[ Fri Sep 16 01:11:29 2022 ] Batch(45/162) done. Loss: 0.0457 lr:0.010000 network_time: 0.0288
|
449 |
+
[ Fri Sep 16 01:12:41 2022 ] Batch(145/162) done. Loss: 0.0222 lr:0.010000 network_time: 0.0276
|
450 |
+
[ Fri Sep 16 01:12:53 2022 ] Eval epoch: 68
|
451 |
+
[ Fri Sep 16 01:14:41 2022 ] Mean test loss of 930 batches: 2.5081300735473633.
|
452 |
+
[ Fri Sep 16 01:14:41 2022 ] Top1: 54.78%
|
453 |
+
[ Fri Sep 16 01:14:42 2022 ] Top5: 80.99%
|
454 |
+
[ Fri Sep 16 01:14:42 2022 ] Training epoch: 69
|
455 |
+
[ Fri Sep 16 01:15:46 2022 ] Batch(83/162) done. Loss: 0.0238 lr:0.010000 network_time: 0.0341
|
456 |
+
[ Fri Sep 16 01:16:43 2022 ] Eval epoch: 69
|
457 |
+
[ Fri Sep 16 01:18:31 2022 ] Mean test loss of 930 batches: 2.4945333003997803.
|
458 |
+
[ Fri Sep 16 01:18:32 2022 ] Top1: 55.12%
|
459 |
+
[ Fri Sep 16 01:18:32 2022 ] Top5: 81.14%
|
460 |
+
[ Fri Sep 16 01:18:32 2022 ] Training epoch: 70
|
461 |
+
[ Fri Sep 16 01:18:52 2022 ] Batch(21/162) done. Loss: 0.0233 lr:0.010000 network_time: 0.0275
|
462 |
+
[ Fri Sep 16 01:20:05 2022 ] Batch(121/162) done. Loss: 0.0358 lr:0.010000 network_time: 0.0266
|
463 |
+
[ Fri Sep 16 01:20:34 2022 ] Eval epoch: 70
|
464 |
+
[ Fri Sep 16 01:22:22 2022 ] Mean test loss of 930 batches: 2.4906225204467773.
|
465 |
+
[ Fri Sep 16 01:22:23 2022 ] Top1: 55.35%
|
466 |
+
[ Fri Sep 16 01:22:23 2022 ] Top5: 81.29%
|
467 |
+
[ Fri Sep 16 01:22:23 2022 ] Training epoch: 71
|
468 |
+
[ Fri Sep 16 01:23:10 2022 ] Batch(59/162) done. Loss: 0.0117 lr:0.010000 network_time: 0.0309
|
469 |
+
[ Fri Sep 16 01:24:23 2022 ] Batch(159/162) done. Loss: 0.0134 lr:0.010000 network_time: 0.0263
|
470 |
+
[ Fri Sep 16 01:24:24 2022 ] Eval epoch: 71
|
471 |
+
[ Fri Sep 16 01:26:13 2022 ] Mean test loss of 930 batches: 2.5574259757995605.
|
472 |
+
[ Fri Sep 16 01:26:13 2022 ] Top1: 54.91%
|
473 |
+
[ Fri Sep 16 01:26:14 2022 ] Top5: 81.06%
|
474 |
+
[ Fri Sep 16 01:26:14 2022 ] Training epoch: 72
|
475 |
+
[ Fri Sep 16 01:27:28 2022 ] Batch(97/162) done. Loss: 0.0187 lr:0.010000 network_time: 0.0268
|
476 |
+
[ Fri Sep 16 01:28:15 2022 ] Eval epoch: 72
|
477 |
+
[ Fri Sep 16 01:30:03 2022 ] Mean test loss of 930 batches: 2.5424442291259766.
|
478 |
+
[ Fri Sep 16 01:30:03 2022 ] Top1: 55.18%
|
479 |
+
[ Fri Sep 16 01:30:04 2022 ] Top5: 81.15%
|
480 |
+
[ Fri Sep 16 01:30:04 2022 ] Training epoch: 73
|
481 |
+
[ Fri Sep 16 01:30:33 2022 ] Batch(35/162) done. Loss: 0.0086 lr:0.010000 network_time: 0.0283
|
482 |
+
[ Fri Sep 16 01:31:46 2022 ] Batch(135/162) done. Loss: 0.0168 lr:0.010000 network_time: 0.0320
|
483 |
+
[ Fri Sep 16 01:32:05 2022 ] Eval epoch: 73
|
484 |
+
[ Fri Sep 16 01:33:53 2022 ] Mean test loss of 930 batches: 2.5362462997436523.
|
485 |
+
[ Fri Sep 16 01:33:53 2022 ] Top1: 55.36%
|
486 |
+
[ Fri Sep 16 01:33:54 2022 ] Top5: 81.27%
|
487 |
+
[ Fri Sep 16 01:33:54 2022 ] Training epoch: 74
|
488 |
+
[ Fri Sep 16 01:34:51 2022 ] Batch(73/162) done. Loss: 0.0156 lr:0.010000 network_time: 0.0273
|
489 |
+
[ Fri Sep 16 01:35:55 2022 ] Eval epoch: 74
|
490 |
+
[ Fri Sep 16 01:37:43 2022 ] Mean test loss of 930 batches: 2.521191358566284.
|
491 |
+
[ Fri Sep 16 01:37:43 2022 ] Top1: 55.26%
|
492 |
+
[ Fri Sep 16 01:37:44 2022 ] Top5: 81.21%
|
493 |
+
[ Fri Sep 16 01:37:44 2022 ] Training epoch: 75
|
494 |
+
[ Fri Sep 16 01:37:56 2022 ] Batch(11/162) done. Loss: 0.0207 lr:0.010000 network_time: 0.0285
|
495 |
+
[ Fri Sep 16 01:39:08 2022 ] Batch(111/162) done. Loss: 0.0131 lr:0.010000 network_time: 0.0283
|
496 |
+
[ Fri Sep 16 01:39:45 2022 ] Eval epoch: 75
|
497 |
+
[ Fri Sep 16 01:41:33 2022 ] Mean test loss of 930 batches: 2.5355825424194336.
|
498 |
+
[ Fri Sep 16 01:41:33 2022 ] Top1: 55.33%
|
499 |
+
[ Fri Sep 16 01:41:34 2022 ] Top5: 81.14%
|
500 |
+
[ Fri Sep 16 01:41:34 2022 ] Training epoch: 76
|
501 |
+
[ Fri Sep 16 01:42:13 2022 ] Batch(49/162) done. Loss: 0.0105 lr:0.010000 network_time: 0.0347
|
502 |
+
[ Fri Sep 16 01:43:26 2022 ] Batch(149/162) done. Loss: 0.0263 lr:0.010000 network_time: 0.0265
|
503 |
+
[ Fri Sep 16 01:43:35 2022 ] Eval epoch: 76
|
504 |
+
[ Fri Sep 16 01:45:23 2022 ] Mean test loss of 930 batches: 2.538811683654785.
|
505 |
+
[ Fri Sep 16 01:45:24 2022 ] Top1: 55.36%
|
506 |
+
[ Fri Sep 16 01:45:24 2022 ] Top5: 81.18%
|
507 |
+
[ Fri Sep 16 01:45:24 2022 ] Training epoch: 77
|
508 |
+
[ Fri Sep 16 01:46:32 2022 ] Batch(87/162) done. Loss: 0.0133 lr:0.010000 network_time: 0.0324
|
509 |
+
[ Fri Sep 16 01:47:26 2022 ] Eval epoch: 77
|
510 |
+
[ Fri Sep 16 01:49:14 2022 ] Mean test loss of 930 batches: 2.534885883331299.
|
511 |
+
[ Fri Sep 16 01:49:15 2022 ] Top1: 55.49%
|
512 |
+
[ Fri Sep 16 01:49:15 2022 ] Top5: 81.30%
|
513 |
+
[ Fri Sep 16 01:49:15 2022 ] Training epoch: 78
|
514 |
+
[ Fri Sep 16 01:49:37 2022 ] Batch(25/162) done. Loss: 0.0092 lr:0.010000 network_time: 0.0270
|
515 |
+
[ Fri Sep 16 01:50:50 2022 ] Batch(125/162) done. Loss: 0.0150 lr:0.010000 network_time: 0.0286
|
516 |
+
[ Fri Sep 16 01:51:17 2022 ] Eval epoch: 78
|
517 |
+
[ Fri Sep 16 01:53:07 2022 ] Mean test loss of 930 batches: 2.521869421005249.
|
518 |
+
[ Fri Sep 16 01:53:07 2022 ] Top1: 55.60%
|
519 |
+
[ Fri Sep 16 01:53:08 2022 ] Top5: 81.24%
|
520 |
+
[ Fri Sep 16 01:53:08 2022 ] Training epoch: 79
|
521 |
+
[ Fri Sep 16 01:53:57 2022 ] Batch(63/162) done. Loss: 0.0122 lr:0.010000 network_time: 0.0437
|
522 |
+
[ Fri Sep 16 01:55:08 2022 ] Eval epoch: 79
|
523 |
+
[ Fri Sep 16 01:56:56 2022 ] Mean test loss of 930 batches: 2.5722897052764893.
|
524 |
+
[ Fri Sep 16 01:56:56 2022 ] Top1: 55.16%
|
525 |
+
[ Fri Sep 16 01:56:57 2022 ] Top5: 81.03%
|
526 |
+
[ Fri Sep 16 01:56:57 2022 ] Training epoch: 80
|
527 |
+
[ Fri Sep 16 01:57:02 2022 ] Batch(1/162) done. Loss: 0.0119 lr:0.010000 network_time: 0.0294
|
528 |
+
[ Fri Sep 16 01:58:14 2022 ] Batch(101/162) done. Loss: 0.0125 lr:0.010000 network_time: 0.0268
|
529 |
+
[ Fri Sep 16 01:58:58 2022 ] Eval epoch: 80
|
530 |
+
[ Fri Sep 16 02:00:46 2022 ] Mean test loss of 930 batches: 2.557574987411499.
|
531 |
+
[ Fri Sep 16 02:00:47 2022 ] Top1: 55.35%
|
532 |
+
[ Fri Sep 16 02:00:47 2022 ] Top5: 81.25%
|
533 |
+
[ Fri Sep 16 02:00:47 2022 ] Training epoch: 81
|
534 |
+
[ Fri Sep 16 02:01:19 2022 ] Batch(39/162) done. Loss: 0.0079 lr:0.001000 network_time: 0.0346
|
535 |
+
[ Fri Sep 16 02:02:32 2022 ] Batch(139/162) done. Loss: 0.0043 lr:0.001000 network_time: 0.0307
|
536 |
+
[ Fri Sep 16 02:02:49 2022 ] Eval epoch: 81
|
537 |
+
[ Fri Sep 16 02:04:36 2022 ] Mean test loss of 930 batches: 2.572951078414917.
|
538 |
+
[ Fri Sep 16 02:04:37 2022 ] Top1: 55.27%
|
539 |
+
[ Fri Sep 16 02:04:37 2022 ] Top5: 81.03%
|
540 |
+
[ Fri Sep 16 02:04:37 2022 ] Training epoch: 82
|
541 |
+
[ Fri Sep 16 02:05:37 2022 ] Batch(77/162) done. Loss: 0.0055 lr:0.001000 network_time: 0.0275
|
542 |
+
[ Fri Sep 16 02:06:38 2022 ] Eval epoch: 82
|
543 |
+
[ Fri Sep 16 02:08:26 2022 ] Mean test loss of 930 batches: 2.530529022216797.
|
544 |
+
[ Fri Sep 16 02:08:27 2022 ] Top1: 55.61%
|
545 |
+
[ Fri Sep 16 02:08:27 2022 ] Top5: 81.47%
|
546 |
+
[ Fri Sep 16 02:08:27 2022 ] Training epoch: 83
|
547 |
+
[ Fri Sep 16 02:08:42 2022 ] Batch(15/162) done. Loss: 0.0110 lr:0.001000 network_time: 0.0298
|
548 |
+
[ Fri Sep 16 02:09:54 2022 ] Batch(115/162) done. Loss: 0.0387 lr:0.001000 network_time: 0.0316
|
549 |
+
[ Fri Sep 16 02:10:28 2022 ] Eval epoch: 83
|
550 |
+
[ Fri Sep 16 02:12:17 2022 ] Mean test loss of 930 batches: 2.545494794845581.
|
551 |
+
[ Fri Sep 16 02:12:17 2022 ] Top1: 55.61%
|
552 |
+
[ Fri Sep 16 02:12:17 2022 ] Top5: 81.21%
|
553 |
+
[ Fri Sep 16 02:12:18 2022 ] Training epoch: 84
|
554 |
+
[ Fri Sep 16 02:13:00 2022 ] Batch(53/162) done. Loss: 0.0153 lr:0.001000 network_time: 0.0308
|
555 |
+
[ Fri Sep 16 02:14:13 2022 ] Batch(153/162) done. Loss: 0.0306 lr:0.001000 network_time: 0.0297
|
556 |
+
[ Fri Sep 16 02:14:19 2022 ] Eval epoch: 84
|
557 |
+
[ Fri Sep 16 02:16:07 2022 ] Mean test loss of 930 batches: 2.524808883666992.
|
558 |
+
[ Fri Sep 16 02:16:08 2022 ] Top1: 55.55%
|
559 |
+
[ Fri Sep 16 02:16:08 2022 ] Top5: 81.22%
|
560 |
+
[ Fri Sep 16 02:16:08 2022 ] Training epoch: 85
|
561 |
+
[ Fri Sep 16 02:17:18 2022 ] Batch(91/162) done. Loss: 0.0149 lr:0.001000 network_time: 0.0278
|
562 |
+
[ Fri Sep 16 02:18:10 2022 ] Eval epoch: 85
|
563 |
+
[ Fri Sep 16 02:19:58 2022 ] Mean test loss of 930 batches: 2.586280345916748.
|
564 |
+
[ Fri Sep 16 02:19:58 2022 ] Top1: 55.22%
|
565 |
+
[ Fri Sep 16 02:19:59 2022 ] Top5: 81.15%
|
566 |
+
[ Fri Sep 16 02:19:59 2022 ] Training epoch: 86
|
567 |
+
[ Fri Sep 16 02:20:24 2022 ] Batch(29/162) done. Loss: 0.0106 lr:0.001000 network_time: 0.0550
|
568 |
+
[ Fri Sep 16 02:21:37 2022 ] Batch(129/162) done. Loss: 0.0091 lr:0.001000 network_time: 0.0295
|
569 |
+
[ Fri Sep 16 02:22:00 2022 ] Eval epoch: 86
|
570 |
+
[ Fri Sep 16 02:23:48 2022 ] Mean test loss of 930 batches: 2.5408122539520264.
|
571 |
+
[ Fri Sep 16 02:23:49 2022 ] Top1: 55.49%
|
572 |
+
[ Fri Sep 16 02:23:49 2022 ] Top5: 81.15%
|
573 |
+
[ Fri Sep 16 02:23:49 2022 ] Training epoch: 87
|
574 |
+
[ Fri Sep 16 02:24:41 2022 ] Batch(67/162) done. Loss: 0.0092 lr:0.001000 network_time: 0.0257
|
575 |
+
[ Fri Sep 16 02:25:50 2022 ] Eval epoch: 87
|
576 |
+
[ Fri Sep 16 02:27:38 2022 ] Mean test loss of 930 batches: 2.536407232284546.
|
577 |
+
[ Fri Sep 16 02:27:38 2022 ] Top1: 55.42%
|
578 |
+
[ Fri Sep 16 02:27:39 2022 ] Top5: 81.31%
|
579 |
+
[ Fri Sep 16 02:27:39 2022 ] Training epoch: 88
|
580 |
+
[ Fri Sep 16 02:27:46 2022 ] Batch(5/162) done. Loss: 0.0140 lr:0.001000 network_time: 0.0274
|
581 |
+
[ Fri Sep 16 02:28:59 2022 ] Batch(105/162) done. Loss: 0.0098 lr:0.001000 network_time: 0.0277
|
582 |
+
[ Fri Sep 16 02:29:40 2022 ] Eval epoch: 88
|
583 |
+
[ Fri Sep 16 02:31:28 2022 ] Mean test loss of 930 batches: 2.528388023376465.
|
584 |
+
[ Fri Sep 16 02:31:29 2022 ] Top1: 55.43%
|
585 |
+
[ Fri Sep 16 02:31:29 2022 ] Top5: 81.16%
|
586 |
+
[ Fri Sep 16 02:31:29 2022 ] Training epoch: 89
|
587 |
+
[ Fri Sep 16 02:32:05 2022 ] Batch(43/162) done. Loss: 0.0132 lr:0.001000 network_time: 0.0303
|
588 |
+
[ Fri Sep 16 02:33:17 2022 ] Batch(143/162) done. Loss: 0.0126 lr:0.001000 network_time: 0.0281
|
589 |
+
[ Fri Sep 16 02:33:31 2022 ] Eval epoch: 89
|
590 |
+
[ Fri Sep 16 02:35:18 2022 ] Mean test loss of 930 batches: 2.5503320693969727.
|
591 |
+
[ Fri Sep 16 02:35:19 2022 ] Top1: 55.38%
|
592 |
+
[ Fri Sep 16 02:35:19 2022 ] Top5: 81.19%
|
593 |
+
[ Fri Sep 16 02:35:20 2022 ] Training epoch: 90
|
594 |
+
[ Fri Sep 16 02:36:22 2022 ] Batch(81/162) done. Loss: 0.0094 lr:0.001000 network_time: 0.0324
|
595 |
+
[ Fri Sep 16 02:37:21 2022 ] Eval epoch: 90
|
596 |
+
[ Fri Sep 16 02:39:09 2022 ] Mean test loss of 930 batches: 2.556290864944458.
|
597 |
+
[ Fri Sep 16 02:39:09 2022 ] Top1: 55.48%
|
598 |
+
[ Fri Sep 16 02:39:10 2022 ] Top5: 81.22%
|
599 |
+
[ Fri Sep 16 02:39:10 2022 ] Training epoch: 91
|
600 |
+
[ Fri Sep 16 02:39:28 2022 ] Batch(19/162) done. Loss: 0.0091 lr:0.001000 network_time: 0.0280
|
601 |
+
[ Fri Sep 16 02:40:40 2022 ] Batch(119/162) done. Loss: 0.0052 lr:0.001000 network_time: 0.0256
|
602 |
+
[ Fri Sep 16 02:41:11 2022 ] Eval epoch: 91
|
603 |
+
[ Fri Sep 16 02:42:59 2022 ] Mean test loss of 930 batches: 2.58315372467041.
|
604 |
+
[ Fri Sep 16 02:43:00 2022 ] Top1: 55.23%
|
605 |
+
[ Fri Sep 16 02:43:00 2022 ] Top5: 81.20%
|
606 |
+
[ Fri Sep 16 02:43:00 2022 ] Training epoch: 92
|
607 |
+
[ Fri Sep 16 02:43:46 2022 ] Batch(57/162) done. Loss: 0.0191 lr:0.001000 network_time: 0.0328
|
608 |
+
[ Fri Sep 16 02:44:58 2022 ] Batch(157/162) done. Loss: 0.0156 lr:0.001000 network_time: 0.0282
|
609 |
+
[ Fri Sep 16 02:45:02 2022 ] Eval epoch: 92
|
610 |
+
[ Fri Sep 16 02:46:50 2022 ] Mean test loss of 930 batches: 2.5625314712524414.
|
611 |
+
[ Fri Sep 16 02:46:50 2022 ] Top1: 55.23%
|
612 |
+
[ Fri Sep 16 02:46:50 2022 ] Top5: 81.03%
|
613 |
+
[ Fri Sep 16 02:46:51 2022 ] Training epoch: 93
|
614 |
+
[ Fri Sep 16 02:48:04 2022 ] Batch(95/162) done. Loss: 0.0076 lr:0.001000 network_time: 0.0268
|
615 |
+
[ Fri Sep 16 02:48:52 2022 ] Eval epoch: 93
|
616 |
+
[ Fri Sep 16 02:50:40 2022 ] Mean test loss of 930 batches: 2.5470073223114014.
|
617 |
+
[ Fri Sep 16 02:50:40 2022 ] Top1: 55.65%
|
618 |
+
[ Fri Sep 16 02:50:41 2022 ] Top5: 81.37%
|
619 |
+
[ Fri Sep 16 02:50:41 2022 ] Training epoch: 94
|
620 |
+
[ Fri Sep 16 02:51:09 2022 ] Batch(33/162) done. Loss: 0.0263 lr:0.001000 network_time: 0.0274
|
621 |
+
[ Fri Sep 16 02:52:22 2022 ] Batch(133/162) done. Loss: 0.0480 lr:0.001000 network_time: 0.0274
|
622 |
+
[ Fri Sep 16 02:52:42 2022 ] Eval epoch: 94
|
623 |
+
[ Fri Sep 16 02:54:30 2022 ] Mean test loss of 930 batches: 2.5392682552337646.
|
624 |
+
[ Fri Sep 16 02:54:30 2022 ] Top1: 55.68%
|
625 |
+
[ Fri Sep 16 02:54:31 2022 ] Top5: 81.33%
|
626 |
+
[ Fri Sep 16 02:54:31 2022 ] Training epoch: 95
|
627 |
+
[ Fri Sep 16 02:55:26 2022 ] Batch(71/162) done. Loss: 0.0408 lr:0.001000 network_time: 0.0315
|
628 |
+
[ Fri Sep 16 02:56:32 2022 ] Eval epoch: 95
|
629 |
+
[ Fri Sep 16 02:58:20 2022 ] Mean test loss of 930 batches: 2.55815052986145.
|
630 |
+
[ Fri Sep 16 02:58:21 2022 ] Top1: 55.28%
|
631 |
+
[ Fri Sep 16 02:58:21 2022 ] Top5: 81.19%
|
632 |
+
[ Fri Sep 16 02:58:21 2022 ] Training epoch: 96
|
633 |
+
[ Fri Sep 16 02:58:32 2022 ] Batch(9/162) done. Loss: 0.0116 lr:0.001000 network_time: 0.0290
|
634 |
+
[ Fri Sep 16 02:59:44 2022 ] Batch(109/162) done. Loss: 0.0113 lr:0.001000 network_time: 0.0284
|
635 |
+
[ Fri Sep 16 03:00:23 2022 ] Eval epoch: 96
|
636 |
+
[ Fri Sep 16 03:02:10 2022 ] Mean test loss of 930 batches: 2.5667190551757812.
|
637 |
+
[ Fri Sep 16 03:02:11 2022 ] Top1: 55.56%
|
638 |
+
[ Fri Sep 16 03:02:11 2022 ] Top5: 81.15%
|
639 |
+
[ Fri Sep 16 03:02:11 2022 ] Training epoch: 97
|
640 |
+
[ Fri Sep 16 03:02:49 2022 ] Batch(47/162) done. Loss: 0.0686 lr:0.001000 network_time: 0.0280
|
641 |
+
[ Fri Sep 16 03:04:02 2022 ] Batch(147/162) done. Loss: 0.0074 lr:0.001000 network_time: 0.0278
|
642 |
+
[ Fri Sep 16 03:04:12 2022 ] Eval epoch: 97
|
643 |
+
[ Fri Sep 16 03:06:00 2022 ] Mean test loss of 930 batches: 2.544494867324829.
|
644 |
+
[ Fri Sep 16 03:06:00 2022 ] Top1: 55.48%
|
645 |
+
[ Fri Sep 16 03:06:01 2022 ] Top5: 81.22%
|
646 |
+
[ Fri Sep 16 03:06:01 2022 ] Training epoch: 98
|
647 |
+
[ Fri Sep 16 03:07:07 2022 ] Batch(85/162) done. Loss: 0.0252 lr:0.001000 network_time: 0.0278
|
648 |
+
[ Fri Sep 16 03:08:02 2022 ] Eval epoch: 98
|
649 |
+
[ Fri Sep 16 03:09:50 2022 ] Mean test loss of 930 batches: 2.5435867309570312.
|
650 |
+
[ Fri Sep 16 03:09:50 2022 ] Top1: 55.66%
|
651 |
+
[ Fri Sep 16 03:09:51 2022 ] Top5: 81.36%
|
652 |
+
[ Fri Sep 16 03:09:51 2022 ] Training epoch: 99
|
653 |
+
[ Fri Sep 16 03:10:12 2022 ] Batch(23/162) done. Loss: 0.0143 lr:0.001000 network_time: 0.0323
|
654 |
+
[ Fri Sep 16 03:11:24 2022 ] Batch(123/162) done. Loss: 0.0108 lr:0.001000 network_time: 0.0284
|
655 |
+
[ Fri Sep 16 03:11:52 2022 ] Eval epoch: 99
|
656 |
+
[ Fri Sep 16 03:13:40 2022 ] Mean test loss of 930 batches: 2.562251567840576.
|
657 |
+
[ Fri Sep 16 03:13:40 2022 ] Top1: 55.43%
|
658 |
+
[ Fri Sep 16 03:13:41 2022 ] Top5: 81.23%
|
659 |
+
[ Fri Sep 16 03:13:41 2022 ] Training epoch: 100
|
660 |
+
[ Fri Sep 16 03:14:29 2022 ] Batch(61/162) done. Loss: 0.0118 lr:0.001000 network_time: 0.0284
|
661 |
+
[ Fri Sep 16 03:15:42 2022 ] Batch(161/162) done. Loss: 0.0102 lr:0.001000 network_time: 0.0315
|
662 |
+
[ Fri Sep 16 03:15:42 2022 ] Eval epoch: 100
|
663 |
+
[ Fri Sep 16 03:17:30 2022 ] Mean test loss of 930 batches: 2.5743367671966553.
|
664 |
+
[ Fri Sep 16 03:17:31 2022 ] Top1: 55.23%
|
665 |
+
[ Fri Sep 16 03:17:31 2022 ] Top5: 80.93%
|
666 |
+
[ Fri Sep 16 03:17:31 2022 ] Training epoch: 101
|
667 |
+
[ Fri Sep 16 03:18:47 2022 ] Batch(99/162) done. Loss: 0.0172 lr:0.000100 network_time: 0.0292
|
668 |
+
[ Fri Sep 16 03:19:32 2022 ] Eval epoch: 101
|
669 |
+
[ Fri Sep 16 03:21:21 2022 ] Mean test loss of 930 batches: 2.547807455062866.
|
670 |
+
[ Fri Sep 16 03:21:21 2022 ] Top1: 55.69%
|
671 |
+
[ Fri Sep 16 03:21:22 2022 ] Top5: 81.43%
|
672 |
+
[ Fri Sep 16 03:21:22 2022 ] Training epoch: 102
|
673 |
+
[ Fri Sep 16 03:21:52 2022 ] Batch(37/162) done. Loss: 0.0108 lr:0.000100 network_time: 0.0309
|
674 |
+
[ Fri Sep 16 03:23:05 2022 ] Batch(137/162) done. Loss: 0.0219 lr:0.000100 network_time: 0.0266
|
675 |
+
[ Fri Sep 16 03:23:23 2022 ] Eval epoch: 102
|
676 |
+
[ Fri Sep 16 03:25:10 2022 ] Mean test loss of 930 batches: 2.5248377323150635.
|
677 |
+
[ Fri Sep 16 03:25:11 2022 ] Top1: 55.67%
|
678 |
+
[ Fri Sep 16 03:25:11 2022 ] Top5: 81.42%
|
679 |
+
[ Fri Sep 16 03:25:12 2022 ] Training epoch: 103
|
680 |
+
[ Fri Sep 16 03:26:10 2022 ] Batch(75/162) done. Loss: 0.0303 lr:0.000100 network_time: 0.0273
|
681 |
+
[ Fri Sep 16 03:27:13 2022 ] Eval epoch: 103
|
682 |
+
[ Fri Sep 16 03:29:00 2022 ] Mean test loss of 930 batches: 2.5692896842956543.
|
683 |
+
[ Fri Sep 16 03:29:01 2022 ] Top1: 55.27%
|
684 |
+
[ Fri Sep 16 03:29:01 2022 ] Top5: 81.23%
|
685 |
+
[ Fri Sep 16 03:29:01 2022 ] Training epoch: 104
|
686 |
+
[ Fri Sep 16 03:29:14 2022 ] Batch(13/162) done. Loss: 0.0176 lr:0.000100 network_time: 0.0322
|
687 |
+
[ Fri Sep 16 03:30:27 2022 ] Batch(113/162) done. Loss: 0.0143 lr:0.000100 network_time: 0.0262
|
688 |
+
[ Fri Sep 16 03:31:02 2022 ] Eval epoch: 104
|
689 |
+
[ Fri Sep 16 03:32:51 2022 ] Mean test loss of 930 batches: 2.5471296310424805.
|
690 |
+
[ Fri Sep 16 03:32:51 2022 ] Top1: 55.70%
|
691 |
+
[ Fri Sep 16 03:32:51 2022 ] Top5: 81.42%
|
692 |
+
[ Fri Sep 16 03:32:52 2022 ] Training epoch: 105
|
693 |
+
[ Fri Sep 16 03:33:33 2022 ] Batch(51/162) done. Loss: 0.0230 lr:0.000100 network_time: 0.0288
|
694 |
+
[ Fri Sep 16 03:34:45 2022 ] Batch(151/162) done. Loss: 0.0163 lr:0.000100 network_time: 0.0269
|
695 |
+
[ Fri Sep 16 03:34:53 2022 ] Eval epoch: 105
|
696 |
+
[ Fri Sep 16 03:36:41 2022 ] Mean test loss of 930 batches: 2.578871488571167.
|
697 |
+
[ Fri Sep 16 03:36:41 2022 ] Top1: 55.30%
|
698 |
+
[ Fri Sep 16 03:36:42 2022 ] Top5: 81.05%
|
699 |
+
[ Fri Sep 16 03:36:42 2022 ] Training epoch: 106
|
700 |
+
[ Fri Sep 16 03:37:50 2022 ] Batch(89/162) done. Loss: 0.0128 lr:0.000100 network_time: 0.0276
|
701 |
+
[ Fri Sep 16 03:38:43 2022 ] Eval epoch: 106
|
702 |
+
[ Fri Sep 16 03:40:30 2022 ] Mean test loss of 930 batches: 2.5462167263031006.
|
703 |
+
[ Fri Sep 16 03:40:31 2022 ] Top1: 55.46%
|
704 |
+
[ Fri Sep 16 03:40:31 2022 ] Top5: 81.28%
|
705 |
+
[ Fri Sep 16 03:40:32 2022 ] Training epoch: 107
|
706 |
+
[ Fri Sep 16 03:40:55 2022 ] Batch(27/162) done. Loss: 0.0202 lr:0.000100 network_time: 0.0264
|
707 |
+
[ Fri Sep 16 03:42:08 2022 ] Batch(127/162) done. Loss: 0.0215 lr:0.000100 network_time: 0.0324
|
708 |
+
[ Fri Sep 16 03:42:33 2022 ] Eval epoch: 107
|
709 |
+
[ Fri Sep 16 03:44:21 2022 ] Mean test loss of 930 batches: 2.5570015907287598.
|
710 |
+
[ Fri Sep 16 03:44:21 2022 ] Top1: 55.48%
|
711 |
+
[ Fri Sep 16 03:44:21 2022 ] Top5: 81.23%
|
712 |
+
[ Fri Sep 16 03:44:22 2022 ] Training epoch: 108
|
713 |
+
[ Fri Sep 16 03:45:13 2022 ] Batch(65/162) done. Loss: 0.0059 lr:0.000100 network_time: 0.0286
|
714 |
+
[ Fri Sep 16 03:46:23 2022 ] Eval epoch: 108
|
715 |
+
[ Fri Sep 16 03:48:10 2022 ] Mean test loss of 930 batches: 2.585301637649536.
|
716 |
+
[ Fri Sep 16 03:48:11 2022 ] Top1: 55.24%
|
717 |
+
[ Fri Sep 16 03:48:11 2022 ] Top5: 81.05%
|
718 |
+
[ Fri Sep 16 03:48:12 2022 ] Training epoch: 109
|
719 |
+
[ Fri Sep 16 03:48:17 2022 ] Batch(3/162) done. Loss: 0.0050 lr:0.000100 network_time: 0.0293
|
720 |
+
[ Fri Sep 16 03:49:30 2022 ] Batch(103/162) done. Loss: 0.0114 lr:0.000100 network_time: 0.0265
|
721 |
+
[ Fri Sep 16 03:50:13 2022 ] Eval epoch: 109
|
722 |
+
[ Fri Sep 16 03:52:00 2022 ] Mean test loss of 930 batches: 2.557034492492676.
|
723 |
+
[ Fri Sep 16 03:52:01 2022 ] Top1: 55.44%
|
724 |
+
[ Fri Sep 16 03:52:01 2022 ] Top5: 81.18%
|
725 |
+
[ Fri Sep 16 03:52:02 2022 ] Training epoch: 110
|
726 |
+
[ Fri Sep 16 03:52:35 2022 ] Batch(41/162) done. Loss: 0.0297 lr:0.000100 network_time: 0.0346
|
727 |
+
[ Fri Sep 16 03:53:48 2022 ] Batch(141/162) done. Loss: 0.0063 lr:0.000100 network_time: 0.0528
|
728 |
+
[ Fri Sep 16 03:54:02 2022 ] Eval epoch: 110
|
729 |
+
[ Fri Sep 16 03:55:51 2022 ] Mean test loss of 930 batches: 2.576395034790039.
|
730 |
+
[ Fri Sep 16 03:55:51 2022 ] Top1: 55.13%
|
731 |
+
[ Fri Sep 16 03:55:52 2022 ] Top5: 81.20%
|
732 |
+
[ Fri Sep 16 03:55:52 2022 ] Training epoch: 111
|
733 |
+
[ Fri Sep 16 03:56:53 2022 ] Batch(79/162) done. Loss: 0.0034 lr:0.000100 network_time: 0.0263
|
734 |
+
[ Fri Sep 16 03:57:53 2022 ] Eval epoch: 111
|
735 |
+
[ Fri Sep 16 03:59:41 2022 ] Mean test loss of 930 batches: 2.577402114868164.
|
736 |
+
[ Fri Sep 16 03:59:41 2022 ] Top1: 55.06%
|
737 |
+
[ Fri Sep 16 03:59:42 2022 ] Top5: 80.97%
|
738 |
+
[ Fri Sep 16 03:59:42 2022 ] Training epoch: 112
|
739 |
+
[ Fri Sep 16 03:59:58 2022 ] Batch(17/162) done. Loss: 0.0095 lr:0.000100 network_time: 0.0267
|
740 |
+
[ Fri Sep 16 04:01:11 2022 ] Batch(117/162) done. Loss: 0.0455 lr:0.000100 network_time: 0.0268
|
741 |
+
[ Fri Sep 16 04:01:43 2022 ] Eval epoch: 112
|
742 |
+
[ Fri Sep 16 04:03:30 2022 ] Mean test loss of 930 batches: 2.5660643577575684.
|
743 |
+
[ Fri Sep 16 04:03:31 2022 ] Top1: 55.42%
|
744 |
+
[ Fri Sep 16 04:03:31 2022 ] Top5: 81.13%
|
745 |
+
[ Fri Sep 16 04:03:32 2022 ] Training epoch: 113
|
746 |
+
[ Fri Sep 16 04:04:15 2022 ] Batch(55/162) done. Loss: 0.0135 lr:0.000100 network_time: 0.0284
|
747 |
+
[ Fri Sep 16 04:05:28 2022 ] Batch(155/162) done. Loss: 0.0128 lr:0.000100 network_time: 0.0269
|
748 |
+
[ Fri Sep 16 04:05:33 2022 ] Eval epoch: 113
|
749 |
+
[ Fri Sep 16 04:07:20 2022 ] Mean test loss of 930 batches: 2.570066213607788.
|
750 |
+
[ Fri Sep 16 04:07:21 2022 ] Top1: 54.85%
|
751 |
+
[ Fri Sep 16 04:07:21 2022 ] Top5: 81.01%
|
752 |
+
[ Fri Sep 16 04:07:21 2022 ] Training epoch: 114
|
753 |
+
[ Fri Sep 16 04:08:33 2022 ] Batch(93/162) done. Loss: 0.0188 lr:0.000100 network_time: 0.0278
|
754 |
+
[ Fri Sep 16 04:09:23 2022 ] Eval epoch: 114
|
755 |
+
[ Fri Sep 16 04:11:11 2022 ] Mean test loss of 930 batches: 2.5548155307769775.
|
756 |
+
[ Fri Sep 16 04:11:11 2022 ] Top1: 55.34%
|
757 |
+
[ Fri Sep 16 04:11:12 2022 ] Top5: 81.18%
|
758 |
+
[ Fri Sep 16 04:11:12 2022 ] Training epoch: 115
|
759 |
+
[ Fri Sep 16 04:11:38 2022 ] Batch(31/162) done. Loss: 0.0057 lr:0.000100 network_time: 0.0267
|
760 |
+
[ Fri Sep 16 04:12:51 2022 ] Batch(131/162) done. Loss: 0.0136 lr:0.000100 network_time: 0.0275
|
761 |
+
[ Fri Sep 16 04:13:13 2022 ] Eval epoch: 115
|
762 |
+
[ Fri Sep 16 04:15:00 2022 ] Mean test loss of 930 batches: 2.551961898803711.
|
763 |
+
[ Fri Sep 16 04:15:01 2022 ] Top1: 55.49%
|
764 |
+
[ Fri Sep 16 04:15:01 2022 ] Top5: 81.27%
|
765 |
+
[ Fri Sep 16 04:15:02 2022 ] Training epoch: 116
|
766 |
+
[ Fri Sep 16 04:15:55 2022 ] Batch(69/162) done. Loss: 0.0155 lr:0.000100 network_time: 0.0265
|
767 |
+
[ Fri Sep 16 04:17:02 2022 ] Eval epoch: 116
|
768 |
+
[ Fri Sep 16 04:18:50 2022 ] Mean test loss of 930 batches: 2.55898118019104.
|
769 |
+
[ Fri Sep 16 04:18:51 2022 ] Top1: 55.49%
|
770 |
+
[ Fri Sep 16 04:18:51 2022 ] Top5: 81.27%
|
771 |
+
[ Fri Sep 16 04:18:52 2022 ] Training epoch: 117
|
772 |
+
[ Fri Sep 16 04:19:00 2022 ] Batch(7/162) done. Loss: 0.0189 lr:0.000100 network_time: 0.0276
|
773 |
+
[ Fri Sep 16 04:20:13 2022 ] Batch(107/162) done. Loss: 0.0054 lr:0.000100 network_time: 0.0276
|
774 |
+
[ Fri Sep 16 04:20:53 2022 ] Eval epoch: 117
|
775 |
+
[ Fri Sep 16 04:22:40 2022 ] Mean test loss of 930 batches: 2.54909348487854.
|
776 |
+
[ Fri Sep 16 04:22:40 2022 ] Top1: 55.64%
|
777 |
+
[ Fri Sep 16 04:22:41 2022 ] Top5: 81.25%
|
778 |
+
[ Fri Sep 16 04:22:41 2022 ] Training epoch: 118
|
779 |
+
[ Fri Sep 16 04:23:18 2022 ] Batch(45/162) done. Loss: 0.0172 lr:0.000100 network_time: 0.0312
|
780 |
+
[ Fri Sep 16 04:24:31 2022 ] Batch(145/162) done. Loss: 0.0081 lr:0.000100 network_time: 0.0258
|
781 |
+
[ Fri Sep 16 04:24:43 2022 ] Eval epoch: 118
|
782 |
+
[ Fri Sep 16 04:26:30 2022 ] Mean test loss of 930 batches: 2.568805456161499.
|
783 |
+
[ Fri Sep 16 04:26:31 2022 ] Top1: 55.38%
|
784 |
+
[ Fri Sep 16 04:26:31 2022 ] Top5: 81.23%
|
785 |
+
[ Fri Sep 16 04:26:32 2022 ] Training epoch: 119
|
786 |
+
[ Fri Sep 16 04:27:36 2022 ] Batch(83/162) done. Loss: 0.0195 lr:0.000100 network_time: 0.0252
|
787 |
+
[ Fri Sep 16 04:28:33 2022 ] Eval epoch: 119
|
788 |
+
[ Fri Sep 16 04:30:21 2022 ] Mean test loss of 930 batches: 2.5613887310028076.
|
789 |
+
[ Fri Sep 16 04:30:22 2022 ] Top1: 55.40%
|
790 |
+
[ Fri Sep 16 04:30:22 2022 ] Top5: 81.13%
|
791 |
+
[ Fri Sep 16 04:30:22 2022 ] Training epoch: 120
|
792 |
+
[ Fri Sep 16 04:30:42 2022 ] Batch(21/162) done. Loss: 0.0305 lr:0.000100 network_time: 0.0549
|
793 |
+
[ Fri Sep 16 04:31:54 2022 ] Batch(121/162) done. Loss: 0.0053 lr:0.000100 network_time: 0.0306
|
794 |
+
[ Fri Sep 16 04:32:24 2022 ] Eval epoch: 120
|
795 |
+
[ Fri Sep 16 04:34:11 2022 ] Mean test loss of 930 batches: 2.565460443496704.
|
796 |
+
[ Fri Sep 16 04:34:12 2022 ] Top1: 55.60%
|
797 |
+
[ Fri Sep 16 04:34:12 2022 ] Top5: 81.27%
|
798 |
+
[ Fri Sep 16 04:34:13 2022 ] Training epoch: 121
|
799 |
+
[ Fri Sep 16 04:34:59 2022 ] Batch(59/162) done. Loss: 0.0073 lr:0.000100 network_time: 0.0274
|
800 |
+
[ Fri Sep 16 04:36:12 2022 ] Batch(159/162) done. Loss: 0.0292 lr:0.000100 network_time: 0.0318
|
801 |
+
[ Fri Sep 16 04:36:14 2022 ] Eval epoch: 121
|
802 |
+
[ Fri Sep 16 04:38:02 2022 ] Mean test loss of 930 batches: 2.552762985229492.
|
803 |
+
[ Fri Sep 16 04:38:02 2022 ] Top1: 55.36%
|
804 |
+
[ Fri Sep 16 04:38:03 2022 ] Top5: 81.15%
|
805 |
+
[ Fri Sep 16 04:38:03 2022 ] Training epoch: 122
|
806 |
+
[ Fri Sep 16 04:39:17 2022 ] Batch(97/162) done. Loss: 0.0103 lr:0.000100 network_time: 0.0281
|
807 |
+
[ Fri Sep 16 04:40:04 2022 ] Eval epoch: 122
|
808 |
+
[ Fri Sep 16 04:41:52 2022 ] Mean test loss of 930 batches: 2.5489044189453125.
|
809 |
+
[ Fri Sep 16 04:41:53 2022 ] Top1: 55.62%
|
810 |
+
[ Fri Sep 16 04:41:53 2022 ] Top5: 81.31%
|
811 |
+
[ Fri Sep 16 04:41:53 2022 ] Training epoch: 123
|
812 |
+
[ Fri Sep 16 04:42:23 2022 ] Batch(35/162) done. Loss: 0.0388 lr:0.000100 network_time: 0.0267
|
813 |
+
[ Fri Sep 16 04:43:35 2022 ] Batch(135/162) done. Loss: 0.0089 lr:0.000100 network_time: 0.0272
|
814 |
+
[ Fri Sep 16 04:43:55 2022 ] Eval epoch: 123
|
815 |
+
[ Fri Sep 16 04:45:42 2022 ] Mean test loss of 930 batches: 2.5398478507995605.
|
816 |
+
[ Fri Sep 16 04:45:43 2022 ] Top1: 55.33%
|
817 |
+
[ Fri Sep 16 04:45:43 2022 ] Top5: 81.14%
|
818 |
+
[ Fri Sep 16 04:45:43 2022 ] Training epoch: 124
|
819 |
+
[ Fri Sep 16 04:46:40 2022 ] Batch(73/162) done. Loss: 0.0072 lr:0.000100 network_time: 0.0264
|
820 |
+
[ Fri Sep 16 04:47:44 2022 ] Eval epoch: 124
|
821 |
+
[ Fri Sep 16 04:49:33 2022 ] Mean test loss of 930 batches: 2.5149850845336914.
|
822 |
+
[ Fri Sep 16 04:49:33 2022 ] Top1: 55.92%
|
823 |
+
[ Fri Sep 16 04:49:34 2022 ] Top5: 81.55%
|
824 |
+
[ Fri Sep 16 04:49:34 2022 ] Training epoch: 125
|
825 |
+
[ Fri Sep 16 04:49:46 2022 ] Batch(11/162) done. Loss: 0.0073 lr:0.000100 network_time: 0.0301
|
826 |
+
[ Fri Sep 16 04:50:59 2022 ] Batch(111/162) done. Loss: 0.0125 lr:0.000100 network_time: 0.0331
|
827 |
+
[ Fri Sep 16 04:51:35 2022 ] Eval epoch: 125
|
828 |
+
[ Fri Sep 16 04:53:23 2022 ] Mean test loss of 930 batches: 2.5590920448303223.
|
829 |
+
[ Fri Sep 16 04:53:23 2022 ] Top1: 55.52%
|
830 |
+
[ Fri Sep 16 04:53:24 2022 ] Top5: 81.25%
|
831 |
+
[ Fri Sep 16 04:53:24 2022 ] Training epoch: 126
|
832 |
+
[ Fri Sep 16 04:54:03 2022 ] Batch(49/162) done. Loss: 0.0049 lr:0.000100 network_time: 0.0409
|
833 |
+
[ Fri Sep 16 04:55:16 2022 ] Batch(149/162) done. Loss: 0.0071 lr:0.000100 network_time: 0.0270
|
834 |
+
[ Fri Sep 16 04:55:25 2022 ] Eval epoch: 126
|
835 |
+
[ Fri Sep 16 04:57:13 2022 ] Mean test loss of 930 batches: 2.547355890274048.
|
836 |
+
[ Fri Sep 16 04:57:14 2022 ] Top1: 55.43%
|
837 |
+
[ Fri Sep 16 04:57:14 2022 ] Top5: 81.17%
|
838 |
+
[ Fri Sep 16 04:57:14 2022 ] Training epoch: 127
|
839 |
+
[ Fri Sep 16 04:58:21 2022 ] Batch(87/162) done. Loss: 0.0054 lr:0.000100 network_time: 0.0279
|
840 |
+
[ Fri Sep 16 04:59:15 2022 ] Eval epoch: 127
|
841 |
+
[ Fri Sep 16 05:01:03 2022 ] Mean test loss of 930 batches: 2.557677745819092.
|
842 |
+
[ Fri Sep 16 05:01:04 2022 ] Top1: 55.55%
|
843 |
+
[ Fri Sep 16 05:01:04 2022 ] Top5: 81.28%
|
844 |
+
[ Fri Sep 16 05:01:04 2022 ] Training epoch: 128
|
845 |
+
[ Fri Sep 16 05:01:26 2022 ] Batch(25/162) done. Loss: 0.0053 lr:0.000100 network_time: 0.0262
|
846 |
+
[ Fri Sep 16 05:02:39 2022 ] Batch(125/162) done. Loss: 0.0104 lr:0.000100 network_time: 0.0308
|
847 |
+
[ Fri Sep 16 05:03:06 2022 ] Eval epoch: 128
|
848 |
+
[ Fri Sep 16 05:04:53 2022 ] Mean test loss of 930 batches: 2.564342498779297.
|
849 |
+
[ Fri Sep 16 05:04:54 2022 ] Top1: 55.33%
|
850 |
+
[ Fri Sep 16 05:04:54 2022 ] Top5: 81.05%
|
851 |
+
[ Fri Sep 16 05:04:54 2022 ] Training epoch: 129
|
852 |
+
[ Fri Sep 16 05:05:44 2022 ] Batch(63/162) done. Loss: 0.0051 lr:0.000100 network_time: 0.0265
|
853 |
+
[ Fri Sep 16 05:06:56 2022 ] Eval epoch: 129
|
854 |
+
[ Fri Sep 16 05:08:43 2022 ] Mean test loss of 930 batches: 2.5628936290740967.
|
855 |
+
[ Fri Sep 16 05:08:43 2022 ] Top1: 55.28%
|
856 |
+
[ Fri Sep 16 05:08:44 2022 ] Top5: 81.18%
|
857 |
+
[ Fri Sep 16 05:08:44 2022 ] Training epoch: 130
|
858 |
+
[ Fri Sep 16 05:08:48 2022 ] Batch(1/162) done. Loss: 0.0198 lr:0.000100 network_time: 0.0259
|
859 |
+
[ Fri Sep 16 05:10:01 2022 ] Batch(101/162) done. Loss: 0.0120 lr:0.000100 network_time: 0.0274
|
860 |
+
[ Fri Sep 16 05:10:45 2022 ] Eval epoch: 130
|
861 |
+
[ Fri Sep 16 05:12:33 2022 ] Mean test loss of 930 batches: 2.5282130241394043.
|
862 |
+
[ Fri Sep 16 05:12:33 2022 ] Top1: 55.60%
|
863 |
+
[ Fri Sep 16 05:12:34 2022 ] Top5: 81.39%
|
864 |
+
[ Fri Sep 16 05:12:34 2022 ] Training epoch: 131
|
865 |
+
[ Fri Sep 16 05:13:06 2022 ] Batch(39/162) done. Loss: 0.0072 lr:0.000100 network_time: 0.0219
|
866 |
+
[ Fri Sep 16 05:14:19 2022 ] Batch(139/162) done. Loss: 0.0100 lr:0.000100 network_time: 0.0271
|
867 |
+
[ Fri Sep 16 05:14:35 2022 ] Eval epoch: 131
|
868 |
+
[ Fri Sep 16 05:16:23 2022 ] Mean test loss of 930 batches: 2.547071933746338.
|
869 |
+
[ Fri Sep 16 05:16:23 2022 ] Top1: 55.65%
|
870 |
+
[ Fri Sep 16 05:16:23 2022 ] Top5: 81.40%
|
871 |
+
[ Fri Sep 16 05:16:24 2022 ] Training epoch: 132
|
872 |
+
[ Fri Sep 16 05:17:23 2022 ] Batch(77/162) done. Loss: 0.0125 lr:0.000100 network_time: 0.0322
|
873 |
+
[ Fri Sep 16 05:18:25 2022 ] Eval epoch: 132
|
874 |
+
[ Fri Sep 16 05:20:12 2022 ] Mean test loss of 930 batches: 2.5421905517578125.
|
875 |
+
[ Fri Sep 16 05:20:13 2022 ] Top1: 55.51%
|
876 |
+
[ Fri Sep 16 05:20:13 2022 ] Top5: 81.40%
|
877 |
+
[ Fri Sep 16 05:20:13 2022 ] Training epoch: 133
|
878 |
+
[ Fri Sep 16 05:20:28 2022 ] Batch(15/162) done. Loss: 0.0080 lr:0.000100 network_time: 0.0302
|
879 |
+
[ Fri Sep 16 05:21:41 2022 ] Batch(115/162) done. Loss: 0.0089 lr:0.000100 network_time: 0.0285
|
880 |
+
[ Fri Sep 16 05:22:15 2022 ] Eval epoch: 133
|
881 |
+
[ Fri Sep 16 05:24:04 2022 ] Mean test loss of 930 batches: 2.5551788806915283.
|
882 |
+
[ Fri Sep 16 05:24:04 2022 ] Top1: 55.47%
|
883 |
+
[ Fri Sep 16 05:24:05 2022 ] Top5: 81.22%
|
884 |
+
[ Fri Sep 16 05:24:05 2022 ] Training epoch: 134
|
885 |
+
[ Fri Sep 16 05:24:47 2022 ] Batch(53/162) done. Loss: 0.0142 lr:0.000100 network_time: 0.0318
|
886 |
+
[ Fri Sep 16 05:26:00 2022 ] Batch(153/162) done. Loss: 0.0062 lr:0.000100 network_time: 0.0561
|
887 |
+
[ Fri Sep 16 05:26:06 2022 ] Eval epoch: 134
|
888 |
+
[ Fri Sep 16 05:27:53 2022 ] Mean test loss of 930 batches: 2.6278786659240723.
|
889 |
+
[ Fri Sep 16 05:27:54 2022 ] Top1: 54.84%
|
890 |
+
[ Fri Sep 16 05:27:54 2022 ] Top5: 80.96%
|
891 |
+
[ Fri Sep 16 05:27:55 2022 ] Training epoch: 135
|
892 |
+
[ Fri Sep 16 05:29:05 2022 ] Batch(91/162) done. Loss: 0.0093 lr:0.000100 network_time: 0.0310
|
893 |
+
[ Fri Sep 16 05:29:56 2022 ] Eval epoch: 135
|
894 |
+
[ Fri Sep 16 05:31:44 2022 ] Mean test loss of 930 batches: 2.53376841545105.
|
895 |
+
[ Fri Sep 16 05:31:45 2022 ] Top1: 55.78%
|
896 |
+
[ Fri Sep 16 05:31:45 2022 ] Top5: 81.33%
|
897 |
+
[ Fri Sep 16 05:31:46 2022 ] Training epoch: 136
|
898 |
+
[ Fri Sep 16 05:32:11 2022 ] Batch(29/162) done. Loss: 0.0107 lr:0.000100 network_time: 0.0274
|
899 |
+
[ Fri Sep 16 05:33:23 2022 ] Batch(129/162) done. Loss: 0.0118 lr:0.000100 network_time: 0.0265
|
900 |
+
[ Fri Sep 16 05:33:47 2022 ] Eval epoch: 136
|
901 |
+
[ Fri Sep 16 05:35:34 2022 ] Mean test loss of 930 batches: 2.548306703567505.
|
902 |
+
[ Fri Sep 16 05:35:35 2022 ] Top1: 55.70%
|
903 |
+
[ Fri Sep 16 05:35:35 2022 ] Top5: 81.47%
|
904 |
+
[ Fri Sep 16 05:35:35 2022 ] Training epoch: 137
|
905 |
+
[ Fri Sep 16 05:36:28 2022 ] Batch(67/162) done. Loss: 0.0078 lr:0.000100 network_time: 0.0264
|
906 |
+
[ Fri Sep 16 05:37:36 2022 ] Eval epoch: 137
|
907 |
+
[ Fri Sep 16 05:39:24 2022 ] Mean test loss of 930 batches: 2.568533182144165.
|
908 |
+
[ Fri Sep 16 05:39:24 2022 ] Top1: 55.41%
|
909 |
+
[ Fri Sep 16 05:39:25 2022 ] Top5: 81.25%
|
910 |
+
[ Fri Sep 16 05:39:25 2022 ] Training epoch: 138
|
911 |
+
[ Fri Sep 16 05:39:33 2022 ] Batch(5/162) done. Loss: 0.0063 lr:0.000100 network_time: 0.0273
|
912 |
+
[ Fri Sep 16 05:40:45 2022 ] Batch(105/162) done. Loss: 0.0060 lr:0.000100 network_time: 0.0467
|
913 |
+
[ Fri Sep 16 05:41:26 2022 ] Eval epoch: 138
|
914 |
+
[ Fri Sep 16 05:43:14 2022 ] Mean test loss of 930 batches: 2.5520284175872803.
|
915 |
+
[ Fri Sep 16 05:43:15 2022 ] Top1: 55.65%
|
916 |
+
[ Fri Sep 16 05:43:15 2022 ] Top5: 81.48%
|
917 |
+
[ Fri Sep 16 05:43:15 2022 ] Training epoch: 139
|
918 |
+
[ Fri Sep 16 05:43:50 2022 ] Batch(43/162) done. Loss: 0.0217 lr:0.000100 network_time: 0.0277
|
919 |
+
[ Fri Sep 16 05:45:03 2022 ] Batch(143/162) done. Loss: 0.0124 lr:0.000100 network_time: 0.0297
|
920 |
+
[ Fri Sep 16 05:45:16 2022 ] Eval epoch: 139
|
921 |
+
[ Fri Sep 16 05:47:05 2022 ] Mean test loss of 930 batches: 2.5655524730682373.
|
922 |
+
[ Fri Sep 16 05:47:05 2022 ] Top1: 55.30%
|
923 |
+
[ Fri Sep 16 05:47:06 2022 ] Top5: 81.07%
|
924 |
+
[ Fri Sep 16 05:47:06 2022 ] Training epoch: 140
|
925 |
+
[ Fri Sep 16 05:48:08 2022 ] Batch(81/162) done. Loss: 0.0033 lr:0.000100 network_time: 0.0285
|
926 |
+
[ Fri Sep 16 05:49:07 2022 ] Eval epoch: 140
|
927 |
+
[ Fri Sep 16 05:50:55 2022 ] Mean test loss of 930 batches: 2.5775716304779053.
|
928 |
+
[ Fri Sep 16 05:50:55 2022 ] Top1: 55.40%
|
929 |
+
[ Fri Sep 16 05:50:56 2022 ] Top5: 81.10%
|
ckpt/Others/Shift-GCN/ntu120_xset/ntu120_joint_xset/shift_gcn.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torch.autograd import Variable
|
5 |
+
import numpy as np
|
6 |
+
import math
|
7 |
+
|
8 |
+
import sys
|
9 |
+
sys.path.append("./model/Temporal_shift/")
|
10 |
+
|
11 |
+
from cuda.shift import Shift
|
12 |
+
|
13 |
+
|
14 |
+
def import_class(name):
|
15 |
+
components = name.split('.')
|
16 |
+
mod = __import__(components[0])
|
17 |
+
for comp in components[1:]:
|
18 |
+
mod = getattr(mod, comp)
|
19 |
+
return mod
|
20 |
+
|
21 |
+
def conv_init(conv):
|
22 |
+
nn.init.kaiming_normal(conv.weight, mode='fan_out')
|
23 |
+
nn.init.constant(conv.bias, 0)
|
24 |
+
|
25 |
+
|
26 |
+
def bn_init(bn, scale):
|
27 |
+
nn.init.constant(bn.weight, scale)
|
28 |
+
nn.init.constant(bn.bias, 0)
|
29 |
+
|
30 |
+
|
31 |
+
class tcn(nn.Module):
|
32 |
+
def __init__(self, in_channels, out_channels, kernel_size=9, stride=1):
|
33 |
+
super(tcn, self).__init__()
|
34 |
+
pad = int((kernel_size - 1) / 2)
|
35 |
+
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=(kernel_size, 1), padding=(pad, 0),
|
36 |
+
stride=(stride, 1))
|
37 |
+
|
38 |
+
self.bn = nn.BatchNorm2d(out_channels)
|
39 |
+
self.relu = nn.ReLU()
|
40 |
+
conv_init(self.conv)
|
41 |
+
bn_init(self.bn, 1)
|
42 |
+
|
43 |
+
def forward(self, x):
|
44 |
+
x = self.bn(self.conv(x))
|
45 |
+
return x
|
46 |
+
|
47 |
+
|
48 |
+
class Shift_tcn(nn.Module):
|
49 |
+
def __init__(self, in_channels, out_channels, kernel_size=9, stride=1):
|
50 |
+
super(Shift_tcn, self).__init__()
|
51 |
+
|
52 |
+
self.in_channels = in_channels
|
53 |
+
self.out_channels = out_channels
|
54 |
+
|
55 |
+
self.bn = nn.BatchNorm2d(in_channels)
|
56 |
+
self.bn2 = nn.BatchNorm2d(in_channels)
|
57 |
+
bn_init(self.bn2, 1)
|
58 |
+
self.relu = nn.ReLU(inplace=True)
|
59 |
+
self.shift_in = Shift(channel=in_channels, stride=1, init_scale=1)
|
60 |
+
self.shift_out = Shift(channel=out_channels, stride=stride, init_scale=1)
|
61 |
+
|
62 |
+
self.temporal_linear = nn.Conv2d(in_channels, out_channels, 1)
|
63 |
+
nn.init.kaiming_normal(self.temporal_linear.weight, mode='fan_out')
|
64 |
+
|
65 |
+
def forward(self, x):
|
66 |
+
x = self.bn(x)
|
67 |
+
# shift1
|
68 |
+
x = self.shift_in(x)
|
69 |
+
x = self.temporal_linear(x)
|
70 |
+
x = self.relu(x)
|
71 |
+
# shift2
|
72 |
+
x = self.shift_out(x)
|
73 |
+
x = self.bn2(x)
|
74 |
+
return x
|
75 |
+
|
76 |
+
|
77 |
+
class Shift_gcn(nn.Module):
|
78 |
+
def __init__(self, in_channels, out_channels, A, coff_embedding=4, num_subset=3):
|
79 |
+
super(Shift_gcn, self).__init__()
|
80 |
+
self.in_channels = in_channels
|
81 |
+
self.out_channels = out_channels
|
82 |
+
if in_channels != out_channels:
|
83 |
+
self.down = nn.Sequential(
|
84 |
+
nn.Conv2d(in_channels, out_channels, 1),
|
85 |
+
nn.BatchNorm2d(out_channels)
|
86 |
+
)
|
87 |
+
else:
|
88 |
+
self.down = lambda x: x
|
89 |
+
|
90 |
+
self.Linear_weight = nn.Parameter(torch.zeros(in_channels, out_channels, requires_grad=True, device='cuda'), requires_grad=True)
|
91 |
+
nn.init.normal_(self.Linear_weight, 0,math.sqrt(1.0/out_channels))
|
92 |
+
|
93 |
+
self.Linear_bias = nn.Parameter(torch.zeros(1,1,out_channels,requires_grad=True,device='cuda'),requires_grad=True)
|
94 |
+
nn.init.constant(self.Linear_bias, 0)
|
95 |
+
|
96 |
+
self.Feature_Mask = nn.Parameter(torch.ones(1,25,in_channels, requires_grad=True,device='cuda'),requires_grad=True)
|
97 |
+
nn.init.constant(self.Feature_Mask, 0)
|
98 |
+
|
99 |
+
self.bn = nn.BatchNorm1d(25*out_channels)
|
100 |
+
self.relu = nn.ReLU()
|
101 |
+
|
102 |
+
for m in self.modules():
|
103 |
+
if isinstance(m, nn.Conv2d):
|
104 |
+
conv_init(m)
|
105 |
+
elif isinstance(m, nn.BatchNorm2d):
|
106 |
+
bn_init(m, 1)
|
107 |
+
|
108 |
+
index_array = np.empty(25*in_channels).astype(np.int)
|
109 |
+
for i in range(25):
|
110 |
+
for j in range(in_channels):
|
111 |
+
index_array[i*in_channels + j] = (i*in_channels + j + j*in_channels)%(in_channels*25)
|
112 |
+
self.shift_in = nn.Parameter(torch.from_numpy(index_array),requires_grad=False)
|
113 |
+
|
114 |
+
index_array = np.empty(25*out_channels).astype(np.int)
|
115 |
+
for i in range(25):
|
116 |
+
for j in range(out_channels):
|
117 |
+
index_array[i*out_channels + j] = (i*out_channels + j - j*out_channels)%(out_channels*25)
|
118 |
+
self.shift_out = nn.Parameter(torch.from_numpy(index_array),requires_grad=False)
|
119 |
+
|
120 |
+
|
121 |
+
def forward(self, x0):
|
122 |
+
n, c, t, v = x0.size()
|
123 |
+
x = x0.permute(0,2,3,1).contiguous()
|
124 |
+
|
125 |
+
# shift1
|
126 |
+
x = x.view(n*t,v*c)
|
127 |
+
x = torch.index_select(x, 1, self.shift_in)
|
128 |
+
x = x.view(n*t,v,c)
|
129 |
+
x = x * (torch.tanh(self.Feature_Mask)+1)
|
130 |
+
|
131 |
+
x = torch.einsum('nwc,cd->nwd', (x, self.Linear_weight)).contiguous() # nt,v,c
|
132 |
+
x = x + self.Linear_bias
|
133 |
+
|
134 |
+
# shift2
|
135 |
+
x = x.view(n*t,-1)
|
136 |
+
x = torch.index_select(x, 1, self.shift_out)
|
137 |
+
x = self.bn(x)
|
138 |
+
x = x.view(n,t,v,self.out_channels).permute(0,3,1,2) # n,c,t,v
|
139 |
+
|
140 |
+
x = x + self.down(x0)
|
141 |
+
x = self.relu(x)
|
142 |
+
return x
|
143 |
+
|
144 |
+
|
145 |
+
class TCN_GCN_unit(nn.Module):
|
146 |
+
def __init__(self, in_channels, out_channels, A, stride=1, residual=True):
|
147 |
+
super(TCN_GCN_unit, self).__init__()
|
148 |
+
self.gcn1 = Shift_gcn(in_channels, out_channels, A)
|
149 |
+
self.tcn1 = Shift_tcn(out_channels, out_channels, stride=stride)
|
150 |
+
self.relu = nn.ReLU()
|
151 |
+
|
152 |
+
if not residual:
|
153 |
+
self.residual = lambda x: 0
|
154 |
+
|
155 |
+
elif (in_channels == out_channels) and (stride == 1):
|
156 |
+
self.residual = lambda x: x
|
157 |
+
else:
|
158 |
+
self.residual = tcn(in_channels, out_channels, kernel_size=1, stride=stride)
|
159 |
+
|
160 |
+
def forward(self, x):
|
161 |
+
x = self.tcn1(self.gcn1(x)) + self.residual(x)
|
162 |
+
return self.relu(x)
|
163 |
+
|
164 |
+
|
165 |
+
class Model(nn.Module):
|
166 |
+
def __init__(self, num_class=60, num_point=25, num_person=2, graph=None, graph_args=dict(), in_channels=3):
|
167 |
+
super(Model, self).__init__()
|
168 |
+
|
169 |
+
if graph is None:
|
170 |
+
raise ValueError()
|
171 |
+
else:
|
172 |
+
Graph = import_class(graph)
|
173 |
+
self.graph = Graph(**graph_args)
|
174 |
+
|
175 |
+
A = self.graph.A
|
176 |
+
self.data_bn = nn.BatchNorm1d(num_person * in_channels * num_point)
|
177 |
+
|
178 |
+
self.l1 = TCN_GCN_unit(3, 64, A, residual=False)
|
179 |
+
self.l2 = TCN_GCN_unit(64, 64, A)
|
180 |
+
self.l3 = TCN_GCN_unit(64, 64, A)
|
181 |
+
self.l4 = TCN_GCN_unit(64, 64, A)
|
182 |
+
self.l5 = TCN_GCN_unit(64, 128, A, stride=2)
|
183 |
+
self.l6 = TCN_GCN_unit(128, 128, A)
|
184 |
+
self.l7 = TCN_GCN_unit(128, 128, A)
|
185 |
+
self.l8 = TCN_GCN_unit(128, 256, A, stride=2)
|
186 |
+
self.l9 = TCN_GCN_unit(256, 256, A)
|
187 |
+
self.l10 = TCN_GCN_unit(256, 256, A)
|
188 |
+
|
189 |
+
self.fc = nn.Linear(256, num_class)
|
190 |
+
nn.init.normal(self.fc.weight, 0, math.sqrt(2. / num_class))
|
191 |
+
bn_init(self.data_bn, 1)
|
192 |
+
|
193 |
+
def forward(self, x):
|
194 |
+
N, C, T, V, M = x.size()
|
195 |
+
|
196 |
+
x = x.permute(0, 4, 3, 1, 2).contiguous().view(N, M * V * C, T)
|
197 |
+
x = self.data_bn(x)
|
198 |
+
x = x.view(N, M, V, C, T).permute(0, 1, 3, 4, 2).contiguous().view(N * M, C, T, V)
|
199 |
+
|
200 |
+
x = self.l1(x)
|
201 |
+
x = self.l2(x)
|
202 |
+
x = self.l3(x)
|
203 |
+
x = self.l4(x)
|
204 |
+
x = self.l5(x)
|
205 |
+
x = self.l6(x)
|
206 |
+
x = self.l7(x)
|
207 |
+
x = self.l8(x)
|
208 |
+
x = self.l9(x)
|
209 |
+
x = self.l10(x)
|
210 |
+
|
211 |
+
# N*M,C,T,V
|
212 |
+
c_new = x.size(1)
|
213 |
+
x = x.view(N, M, c_new, -1)
|
214 |
+
x = x.mean(3).mean(1)
|
215 |
+
|
216 |
+
return self.fc(x)
|
ckpt/Others/Shift-GCN/ntu120_xsub/ntu120_bone_motion_xsub/config.yaml
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Experiment_name: ntu120_bone_motion_xsub
|
2 |
+
base_lr: 0.1
|
3 |
+
batch_size: 64
|
4 |
+
config: ./config/ntu120_xsub/train_bone_motion.yaml
|
5 |
+
device:
|
6 |
+
- 2
|
7 |
+
- 3
|
8 |
+
eval_interval: 5
|
9 |
+
feeder: feeders.feeder.Feeder
|
10 |
+
ignore_weights: []
|
11 |
+
log_interval: 100
|
12 |
+
model: model.shift_gcn.Model
|
13 |
+
model_args:
|
14 |
+
graph: graph.ntu_rgb_d.Graph
|
15 |
+
graph_args:
|
16 |
+
labeling_mode: spatial
|
17 |
+
num_class: 120
|
18 |
+
num_person: 2
|
19 |
+
num_point: 25
|
20 |
+
model_saved_name: ./save_models/ntu120_bone_motion_xsub
|
21 |
+
nesterov: true
|
22 |
+
num_epoch: 140
|
23 |
+
num_worker: 32
|
24 |
+
only_train_epoch: 1
|
25 |
+
only_train_part: true
|
26 |
+
optimizer: SGD
|
27 |
+
phase: train
|
28 |
+
print_log: true
|
29 |
+
save_interval: 2
|
30 |
+
save_score: false
|
31 |
+
seed: 1
|
32 |
+
show_topk:
|
33 |
+
- 1
|
34 |
+
- 5
|
35 |
+
start_epoch: 0
|
36 |
+
step:
|
37 |
+
- 60
|
38 |
+
- 80
|
39 |
+
- 100
|
40 |
+
test_batch_size: 64
|
41 |
+
test_feeder_args:
|
42 |
+
data_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/val_data_bone_motion.npy
|
43 |
+
label_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/val_label.pkl
|
44 |
+
train_feeder_args:
|
45 |
+
data_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/train_data_bone_motion.npy
|
46 |
+
debug: false
|
47 |
+
label_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/train_label.pkl
|
48 |
+
normalization: false
|
49 |
+
random_choose: false
|
50 |
+
random_move: false
|
51 |
+
random_shift: false
|
52 |
+
window_size: -1
|
53 |
+
warm_up_epoch: 0
|
54 |
+
weight_decay: 0.0001
|
55 |
+
weights: null
|
56 |
+
work_dir: ./work_dir/ntu120_bone_motion_xsub
|
ckpt/Others/Shift-GCN/ntu120_xsub/ntu120_bone_motion_xsub/eval_results/best_acc.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:74a9778b7fd6291e4b9dc1beaa1efba338b1ce78ee62400e6010224782ba6c2f
|
3 |
+
size 29946137
|
ckpt/Others/Shift-GCN/ntu120_xsub/ntu120_bone_motion_xsub/log.txt
ADDED
@@ -0,0 +1,1043 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[ Wed Sep 14 18:31:36 2022 ] Parameters:
|
2 |
+
{'work_dir': './work_dir/ntu120_bone_motion_xsub', 'model_saved_name': './save_models/ntu120_bone_motion_xsub', 'Experiment_name': 'ntu120_bone_motion_xsub', 'config': './config/ntu120_xsub/train_bone_motion.yaml', 'phase': 'train', 'save_score': False, 'seed': 1, 'log_interval': 100, 'save_interval': 2, 'eval_interval': 5, 'print_log': True, 'show_topk': [1, 5], 'feeder': 'feeders.feeder.Feeder', 'num_worker': 32, 'train_feeder_args': {'data_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/train_data_bone_motion.npy', 'label_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/train_label.pkl', 'debug': False, 'random_choose': False, 'random_shift': False, 'random_move': False, 'window_size': -1, 'normalization': False}, 'test_feeder_args': {'data_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/val_data_bone_motion.npy', 'label_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/val_label.pkl'}, 'model': 'model.shift_gcn.Model', 'model_args': {'num_class': 120, 'num_point': 25, 'num_person': 2, 'graph': 'graph.ntu_rgb_d.Graph', 'graph_args': {'labeling_mode': 'spatial'}}, 'weights': None, 'ignore_weights': [], 'base_lr': 0.1, 'step': [60, 80, 100], 'device': [2, 3], 'optimizer': 'SGD', 'nesterov': True, 'batch_size': 64, 'test_batch_size': 64, 'start_epoch': 0, 'num_epoch': 140, 'weight_decay': 0.0001, 'only_train_part': True, 'only_train_epoch': 1, 'warm_up_epoch': 0}
|
3 |
+
|
4 |
+
[ Wed Sep 14 18:31:36 2022 ] Training epoch: 1
|
5 |
+
[ Wed Sep 14 18:32:54 2022 ] Batch(99/243) done. Loss: 3.7551 lr:0.100000 network_time: 0.0252
|
6 |
+
[ Wed Sep 14 18:34:07 2022 ] Batch(199/243) done. Loss: 3.0830 lr:0.100000 network_time: 0.0270
|
7 |
+
[ Wed Sep 14 18:34:38 2022 ] Eval epoch: 1
|
8 |
+
[ Wed Sep 14 18:36:12 2022 ] Mean test loss of 796 batches: 5.711165904998779.
|
9 |
+
[ Wed Sep 14 18:36:12 2022 ] Top1: 8.25%
|
10 |
+
[ Wed Sep 14 18:36:12 2022 ] Top5: 22.59%
|
11 |
+
[ Wed Sep 14 18:36:13 2022 ] Training epoch: 2
|
12 |
+
[ Wed Sep 14 18:36:58 2022 ] Batch(56/243) done. Loss: 2.6547 lr:0.100000 network_time: 0.0297
|
13 |
+
[ Wed Sep 14 18:38:10 2022 ] Batch(156/243) done. Loss: 2.3958 lr:0.100000 network_time: 0.0310
|
14 |
+
[ Wed Sep 14 18:39:13 2022 ] Eval epoch: 2
|
15 |
+
[ Wed Sep 14 18:40:47 2022 ] Mean test loss of 796 batches: 4.712782859802246.
|
16 |
+
[ Wed Sep 14 18:40:47 2022 ] Top1: 14.20%
|
17 |
+
[ Wed Sep 14 18:40:48 2022 ] Top5: 36.21%
|
18 |
+
[ Wed Sep 14 18:40:48 2022 ] Training epoch: 3
|
19 |
+
[ Wed Sep 14 18:41:01 2022 ] Batch(13/243) done. Loss: 1.9252 lr:0.100000 network_time: 0.0304
|
20 |
+
[ Wed Sep 14 18:42:14 2022 ] Batch(113/243) done. Loss: 1.6989 lr:0.100000 network_time: 0.0279
|
21 |
+
[ Wed Sep 14 18:43:27 2022 ] Batch(213/243) done. Loss: 1.8036 lr:0.100000 network_time: 0.0274
|
22 |
+
[ Wed Sep 14 18:43:49 2022 ] Eval epoch: 3
|
23 |
+
[ Wed Sep 14 18:45:23 2022 ] Mean test loss of 796 batches: 4.215649127960205.
|
24 |
+
[ Wed Sep 14 18:45:23 2022 ] Top1: 20.46%
|
25 |
+
[ Wed Sep 14 18:45:24 2022 ] Top5: 45.79%
|
26 |
+
[ Wed Sep 14 18:45:24 2022 ] Training epoch: 4
|
27 |
+
[ Wed Sep 14 18:46:19 2022 ] Batch(70/243) done. Loss: 1.2138 lr:0.100000 network_time: 0.0311
|
28 |
+
[ Wed Sep 14 18:47:32 2022 ] Batch(170/243) done. Loss: 1.4167 lr:0.100000 network_time: 0.0277
|
29 |
+
[ Wed Sep 14 18:48:24 2022 ] Eval epoch: 4
|
30 |
+
[ Wed Sep 14 18:49:58 2022 ] Mean test loss of 796 batches: 3.361840009689331.
|
31 |
+
[ Wed Sep 14 18:49:58 2022 ] Top1: 22.90%
|
32 |
+
[ Wed Sep 14 18:49:59 2022 ] Top5: 50.33%
|
33 |
+
[ Wed Sep 14 18:49:59 2022 ] Training epoch: 5
|
34 |
+
[ Wed Sep 14 18:50:23 2022 ] Batch(27/243) done. Loss: 1.5494 lr:0.100000 network_time: 0.0280
|
35 |
+
[ Wed Sep 14 18:51:35 2022 ] Batch(127/243) done. Loss: 1.2381 lr:0.100000 network_time: 0.0260
|
36 |
+
[ Wed Sep 14 18:52:48 2022 ] Batch(227/243) done. Loss: 1.5641 lr:0.100000 network_time: 0.0264
|
37 |
+
[ Wed Sep 14 18:52:59 2022 ] Eval epoch: 5
|
38 |
+
[ Wed Sep 14 18:54:33 2022 ] Mean test loss of 796 batches: 3.790829658508301.
|
39 |
+
[ Wed Sep 14 18:54:34 2022 ] Top1: 20.54%
|
40 |
+
[ Wed Sep 14 18:54:34 2022 ] Top5: 45.11%
|
41 |
+
[ Wed Sep 14 18:54:34 2022 ] Training epoch: 6
|
42 |
+
[ Wed Sep 14 18:55:39 2022 ] Batch(84/243) done. Loss: 1.1953 lr:0.100000 network_time: 0.0270
|
43 |
+
[ Wed Sep 14 18:56:52 2022 ] Batch(184/243) done. Loss: 1.1292 lr:0.100000 network_time: 0.0270
|
44 |
+
[ Wed Sep 14 18:57:34 2022 ] Eval epoch: 6
|
45 |
+
[ Wed Sep 14 18:59:08 2022 ] Mean test loss of 796 batches: 3.924736499786377.
|
46 |
+
[ Wed Sep 14 18:59:09 2022 ] Top1: 24.96%
|
47 |
+
[ Wed Sep 14 18:59:09 2022 ] Top5: 56.70%
|
48 |
+
[ Wed Sep 14 18:59:09 2022 ] Training epoch: 7
|
49 |
+
[ Wed Sep 14 18:59:43 2022 ] Batch(41/243) done. Loss: 1.1832 lr:0.100000 network_time: 0.0265
|
50 |
+
[ Wed Sep 14 19:00:55 2022 ] Batch(141/243) done. Loss: 1.0630 lr:0.100000 network_time: 0.0269
|
51 |
+
[ Wed Sep 14 19:02:08 2022 ] Batch(241/243) done. Loss: 0.9897 lr:0.100000 network_time: 0.0301
|
52 |
+
[ Wed Sep 14 19:02:09 2022 ] Eval epoch: 7
|
53 |
+
[ Wed Sep 14 19:03:43 2022 ] Mean test loss of 796 batches: 2.814431667327881.
|
54 |
+
[ Wed Sep 14 19:03:44 2022 ] Top1: 30.49%
|
55 |
+
[ Wed Sep 14 19:03:44 2022 ] Top5: 64.70%
|
56 |
+
[ Wed Sep 14 19:03:44 2022 ] Training epoch: 8
|
57 |
+
[ Wed Sep 14 19:04:59 2022 ] Batch(98/243) done. Loss: 0.7183 lr:0.100000 network_time: 0.0310
|
58 |
+
[ Wed Sep 14 19:06:12 2022 ] Batch(198/243) done. Loss: 0.9279 lr:0.100000 network_time: 0.0288
|
59 |
+
[ Wed Sep 14 19:06:44 2022 ] Eval epoch: 8
|
60 |
+
[ Wed Sep 14 19:08:17 2022 ] Mean test loss of 796 batches: 3.179093599319458.
|
61 |
+
[ Wed Sep 14 19:08:18 2022 ] Top1: 27.80%
|
62 |
+
[ Wed Sep 14 19:08:18 2022 ] Top5: 60.67%
|
63 |
+
[ Wed Sep 14 19:08:18 2022 ] Training epoch: 9
|
64 |
+
[ Wed Sep 14 19:09:02 2022 ] Batch(55/243) done. Loss: 0.9159 lr:0.100000 network_time: 0.0266
|
65 |
+
[ Wed Sep 14 19:10:15 2022 ] Batch(155/243) done. Loss: 0.8653 lr:0.100000 network_time: 0.0302
|
66 |
+
[ Wed Sep 14 19:11:18 2022 ] Eval epoch: 9
|
67 |
+
[ Wed Sep 14 19:12:53 2022 ] Mean test loss of 796 batches: 3.112769603729248.
|
68 |
+
[ Wed Sep 14 19:12:53 2022 ] Top1: 29.67%
|
69 |
+
[ Wed Sep 14 19:12:53 2022 ] Top5: 64.43%
|
70 |
+
[ Wed Sep 14 19:12:54 2022 ] Training epoch: 10
|
71 |
+
[ Wed Sep 14 19:13:06 2022 ] Batch(12/243) done. Loss: 1.1210 lr:0.100000 network_time: 0.0301
|
72 |
+
[ Wed Sep 14 19:14:19 2022 ] Batch(112/243) done. Loss: 1.0336 lr:0.100000 network_time: 0.0268
|
73 |
+
[ Wed Sep 14 19:15:32 2022 ] Batch(212/243) done. Loss: 1.4129 lr:0.100000 network_time: 0.0265
|
74 |
+
[ Wed Sep 14 19:15:54 2022 ] Eval epoch: 10
|
75 |
+
[ Wed Sep 14 19:17:28 2022 ] Mean test loss of 796 batches: 2.717728614807129.
|
76 |
+
[ Wed Sep 14 19:17:28 2022 ] Top1: 36.83%
|
77 |
+
[ Wed Sep 14 19:17:28 2022 ] Top5: 71.44%
|
78 |
+
[ Wed Sep 14 19:17:29 2022 ] Training epoch: 11
|
79 |
+
[ Wed Sep 14 19:18:23 2022 ] Batch(69/243) done. Loss: 0.8001 lr:0.100000 network_time: 0.0280
|
80 |
+
[ Wed Sep 14 19:19:36 2022 ] Batch(169/243) done. Loss: 0.6964 lr:0.100000 network_time: 0.0265
|
81 |
+
[ Wed Sep 14 19:20:29 2022 ] Eval epoch: 11
|
82 |
+
[ Wed Sep 14 19:22:02 2022 ] Mean test loss of 796 batches: 2.9447152614593506.
|
83 |
+
[ Wed Sep 14 19:22:03 2022 ] Top1: 35.68%
|
84 |
+
[ Wed Sep 14 19:22:03 2022 ] Top5: 69.27%
|
85 |
+
[ Wed Sep 14 19:22:03 2022 ] Training epoch: 12
|
86 |
+
[ Wed Sep 14 19:22:26 2022 ] Batch(26/243) done. Loss: 0.4444 lr:0.100000 network_time: 0.0287
|
87 |
+
[ Wed Sep 14 19:23:39 2022 ] Batch(126/243) done. Loss: 0.7001 lr:0.100000 network_time: 0.0276
|
88 |
+
[ Wed Sep 14 19:24:52 2022 ] Batch(226/243) done. Loss: 1.1727 lr:0.100000 network_time: 0.0411
|
89 |
+
[ Wed Sep 14 19:25:03 2022 ] Eval epoch: 12
|
90 |
+
[ Wed Sep 14 19:26:37 2022 ] Mean test loss of 796 batches: 2.774251699447632.
|
91 |
+
[ Wed Sep 14 19:26:37 2022 ] Top1: 36.09%
|
92 |
+
[ Wed Sep 14 19:26:38 2022 ] Top5: 70.66%
|
93 |
+
[ Wed Sep 14 19:26:38 2022 ] Training epoch: 13
|
94 |
+
[ Wed Sep 14 19:27:42 2022 ] Batch(83/243) done. Loss: 0.6696 lr:0.100000 network_time: 0.0266
|
95 |
+
[ Wed Sep 14 19:28:55 2022 ] Batch(183/243) done. Loss: 0.6523 lr:0.100000 network_time: 0.0307
|
96 |
+
[ Wed Sep 14 19:29:38 2022 ] Eval epoch: 13
|
97 |
+
[ Wed Sep 14 19:31:12 2022 ] Mean test loss of 796 batches: 3.165262460708618.
|
98 |
+
[ Wed Sep 14 19:31:12 2022 ] Top1: 31.68%
|
99 |
+
[ Wed Sep 14 19:31:13 2022 ] Top5: 66.37%
|
100 |
+
[ Wed Sep 14 19:31:13 2022 ] Training epoch: 14
|
101 |
+
[ Wed Sep 14 19:31:45 2022 ] Batch(40/243) done. Loss: 0.4915 lr:0.100000 network_time: 0.0273
|
102 |
+
[ Wed Sep 14 19:32:58 2022 ] Batch(140/243) done. Loss: 0.9805 lr:0.100000 network_time: 0.0271
|
103 |
+
[ Wed Sep 14 19:34:11 2022 ] Batch(240/243) done. Loss: 0.8167 lr:0.100000 network_time: 0.0306
|
104 |
+
[ Wed Sep 14 19:34:13 2022 ] Eval epoch: 14
|
105 |
+
[ Wed Sep 14 19:35:47 2022 ] Mean test loss of 796 batches: 2.915220022201538.
|
106 |
+
[ Wed Sep 14 19:35:47 2022 ] Top1: 37.93%
|
107 |
+
[ Wed Sep 14 19:35:47 2022 ] Top5: 70.42%
|
108 |
+
[ Wed Sep 14 19:35:48 2022 ] Training epoch: 15
|
109 |
+
[ Wed Sep 14 19:37:02 2022 ] Batch(97/243) done. Loss: 0.7217 lr:0.100000 network_time: 0.0317
|
110 |
+
[ Wed Sep 14 19:38:15 2022 ] Batch(197/243) done. Loss: 0.4206 lr:0.100000 network_time: 0.0292
|
111 |
+
[ Wed Sep 14 19:38:48 2022 ] Eval epoch: 15
|
112 |
+
[ Wed Sep 14 19:40:22 2022 ] Mean test loss of 796 batches: 3.5348544120788574.
|
113 |
+
[ Wed Sep 14 19:40:22 2022 ] Top1: 31.55%
|
114 |
+
[ Wed Sep 14 19:40:23 2022 ] Top5: 65.92%
|
115 |
+
[ Wed Sep 14 19:40:23 2022 ] Training epoch: 16
|
116 |
+
[ Wed Sep 14 19:41:06 2022 ] Batch(54/243) done. Loss: 0.5286 lr:0.100000 network_time: 0.0268
|
117 |
+
[ Wed Sep 14 19:42:19 2022 ] Batch(154/243) done. Loss: 0.6408 lr:0.100000 network_time: 0.0269
|
118 |
+
[ Wed Sep 14 19:43:23 2022 ] Eval epoch: 16
|
119 |
+
[ Wed Sep 14 19:44:57 2022 ] Mean test loss of 796 batches: 3.115510940551758.
|
120 |
+
[ Wed Sep 14 19:44:57 2022 ] Top1: 35.87%
|
121 |
+
[ Wed Sep 14 19:44:58 2022 ] Top5: 69.59%
|
122 |
+
[ Wed Sep 14 19:44:58 2022 ] Training epoch: 17
|
123 |
+
[ Wed Sep 14 19:45:10 2022 ] Batch(11/243) done. Loss: 0.7054 lr:0.100000 network_time: 0.0268
|
124 |
+
[ Wed Sep 14 19:46:22 2022 ] Batch(111/243) done. Loss: 0.6154 lr:0.100000 network_time: 0.0281
|
125 |
+
[ Wed Sep 14 19:47:35 2022 ] Batch(211/243) done. Loss: 0.9023 lr:0.100000 network_time: 0.0271
|
126 |
+
[ Wed Sep 14 19:47:58 2022 ] Eval epoch: 17
|
127 |
+
[ Wed Sep 14 19:49:32 2022 ] Mean test loss of 796 batches: 3.3053030967712402.
|
128 |
+
[ Wed Sep 14 19:49:33 2022 ] Top1: 35.22%
|
129 |
+
[ Wed Sep 14 19:49:33 2022 ] Top5: 68.90%
|
130 |
+
[ Wed Sep 14 19:49:34 2022 ] Training epoch: 18
|
131 |
+
[ Wed Sep 14 19:50:27 2022 ] Batch(68/243) done. Loss: 0.7232 lr:0.100000 network_time: 0.0274
|
132 |
+
[ Wed Sep 14 19:51:40 2022 ] Batch(168/243) done. Loss: 0.4455 lr:0.100000 network_time: 0.0272
|
133 |
+
[ Wed Sep 14 19:52:34 2022 ] Eval epoch: 18
|
134 |
+
[ Wed Sep 14 19:54:07 2022 ] Mean test loss of 796 batches: 2.651683807373047.
|
135 |
+
[ Wed Sep 14 19:54:08 2022 ] Top1: 40.03%
|
136 |
+
[ Wed Sep 14 19:54:08 2022 ] Top5: 74.53%
|
137 |
+
[ Wed Sep 14 19:54:08 2022 ] Training epoch: 19
|
138 |
+
[ Wed Sep 14 19:54:30 2022 ] Batch(25/243) done. Loss: 0.5252 lr:0.100000 network_time: 0.0248
|
139 |
+
[ Wed Sep 14 19:55:43 2022 ] Batch(125/243) done. Loss: 0.5577 lr:0.100000 network_time: 0.0294
|
140 |
+
[ Wed Sep 14 19:56:56 2022 ] Batch(225/243) done. Loss: 0.8240 lr:0.100000 network_time: 0.0261
|
141 |
+
[ Wed Sep 14 19:57:08 2022 ] Eval epoch: 19
|
142 |
+
[ Wed Sep 14 19:58:42 2022 ] Mean test loss of 796 batches: 2.9685568809509277.
|
143 |
+
[ Wed Sep 14 19:58:42 2022 ] Top1: 39.34%
|
144 |
+
[ Wed Sep 14 19:58:43 2022 ] Top5: 74.07%
|
145 |
+
[ Wed Sep 14 19:58:43 2022 ] Training epoch: 20
|
146 |
+
[ Wed Sep 14 19:59:46 2022 ] Batch(82/243) done. Loss: 0.5369 lr:0.100000 network_time: 0.0301
|
147 |
+
[ Wed Sep 14 20:00:59 2022 ] Batch(182/243) done. Loss: 0.5425 lr:0.100000 network_time: 0.0310
|
148 |
+
[ Wed Sep 14 20:01:43 2022 ] Eval epoch: 20
|
149 |
+
[ Wed Sep 14 20:03:17 2022 ] Mean test loss of 796 batches: 2.9139246940612793.
|
150 |
+
[ Wed Sep 14 20:03:18 2022 ] Top1: 38.98%
|
151 |
+
[ Wed Sep 14 20:03:18 2022 ] Top5: 73.25%
|
152 |
+
[ Wed Sep 14 20:03:19 2022 ] Training epoch: 21
|
153 |
+
[ Wed Sep 14 20:03:51 2022 ] Batch(39/243) done. Loss: 0.3098 lr:0.100000 network_time: 0.0345
|
154 |
+
[ Wed Sep 14 20:05:04 2022 ] Batch(139/243) done. Loss: 0.5166 lr:0.100000 network_time: 0.0275
|
155 |
+
[ Wed Sep 14 20:06:16 2022 ] Batch(239/243) done. Loss: 0.6568 lr:0.100000 network_time: 0.0268
|
156 |
+
[ Wed Sep 14 20:06:19 2022 ] Eval epoch: 21
|
157 |
+
[ Wed Sep 14 20:07:52 2022 ] Mean test loss of 796 batches: 3.3424649238586426.
|
158 |
+
[ Wed Sep 14 20:07:53 2022 ] Top1: 36.41%
|
159 |
+
[ Wed Sep 14 20:07:54 2022 ] Top5: 70.73%
|
160 |
+
[ Wed Sep 14 20:07:54 2022 ] Training epoch: 22
|
161 |
+
[ Wed Sep 14 20:09:08 2022 ] Batch(96/243) done. Loss: 0.4496 lr:0.100000 network_time: 0.0277
|
162 |
+
[ Wed Sep 14 20:10:21 2022 ] Batch(196/243) done. Loss: 0.4193 lr:0.100000 network_time: 0.0317
|
163 |
+
[ Wed Sep 14 20:10:54 2022 ] Eval epoch: 22
|
164 |
+
[ Wed Sep 14 20:12:28 2022 ] Mean test loss of 796 batches: 2.9043772220611572.
|
165 |
+
[ Wed Sep 14 20:12:28 2022 ] Top1: 40.20%
|
166 |
+
[ Wed Sep 14 20:12:29 2022 ] Top5: 73.53%
|
167 |
+
[ Wed Sep 14 20:12:29 2022 ] Training epoch: 23
|
168 |
+
[ Wed Sep 14 20:13:11 2022 ] Batch(53/243) done. Loss: 0.3166 lr:0.100000 network_time: 0.0272
|
169 |
+
[ Wed Sep 14 20:14:24 2022 ] Batch(153/243) done. Loss: 0.5057 lr:0.100000 network_time: 0.0278
|
170 |
+
[ Wed Sep 14 20:15:29 2022 ] Eval epoch: 23
|
171 |
+
[ Wed Sep 14 20:17:02 2022 ] Mean test loss of 796 batches: 2.937326669692993.
|
172 |
+
[ Wed Sep 14 20:17:03 2022 ] Top1: 39.94%
|
173 |
+
[ Wed Sep 14 20:17:04 2022 ] Top5: 73.01%
|
174 |
+
[ Wed Sep 14 20:17:04 2022 ] Training epoch: 24
|
175 |
+
[ Wed Sep 14 20:17:15 2022 ] Batch(10/243) done. Loss: 0.3329 lr:0.100000 network_time: 0.0259
|
176 |
+
[ Wed Sep 14 20:18:27 2022 ] Batch(110/243) done. Loss: 0.6170 lr:0.100000 network_time: 0.0266
|
177 |
+
[ Wed Sep 14 20:19:40 2022 ] Batch(210/243) done. Loss: 0.5816 lr:0.100000 network_time: 0.0272
|
178 |
+
[ Wed Sep 14 20:20:04 2022 ] Eval epoch: 24
|
179 |
+
[ Wed Sep 14 20:21:37 2022 ] Mean test loss of 796 batches: 3.271789312362671.
|
180 |
+
[ Wed Sep 14 20:21:37 2022 ] Top1: 39.86%
|
181 |
+
[ Wed Sep 14 20:21:38 2022 ] Top5: 73.14%
|
182 |
+
[ Wed Sep 14 20:21:38 2022 ] Training epoch: 25
|
183 |
+
[ Wed Sep 14 20:22:30 2022 ] Batch(67/243) done. Loss: 0.4282 lr:0.100000 network_time: 0.0282
|
184 |
+
[ Wed Sep 14 20:23:43 2022 ] Batch(167/243) done. Loss: 0.4217 lr:0.100000 network_time: 0.0306
|
185 |
+
[ Wed Sep 14 20:24:38 2022 ] Eval epoch: 25
|
186 |
+
[ Wed Sep 14 20:26:11 2022 ] Mean test loss of 796 batches: 3.2710368633270264.
|
187 |
+
[ Wed Sep 14 20:26:12 2022 ] Top1: 38.82%
|
188 |
+
[ Wed Sep 14 20:26:12 2022 ] Top5: 73.17%
|
189 |
+
[ Wed Sep 14 20:26:12 2022 ] Training epoch: 26
|
190 |
+
[ Wed Sep 14 20:26:33 2022 ] Batch(24/243) done. Loss: 0.4654 lr:0.100000 network_time: 0.0270
|
191 |
+
[ Wed Sep 14 20:27:46 2022 ] Batch(124/243) done. Loss: 0.5090 lr:0.100000 network_time: 0.0255
|
192 |
+
[ Wed Sep 14 20:28:59 2022 ] Batch(224/243) done. Loss: 0.3150 lr:0.100000 network_time: 0.0314
|
193 |
+
[ Wed Sep 14 20:29:12 2022 ] Eval epoch: 26
|
194 |
+
[ Wed Sep 14 20:30:46 2022 ] Mean test loss of 796 batches: 3.2111380100250244.
|
195 |
+
[ Wed Sep 14 20:30:47 2022 ] Top1: 36.32%
|
196 |
+
[ Wed Sep 14 20:30:47 2022 ] Top5: 71.37%
|
197 |
+
[ Wed Sep 14 20:30:47 2022 ] Training epoch: 27
|
198 |
+
[ Wed Sep 14 20:31:50 2022 ] Batch(81/243) done. Loss: 0.4068 lr:0.100000 network_time: 0.0271
|
199 |
+
[ Wed Sep 14 20:33:03 2022 ] Batch(181/243) done. Loss: 0.3918 lr:0.100000 network_time: 0.0271
|
200 |
+
[ Wed Sep 14 20:33:48 2022 ] Eval epoch: 27
|
201 |
+
[ Wed Sep 14 20:35:22 2022 ] Mean test loss of 796 batches: 2.908709764480591.
|
202 |
+
[ Wed Sep 14 20:35:22 2022 ] Top1: 39.33%
|
203 |
+
[ Wed Sep 14 20:35:23 2022 ] Top5: 74.25%
|
204 |
+
[ Wed Sep 14 20:35:23 2022 ] Training epoch: 28
|
205 |
+
[ Wed Sep 14 20:35:55 2022 ] Batch(38/243) done. Loss: 0.2538 lr:0.100000 network_time: 0.0294
|
206 |
+
[ Wed Sep 14 20:37:08 2022 ] Batch(138/243) done. Loss: 0.4274 lr:0.100000 network_time: 0.0264
|
207 |
+
[ Wed Sep 14 20:38:20 2022 ] Batch(238/243) done. Loss: 0.5532 lr:0.100000 network_time: 0.0310
|
208 |
+
[ Wed Sep 14 20:38:24 2022 ] Eval epoch: 28
|
209 |
+
[ Wed Sep 14 20:39:57 2022 ] Mean test loss of 796 batches: 3.379927396774292.
|
210 |
+
[ Wed Sep 14 20:39:58 2022 ] Top1: 38.54%
|
211 |
+
[ Wed Sep 14 20:39:58 2022 ] Top5: 72.27%
|
212 |
+
[ Wed Sep 14 20:39:59 2022 ] Training epoch: 29
|
213 |
+
[ Wed Sep 14 20:41:12 2022 ] Batch(95/243) done. Loss: 0.4147 lr:0.100000 network_time: 0.0274
|
214 |
+
[ Wed Sep 14 20:42:25 2022 ] Batch(195/243) done. Loss: 0.4782 lr:0.100000 network_time: 0.0301
|
215 |
+
[ Wed Sep 14 20:42:59 2022 ] Eval epoch: 29
|
216 |
+
[ Wed Sep 14 20:44:33 2022 ] Mean test loss of 796 batches: 2.9250919818878174.
|
217 |
+
[ Wed Sep 14 20:44:33 2022 ] Top1: 43.48%
|
218 |
+
[ Wed Sep 14 20:44:34 2022 ] Top5: 76.24%
|
219 |
+
[ Wed Sep 14 20:44:34 2022 ] Training epoch: 30
|
220 |
+
[ Wed Sep 14 20:45:16 2022 ] Batch(52/243) done. Loss: 0.1942 lr:0.100000 network_time: 0.0273
|
221 |
+
[ Wed Sep 14 20:46:29 2022 ] Batch(152/243) done. Loss: 0.2228 lr:0.100000 network_time: 0.0276
|
222 |
+
[ Wed Sep 14 20:47:35 2022 ] Eval epoch: 30
|
223 |
+
[ Wed Sep 14 20:49:09 2022 ] Mean test loss of 796 batches: 2.907973289489746.
|
224 |
+
[ Wed Sep 14 20:49:09 2022 ] Top1: 43.96%
|
225 |
+
[ Wed Sep 14 20:49:10 2022 ] Top5: 76.37%
|
226 |
+
[ Wed Sep 14 20:49:10 2022 ] Training epoch: 31
|
227 |
+
[ Wed Sep 14 20:49:20 2022 ] Batch(9/243) done. Loss: 0.3925 lr:0.100000 network_time: 0.0272
|
228 |
+
[ Wed Sep 14 20:50:33 2022 ] Batch(109/243) done. Loss: 0.3682 lr:0.100000 network_time: 0.0276
|
229 |
+
[ Wed Sep 14 20:51:46 2022 ] Batch(209/243) done. Loss: 0.2874 lr:0.100000 network_time: 0.0314
|
230 |
+
[ Wed Sep 14 20:52:10 2022 ] Eval epoch: 31
|
231 |
+
[ Wed Sep 14 20:53:44 2022 ] Mean test loss of 796 batches: 3.1756463050842285.
|
232 |
+
[ Wed Sep 14 20:53:44 2022 ] Top1: 40.28%
|
233 |
+
[ Wed Sep 14 20:53:44 2022 ] Top5: 73.68%
|
234 |
+
[ Wed Sep 14 20:53:45 2022 ] Training epoch: 32
|
235 |
+
[ Wed Sep 14 20:54:37 2022 ] Batch(66/243) done. Loss: 0.3473 lr:0.100000 network_time: 0.0262
|
236 |
+
[ Wed Sep 14 20:55:49 2022 ] Batch(166/243) done. Loss: 0.5482 lr:0.100000 network_time: 0.0281
|
237 |
+
[ Wed Sep 14 20:56:45 2022 ] Eval epoch: 32
|
238 |
+
[ Wed Sep 14 20:58:18 2022 ] Mean test loss of 796 batches: 2.8646881580352783.
|
239 |
+
[ Wed Sep 14 20:58:18 2022 ] Top1: 42.91%
|
240 |
+
[ Wed Sep 14 20:58:19 2022 ] Top5: 75.13%
|
241 |
+
[ Wed Sep 14 20:58:19 2022 ] Training epoch: 33
|
242 |
+
[ Wed Sep 14 20:58:39 2022 ] Batch(23/243) done. Loss: 0.2494 lr:0.100000 network_time: 0.0270
|
243 |
+
[ Wed Sep 14 20:59:52 2022 ] Batch(123/243) done. Loss: 0.6065 lr:0.100000 network_time: 0.0272
|
244 |
+
[ Wed Sep 14 21:01:05 2022 ] Batch(223/243) done. Loss: 0.6795 lr:0.100000 network_time: 0.0266
|
245 |
+
[ Wed Sep 14 21:01:19 2022 ] Eval epoch: 33
|
246 |
+
[ Wed Sep 14 21:02:53 2022 ] Mean test loss of 796 batches: 3.292654037475586.
|
247 |
+
[ Wed Sep 14 21:02:53 2022 ] Top1: 36.59%
|
248 |
+
[ Wed Sep 14 21:02:54 2022 ] Top5: 70.07%
|
249 |
+
[ Wed Sep 14 21:02:54 2022 ] Training epoch: 34
|
250 |
+
[ Wed Sep 14 21:03:56 2022 ] Batch(80/243) done. Loss: 0.3388 lr:0.100000 network_time: 0.0272
|
251 |
+
[ Wed Sep 14 21:05:09 2022 ] Batch(180/243) done. Loss: 0.3675 lr:0.100000 network_time: 0.0472
|
252 |
+
[ Wed Sep 14 21:05:54 2022 ] Eval epoch: 34
|
253 |
+
[ Wed Sep 14 21:07:27 2022 ] Mean test loss of 796 batches: 3.1438148021698.
|
254 |
+
[ Wed Sep 14 21:07:28 2022 ] Top1: 43.58%
|
255 |
+
[ Wed Sep 14 21:07:28 2022 ] Top5: 75.90%
|
256 |
+
[ Wed Sep 14 21:07:28 2022 ] Training epoch: 35
|
257 |
+
[ Wed Sep 14 21:07:59 2022 ] Batch(37/243) done. Loss: 0.2174 lr:0.100000 network_time: 0.0276
|
258 |
+
[ Wed Sep 14 21:09:12 2022 ] Batch(137/243) done. Loss: 0.2229 lr:0.100000 network_time: 0.0279
|
259 |
+
[ Wed Sep 14 21:10:25 2022 ] Batch(237/243) done. Loss: 0.4025 lr:0.100000 network_time: 0.0266
|
260 |
+
[ Wed Sep 14 21:10:29 2022 ] Eval epoch: 35
|
261 |
+
[ Wed Sep 14 21:12:02 2022 ] Mean test loss of 796 batches: 3.187361717224121.
|
262 |
+
[ Wed Sep 14 21:12:03 2022 ] Top1: 41.11%
|
263 |
+
[ Wed Sep 14 21:12:03 2022 ] Top5: 74.95%
|
264 |
+
[ Wed Sep 14 21:12:04 2022 ] Training epoch: 36
|
265 |
+
[ Wed Sep 14 21:13:16 2022 ] Batch(94/243) done. Loss: 0.3044 lr:0.100000 network_time: 0.0252
|
266 |
+
[ Wed Sep 14 21:14:28 2022 ] Batch(194/243) done. Loss: 0.1637 lr:0.100000 network_time: 0.0259
|
267 |
+
[ Wed Sep 14 21:15:04 2022 ] Eval epoch: 36
|
268 |
+
[ Wed Sep 14 21:16:37 2022 ] Mean test loss of 796 batches: 2.897453546524048.
|
269 |
+
[ Wed Sep 14 21:16:37 2022 ] Top1: 41.74%
|
270 |
+
[ Wed Sep 14 21:16:38 2022 ] Top5: 75.11%
|
271 |
+
[ Wed Sep 14 21:16:38 2022 ] Training epoch: 37
|
272 |
+
[ Wed Sep 14 21:17:19 2022 ] Batch(51/243) done. Loss: 0.2264 lr:0.100000 network_time: 0.0268
|
273 |
+
[ Wed Sep 14 21:18:31 2022 ] Batch(151/243) done. Loss: 0.2391 lr:0.100000 network_time: 0.0278
|
274 |
+
[ Wed Sep 14 21:19:38 2022 ] Eval epoch: 37
|
275 |
+
[ Wed Sep 14 21:21:11 2022 ] Mean test loss of 796 batches: 3.246755838394165.
|
276 |
+
[ Wed Sep 14 21:21:12 2022 ] Top1: 42.70%
|
277 |
+
[ Wed Sep 14 21:21:12 2022 ] Top5: 75.04%
|
278 |
+
[ Wed Sep 14 21:21:13 2022 ] Training epoch: 38
|
279 |
+
[ Wed Sep 14 21:21:22 2022 ] Batch(8/243) done. Loss: 0.2202 lr:0.100000 network_time: 0.0275
|
280 |
+
[ Wed Sep 14 21:22:35 2022 ] Batch(108/243) done. Loss: 0.1588 lr:0.100000 network_time: 0.0324
|
281 |
+
[ Wed Sep 14 21:23:48 2022 ] Batch(208/243) done. Loss: 0.3176 lr:0.100000 network_time: 0.0308
|
282 |
+
[ Wed Sep 14 21:24:13 2022 ] Eval epoch: 38
|
283 |
+
[ Wed Sep 14 21:25:47 2022 ] Mean test loss of 796 batches: 3.2101247310638428.
|
284 |
+
[ Wed Sep 14 21:25:47 2022 ] Top1: 41.23%
|
285 |
+
[ Wed Sep 14 21:25:48 2022 ] Top5: 73.09%
|
286 |
+
[ Wed Sep 14 21:25:48 2022 ] Training epoch: 39
|
287 |
+
[ Wed Sep 14 21:26:39 2022 ] Batch(65/243) done. Loss: 0.4692 lr:0.100000 network_time: 0.0313
|
288 |
+
[ Wed Sep 14 21:27:52 2022 ] Batch(165/243) done. Loss: 0.2537 lr:0.100000 network_time: 0.0323
|
289 |
+
[ Wed Sep 14 21:28:48 2022 ] Eval epoch: 39
|
290 |
+
[ Wed Sep 14 21:30:21 2022 ] Mean test loss of 796 batches: 3.237701177597046.
|
291 |
+
[ Wed Sep 14 21:30:21 2022 ] Top1: 41.29%
|
292 |
+
[ Wed Sep 14 21:30:22 2022 ] Top5: 75.22%
|
293 |
+
[ Wed Sep 14 21:30:22 2022 ] Training epoch: 40
|
294 |
+
[ Wed Sep 14 21:30:42 2022 ] Batch(22/243) done. Loss: 0.2544 lr:0.100000 network_time: 0.0315
|
295 |
+
[ Wed Sep 14 21:31:55 2022 ] Batch(122/243) done. Loss: 0.4558 lr:0.100000 network_time: 0.0282
|
296 |
+
[ Wed Sep 14 21:33:08 2022 ] Batch(222/243) done. Loss: 0.2960 lr:0.100000 network_time: 0.0316
|
297 |
+
[ Wed Sep 14 21:33:23 2022 ] Eval epoch: 40
|
298 |
+
[ Wed Sep 14 21:34:56 2022 ] Mean test loss of 796 batches: 3.0716347694396973.
|
299 |
+
[ Wed Sep 14 21:34:56 2022 ] Top1: 43.59%
|
300 |
+
[ Wed Sep 14 21:34:57 2022 ] Top5: 77.24%
|
301 |
+
[ Wed Sep 14 21:34:57 2022 ] Training epoch: 41
|
302 |
+
[ Wed Sep 14 21:35:58 2022 ] Batch(79/243) done. Loss: 0.1472 lr:0.100000 network_time: 0.0280
|
303 |
+
[ Wed Sep 14 21:37:11 2022 ] Batch(179/243) done. Loss: 0.2046 lr:0.100000 network_time: 0.0315
|
304 |
+
[ Wed Sep 14 21:37:57 2022 ] Eval epoch: 41
|
305 |
+
[ Wed Sep 14 21:39:31 2022 ] Mean test loss of 796 batches: 3.687352180480957.
|
306 |
+
[ Wed Sep 14 21:39:31 2022 ] Top1: 35.92%
|
307 |
+
[ Wed Sep 14 21:39:31 2022 ] Top5: 70.46%
|
308 |
+
[ Wed Sep 14 21:39:32 2022 ] Training epoch: 42
|
309 |
+
[ Wed Sep 14 21:40:02 2022 ] Batch(36/243) done. Loss: 0.2597 lr:0.100000 network_time: 0.0262
|
310 |
+
[ Wed Sep 14 21:41:14 2022 ] Batch(136/243) done. Loss: 0.2971 lr:0.100000 network_time: 0.0266
|
311 |
+
[ Wed Sep 14 21:42:27 2022 ] Batch(236/243) done. Loss: 0.2494 lr:0.100000 network_time: 0.0274
|
312 |
+
[ Wed Sep 14 21:42:32 2022 ] Eval epoch: 42
|
313 |
+
[ Wed Sep 14 21:44:06 2022 ] Mean test loss of 796 batches: 2.7111852169036865.
|
314 |
+
[ Wed Sep 14 21:44:06 2022 ] Top1: 45.89%
|
315 |
+
[ Wed Sep 14 21:44:06 2022 ] Top5: 78.77%
|
316 |
+
[ Wed Sep 14 21:44:07 2022 ] Training epoch: 43
|
317 |
+
[ Wed Sep 14 21:45:18 2022 ] Batch(93/243) done. Loss: 0.1261 lr:0.100000 network_time: 0.0279
|
318 |
+
[ Wed Sep 14 21:46:31 2022 ] Batch(193/243) done. Loss: 0.2820 lr:0.100000 network_time: 0.0275
|
319 |
+
[ Wed Sep 14 21:47:07 2022 ] Eval epoch: 43
|
320 |
+
[ Wed Sep 14 21:48:40 2022 ] Mean test loss of 796 batches: 3.5541832447052.
|
321 |
+
[ Wed Sep 14 21:48:41 2022 ] Top1: 38.99%
|
322 |
+
[ Wed Sep 14 21:48:41 2022 ] Top5: 71.08%
|
323 |
+
[ Wed Sep 14 21:48:41 2022 ] Training epoch: 44
|
324 |
+
[ Wed Sep 14 21:49:21 2022 ] Batch(50/243) done. Loss: 0.1867 lr:0.100000 network_time: 0.0317
|
325 |
+
[ Wed Sep 14 21:50:34 2022 ] Batch(150/243) done. Loss: 0.1899 lr:0.100000 network_time: 0.0264
|
326 |
+
[ Wed Sep 14 21:51:41 2022 ] Eval epoch: 44
|
327 |
+
[ Wed Sep 14 21:53:15 2022 ] Mean test loss of 796 batches: 3.259566307067871.
|
328 |
+
[ Wed Sep 14 21:53:15 2022 ] Top1: 39.92%
|
329 |
+
[ Wed Sep 14 21:53:16 2022 ] Top5: 72.24%
|
330 |
+
[ Wed Sep 14 21:53:16 2022 ] Training epoch: 45
|
331 |
+
[ Wed Sep 14 21:53:25 2022 ] Batch(7/243) done. Loss: 0.1851 lr:0.100000 network_time: 0.0324
|
332 |
+
[ Wed Sep 14 21:54:37 2022 ] Batch(107/243) done. Loss: 0.1600 lr:0.100000 network_time: 0.0284
|
333 |
+
[ Wed Sep 14 21:55:50 2022 ] Batch(207/243) done. Loss: 0.1799 lr:0.100000 network_time: 0.0264
|
334 |
+
[ Wed Sep 14 21:56:16 2022 ] Eval epoch: 45
|
335 |
+
[ Wed Sep 14 21:57:49 2022 ] Mean test loss of 796 batches: 3.1690220832824707.
|
336 |
+
[ Wed Sep 14 21:57:50 2022 ] Top1: 42.68%
|
337 |
+
[ Wed Sep 14 21:57:50 2022 ] Top5: 75.85%
|
338 |
+
[ Wed Sep 14 21:57:50 2022 ] Training epoch: 46
|
339 |
+
[ Wed Sep 14 21:58:41 2022 ] Batch(64/243) done. Loss: 0.3256 lr:0.100000 network_time: 0.0275
|
340 |
+
[ Wed Sep 14 21:59:54 2022 ] Batch(164/243) done. Loss: 0.2898 lr:0.100000 network_time: 0.0268
|
341 |
+
[ Wed Sep 14 22:00:51 2022 ] Eval epoch: 46
|
342 |
+
[ Wed Sep 14 22:02:24 2022 ] Mean test loss of 796 batches: 3.144570827484131.
|
343 |
+
[ Wed Sep 14 22:02:24 2022 ] Top1: 43.82%
|
344 |
+
[ Wed Sep 14 22:02:25 2022 ] Top5: 75.41%
|
345 |
+
[ Wed Sep 14 22:02:25 2022 ] Training epoch: 47
|
346 |
+
[ Wed Sep 14 22:02:44 2022 ] Batch(21/243) done. Loss: 0.2113 lr:0.100000 network_time: 0.0269
|
347 |
+
[ Wed Sep 14 22:03:57 2022 ] Batch(121/243) done. Loss: 0.3029 lr:0.100000 network_time: 0.0264
|
348 |
+
[ Wed Sep 14 22:05:09 2022 ] Batch(221/243) done. Loss: 0.2827 lr:0.100000 network_time: 0.0263
|
349 |
+
[ Wed Sep 14 22:05:25 2022 ] Eval epoch: 47
|
350 |
+
[ Wed Sep 14 22:06:59 2022 ] Mean test loss of 796 batches: 3.208387613296509.
|
351 |
+
[ Wed Sep 14 22:06:59 2022 ] Top1: 43.43%
|
352 |
+
[ Wed Sep 14 22:06:59 2022 ] Top5: 75.61%
|
353 |
+
[ Wed Sep 14 22:07:00 2022 ] Training epoch: 48
|
354 |
+
[ Wed Sep 14 22:08:00 2022 ] Batch(78/243) done. Loss: 0.2341 lr:0.100000 network_time: 0.0262
|
355 |
+
[ Wed Sep 14 22:09:13 2022 ] Batch(178/243) done. Loss: 0.2231 lr:0.100000 network_time: 0.0272
|
356 |
+
[ Wed Sep 14 22:10:00 2022 ] Eval epoch: 48
|
357 |
+
[ Wed Sep 14 22:11:33 2022 ] Mean test loss of 796 batches: 3.4265151023864746.
|
358 |
+
[ Wed Sep 14 22:11:34 2022 ] Top1: 41.23%
|
359 |
+
[ Wed Sep 14 22:11:34 2022 ] Top5: 73.94%
|
360 |
+
[ Wed Sep 14 22:11:34 2022 ] Training epoch: 49
|
361 |
+
[ Wed Sep 14 22:12:03 2022 ] Batch(35/243) done. Loss: 0.3541 lr:0.100000 network_time: 0.0265
|
362 |
+
[ Wed Sep 14 22:13:16 2022 ] Batch(135/243) done. Loss: 0.2556 lr:0.100000 network_time: 0.0268
|
363 |
+
[ Wed Sep 14 22:14:29 2022 ] Batch(235/243) done. Loss: 0.1613 lr:0.100000 network_time: 0.0310
|
364 |
+
[ Wed Sep 14 22:14:34 2022 ] Eval epoch: 49
|
365 |
+
[ Wed Sep 14 22:16:08 2022 ] Mean test loss of 796 batches: 3.0899510383605957.
|
366 |
+
[ Wed Sep 14 22:16:08 2022 ] Top1: 42.97%
|
367 |
+
[ Wed Sep 14 22:16:09 2022 ] Top5: 76.07%
|
368 |
+
[ Wed Sep 14 22:16:09 2022 ] Training epoch: 50
|
369 |
+
[ Wed Sep 14 22:17:19 2022 ] Batch(92/243) done. Loss: 0.2175 lr:0.100000 network_time: 0.0271
|
370 |
+
[ Wed Sep 14 22:18:32 2022 ] Batch(192/243) done. Loss: 0.3184 lr:0.100000 network_time: 0.0277
|
371 |
+
[ Wed Sep 14 22:19:09 2022 ] Eval epoch: 50
|
372 |
+
[ Wed Sep 14 22:20:42 2022 ] Mean test loss of 796 batches: 3.1481566429138184.
|
373 |
+
[ Wed Sep 14 22:20:42 2022 ] Top1: 41.54%
|
374 |
+
[ Wed Sep 14 22:20:43 2022 ] Top5: 73.69%
|
375 |
+
[ Wed Sep 14 22:20:43 2022 ] Training epoch: 51
|
376 |
+
[ Wed Sep 14 22:21:23 2022 ] Batch(49/243) done. Loss: 0.2181 lr:0.100000 network_time: 0.0286
|
377 |
+
[ Wed Sep 14 22:22:36 2022 ] Batch(149/243) done. Loss: 0.2625 lr:0.100000 network_time: 0.0268
|
378 |
+
[ Wed Sep 14 22:23:44 2022 ] Eval epoch: 51
|
379 |
+
[ Wed Sep 14 22:25:17 2022 ] Mean test loss of 796 batches: 2.987004041671753.
|
380 |
+
[ Wed Sep 14 22:25:18 2022 ] Top1: 46.25%
|
381 |
+
[ Wed Sep 14 22:25:18 2022 ] Top5: 77.31%
|
382 |
+
[ Wed Sep 14 22:25:18 2022 ] Training epoch: 52
|
383 |
+
[ Wed Sep 14 22:25:26 2022 ] Batch(6/243) done. Loss: 0.1527 lr:0.100000 network_time: 0.0295
|
384 |
+
[ Wed Sep 14 22:26:39 2022 ] Batch(106/243) done. Loss: 0.1457 lr:0.100000 network_time: 0.0270
|
385 |
+
[ Wed Sep 14 22:27:52 2022 ] Batch(206/243) done. Loss: 0.2779 lr:0.100000 network_time: 0.0280
|
386 |
+
[ Wed Sep 14 22:28:18 2022 ] Eval epoch: 52
|
387 |
+
[ Wed Sep 14 22:29:51 2022 ] Mean test loss of 796 batches: 3.231384515762329.
|
388 |
+
[ Wed Sep 14 22:29:52 2022 ] Top1: 42.97%
|
389 |
+
[ Wed Sep 14 22:29:52 2022 ] Top5: 75.65%
|
390 |
+
[ Wed Sep 14 22:29:52 2022 ] Training epoch: 53
|
391 |
+
[ Wed Sep 14 22:30:42 2022 ] Batch(63/243) done. Loss: 0.2154 lr:0.100000 network_time: 0.0283
|
392 |
+
[ Wed Sep 14 22:31:55 2022 ] Batch(163/243) done. Loss: 0.3158 lr:0.100000 network_time: 0.0274
|
393 |
+
[ Wed Sep 14 22:32:53 2022 ] Eval epoch: 53
|
394 |
+
[ Wed Sep 14 22:34:26 2022 ] Mean test loss of 796 batches: 2.9344334602355957.
|
395 |
+
[ Wed Sep 14 22:34:27 2022 ] Top1: 45.77%
|
396 |
+
[ Wed Sep 14 22:34:27 2022 ] Top5: 78.17%
|
397 |
+
[ Wed Sep 14 22:34:27 2022 ] Training epoch: 54
|
398 |
+
[ Wed Sep 14 22:34:45 2022 ] Batch(20/243) done. Loss: 0.2143 lr:0.100000 network_time: 0.0281
|
399 |
+
[ Wed Sep 14 22:35:58 2022 ] Batch(120/243) done. Loss: 0.1561 lr:0.100000 network_time: 0.0276
|
400 |
+
[ Wed Sep 14 22:37:11 2022 ] Batch(220/243) done. Loss: 0.1489 lr:0.100000 network_time: 0.0270
|
401 |
+
[ Wed Sep 14 22:37:28 2022 ] Eval epoch: 54
|
402 |
+
[ Wed Sep 14 22:39:01 2022 ] Mean test loss of 796 batches: 3.3158111572265625.
|
403 |
+
[ Wed Sep 14 22:39:01 2022 ] Top1: 43.19%
|
404 |
+
[ Wed Sep 14 22:39:02 2022 ] Top5: 76.21%
|
405 |
+
[ Wed Sep 14 22:39:02 2022 ] Training epoch: 55
|
406 |
+
[ Wed Sep 14 22:40:02 2022 ] Batch(77/243) done. Loss: 0.2478 lr:0.100000 network_time: 0.0276
|
407 |
+
[ Wed Sep 14 22:41:15 2022 ] Batch(177/243) done. Loss: 0.3717 lr:0.100000 network_time: 0.0268
|
408 |
+
[ Wed Sep 14 22:42:02 2022 ] Eval epoch: 55
|
409 |
+
[ Wed Sep 14 22:43:36 2022 ] Mean test loss of 796 batches: 3.565183401107788.
|
410 |
+
[ Wed Sep 14 22:43:36 2022 ] Top1: 40.67%
|
411 |
+
[ Wed Sep 14 22:43:37 2022 ] Top5: 74.40%
|
412 |
+
[ Wed Sep 14 22:43:37 2022 ] Training epoch: 56
|
413 |
+
[ Wed Sep 14 22:44:05 2022 ] Batch(34/243) done. Loss: 0.1565 lr:0.100000 network_time: 0.0274
|
414 |
+
[ Wed Sep 14 22:45:18 2022 ] Batch(134/243) done. Loss: 0.3081 lr:0.100000 network_time: 0.0287
|
415 |
+
[ Wed Sep 14 22:46:31 2022 ] Batch(234/243) done. Loss: 0.1216 lr:0.100000 network_time: 0.0253
|
416 |
+
[ Wed Sep 14 22:46:37 2022 ] Eval epoch: 56
|
417 |
+
[ Wed Sep 14 22:48:10 2022 ] Mean test loss of 796 batches: 3.3822531700134277.
|
418 |
+
[ Wed Sep 14 22:48:11 2022 ] Top1: 42.46%
|
419 |
+
[ Wed Sep 14 22:48:11 2022 ] Top5: 75.58%
|
420 |
+
[ Wed Sep 14 22:48:11 2022 ] Training epoch: 57
|
421 |
+
[ Wed Sep 14 22:49:21 2022 ] Batch(91/243) done. Loss: 0.1433 lr:0.100000 network_time: 0.0309
|
422 |
+
[ Wed Sep 14 22:50:34 2022 ] Batch(191/243) done. Loss: 0.2230 lr:0.100000 network_time: 0.0272
|
423 |
+
[ Wed Sep 14 22:51:12 2022 ] Eval epoch: 57
|
424 |
+
[ Wed Sep 14 22:52:46 2022 ] Mean test loss of 796 batches: 3.307635545730591.
|
425 |
+
[ Wed Sep 14 22:52:47 2022 ] Top1: 41.26%
|
426 |
+
[ Wed Sep 14 22:52:47 2022 ] Top5: 73.64%
|
427 |
+
[ Wed Sep 14 22:52:48 2022 ] Training epoch: 58
|
428 |
+
[ Wed Sep 14 22:53:26 2022 ] Batch(48/243) done. Loss: 0.2950 lr:0.100000 network_time: 0.0260
|
429 |
+
[ Wed Sep 14 22:54:39 2022 ] Batch(148/243) done. Loss: 0.1734 lr:0.100000 network_time: 0.0269
|
430 |
+
[ Wed Sep 14 22:55:48 2022 ] Eval epoch: 58
|
431 |
+
[ Wed Sep 14 22:57:21 2022 ] Mean test loss of 796 batches: 3.419945240020752.
|
432 |
+
[ Wed Sep 14 22:57:22 2022 ] Top1: 42.66%
|
433 |
+
[ Wed Sep 14 22:57:22 2022 ] Top5: 74.95%
|
434 |
+
[ Wed Sep 14 22:57:22 2022 ] Training epoch: 59
|
435 |
+
[ Wed Sep 14 22:57:30 2022 ] Batch(5/243) done. Loss: 0.3432 lr:0.100000 network_time: 0.0278
|
436 |
+
[ Wed Sep 14 22:58:43 2022 ] Batch(105/243) done. Loss: 0.3520 lr:0.100000 network_time: 0.0338
|
437 |
+
[ Wed Sep 14 22:59:56 2022 ] Batch(205/243) done. Loss: 0.1924 lr:0.100000 network_time: 0.0313
|
438 |
+
[ Wed Sep 14 23:00:23 2022 ] Eval epoch: 59
|
439 |
+
[ Wed Sep 14 23:01:57 2022 ] Mean test loss of 796 batches: 2.8412914276123047.
|
440 |
+
[ Wed Sep 14 23:01:57 2022 ] Top1: 47.84%
|
441 |
+
[ Wed Sep 14 23:01:58 2022 ] Top5: 79.38%
|
442 |
+
[ Wed Sep 14 23:01:58 2022 ] Training epoch: 60
|
443 |
+
[ Wed Sep 14 23:02:47 2022 ] Batch(62/243) done. Loss: 0.1149 lr:0.100000 network_time: 0.0304
|
444 |
+
[ Wed Sep 14 23:04:00 2022 ] Batch(162/243) done. Loss: 0.2884 lr:0.100000 network_time: 0.0282
|
445 |
+
[ Wed Sep 14 23:04:58 2022 ] Eval epoch: 60
|
446 |
+
[ Wed Sep 14 23:06:32 2022 ] Mean test loss of 796 batches: 3.3663244247436523.
|
447 |
+
[ Wed Sep 14 23:06:33 2022 ] Top1: 42.97%
|
448 |
+
[ Wed Sep 14 23:06:33 2022 ] Top5: 75.24%
|
449 |
+
[ Wed Sep 14 23:06:33 2022 ] Training epoch: 61
|
450 |
+
[ Wed Sep 14 23:06:51 2022 ] Batch(19/243) done. Loss: 0.1210 lr:0.010000 network_time: 0.0301
|
451 |
+
[ Wed Sep 14 23:08:04 2022 ] Batch(119/243) done. Loss: 0.0949 lr:0.010000 network_time: 0.0270
|
452 |
+
[ Wed Sep 14 23:09:16 2022 ] Batch(219/243) done. Loss: 0.0451 lr:0.010000 network_time: 0.0265
|
453 |
+
[ Wed Sep 14 23:09:33 2022 ] Eval epoch: 61
|
454 |
+
[ Wed Sep 14 23:11:07 2022 ] Mean test loss of 796 batches: 2.6556432247161865.
|
455 |
+
[ Wed Sep 14 23:11:08 2022 ] Top1: 51.52%
|
456 |
+
[ Wed Sep 14 23:11:09 2022 ] Top5: 81.85%
|
457 |
+
[ Wed Sep 14 23:11:09 2022 ] Training epoch: 62
|
458 |
+
[ Wed Sep 14 23:12:08 2022 ] Batch(76/243) done. Loss: 0.0246 lr:0.010000 network_time: 0.0308
|
459 |
+
[ Wed Sep 14 23:13:21 2022 ] Batch(176/243) done. Loss: 0.0368 lr:0.010000 network_time: 0.0273
|
460 |
+
[ Wed Sep 14 23:14:09 2022 ] Eval epoch: 62
|
461 |
+
[ Wed Sep 14 23:15:43 2022 ] Mean test loss of 796 batches: 2.673084259033203.
|
462 |
+
[ Wed Sep 14 23:15:43 2022 ] Top1: 51.91%
|
463 |
+
[ Wed Sep 14 23:15:43 2022 ] Top5: 82.23%
|
464 |
+
[ Wed Sep 14 23:15:44 2022 ] Training epoch: 63
|
465 |
+
[ Wed Sep 14 23:16:12 2022 ] Batch(33/243) done. Loss: 0.0230 lr:0.010000 network_time: 0.0300
|
466 |
+
[ Wed Sep 14 23:17:24 2022 ] Batch(133/243) done. Loss: 0.0565 lr:0.010000 network_time: 0.0332
|
467 |
+
[ Wed Sep 14 23:18:37 2022 ] Batch(233/243) done. Loss: 0.0326 lr:0.010000 network_time: 0.0257
|
468 |
+
[ Wed Sep 14 23:18:44 2022 ] Eval epoch: 63
|
469 |
+
[ Wed Sep 14 23:20:17 2022 ] Mean test loss of 796 batches: 2.6055307388305664.
|
470 |
+
[ Wed Sep 14 23:20:18 2022 ] Top1: 52.54%
|
471 |
+
[ Wed Sep 14 23:20:19 2022 ] Top5: 82.33%
|
472 |
+
[ Wed Sep 14 23:20:19 2022 ] Training epoch: 64
|
473 |
+
[ Wed Sep 14 23:21:28 2022 ] Batch(90/243) done. Loss: 0.0097 lr:0.010000 network_time: 0.0307
|
474 |
+
[ Wed Sep 14 23:22:41 2022 ] Batch(190/243) done. Loss: 0.0286 lr:0.010000 network_time: 0.0270
|
475 |
+
[ Wed Sep 14 23:23:19 2022 ] Eval epoch: 64
|
476 |
+
[ Wed Sep 14 23:24:52 2022 ] Mean test loss of 796 batches: 2.6478676795959473.
|
477 |
+
[ Wed Sep 14 23:24:53 2022 ] Top1: 51.81%
|
478 |
+
[ Wed Sep 14 23:24:53 2022 ] Top5: 82.13%
|
479 |
+
[ Wed Sep 14 23:24:53 2022 ] Training epoch: 65
|
480 |
+
[ Wed Sep 14 23:25:31 2022 ] Batch(47/243) done. Loss: 0.0156 lr:0.010000 network_time: 0.0270
|
481 |
+
[ Wed Sep 14 23:26:44 2022 ] Batch(147/243) done. Loss: 0.0217 lr:0.010000 network_time: 0.0272
|
482 |
+
[ Wed Sep 14 23:27:54 2022 ] Eval epoch: 65
|
483 |
+
[ Wed Sep 14 23:29:27 2022 ] Mean test loss of 796 batches: 2.712385892868042.
|
484 |
+
[ Wed Sep 14 23:29:28 2022 ] Top1: 52.71%
|
485 |
+
[ Wed Sep 14 23:29:29 2022 ] Top5: 82.57%
|
486 |
+
[ Wed Sep 14 23:29:29 2022 ] Training epoch: 66
|
487 |
+
[ Wed Sep 14 23:29:35 2022 ] Batch(4/243) done. Loss: 0.0296 lr:0.010000 network_time: 0.0305
|
488 |
+
[ Wed Sep 14 23:30:48 2022 ] Batch(104/243) done. Loss: 0.0082 lr:0.010000 network_time: 0.0283
|
489 |
+
[ Wed Sep 14 23:32:01 2022 ] Batch(204/243) done. Loss: 0.0840 lr:0.010000 network_time: 0.0287
|
490 |
+
[ Wed Sep 14 23:32:29 2022 ] Eval epoch: 66
|
491 |
+
[ Wed Sep 14 23:34:03 2022 ] Mean test loss of 796 batches: 2.6864709854125977.
|
492 |
+
[ Wed Sep 14 23:34:03 2022 ] Top1: 52.50%
|
493 |
+
[ Wed Sep 14 23:34:03 2022 ] Top5: 82.39%
|
494 |
+
[ Wed Sep 14 23:34:04 2022 ] Training epoch: 67
|
495 |
+
[ Wed Sep 14 23:34:52 2022 ] Batch(61/243) done. Loss: 0.0235 lr:0.010000 network_time: 0.0258
|
496 |
+
[ Wed Sep 14 23:36:05 2022 ] Batch(161/243) done. Loss: 0.0380 lr:0.010000 network_time: 0.0283
|
497 |
+
[ Wed Sep 14 23:37:04 2022 ] Eval epoch: 67
|
498 |
+
[ Wed Sep 14 23:38:37 2022 ] Mean test loss of 796 batches: 2.689728260040283.
|
499 |
+
[ Wed Sep 14 23:38:37 2022 ] Top1: 52.35%
|
500 |
+
[ Wed Sep 14 23:38:38 2022 ] Top5: 82.37%
|
501 |
+
[ Wed Sep 14 23:38:38 2022 ] Training epoch: 68
|
502 |
+
[ Wed Sep 14 23:38:55 2022 ] Batch(18/243) done. Loss: 0.0303 lr:0.010000 network_time: 0.0293
|
503 |
+
[ Wed Sep 14 23:40:08 2022 ] Batch(118/243) done. Loss: 0.0173 lr:0.010000 network_time: 0.0286
|
504 |
+
[ Wed Sep 14 23:41:20 2022 ] Batch(218/243) done. Loss: 0.0388 lr:0.010000 network_time: 0.0266
|
505 |
+
[ Wed Sep 14 23:41:38 2022 ] Eval epoch: 68
|
506 |
+
[ Wed Sep 14 23:43:12 2022 ] Mean test loss of 796 batches: 2.7163398265838623.
|
507 |
+
[ Wed Sep 14 23:43:13 2022 ] Top1: 51.46%
|
508 |
+
[ Wed Sep 14 23:43:13 2022 ] Top5: 81.70%
|
509 |
+
[ Wed Sep 14 23:43:13 2022 ] Training epoch: 69
|
510 |
+
[ Wed Sep 14 23:44:12 2022 ] Batch(75/243) done. Loss: 0.0145 lr:0.010000 network_time: 0.0321
|
511 |
+
[ Wed Sep 14 23:45:24 2022 ] Batch(175/243) done. Loss: 0.0141 lr:0.010000 network_time: 0.0321
|
512 |
+
[ Wed Sep 14 23:46:14 2022 ] Eval epoch: 69
|
513 |
+
[ Wed Sep 14 23:47:47 2022 ] Mean test loss of 796 batches: 2.7593424320220947.
|
514 |
+
[ Wed Sep 14 23:47:47 2022 ] Top1: 51.67%
|
515 |
+
[ Wed Sep 14 23:47:48 2022 ] Top5: 81.67%
|
516 |
+
[ Wed Sep 14 23:47:48 2022 ] Training epoch: 70
|
517 |
+
[ Wed Sep 14 23:48:15 2022 ] Batch(32/243) done. Loss: 0.0063 lr:0.010000 network_time: 0.0278
|
518 |
+
[ Wed Sep 14 23:49:28 2022 ] Batch(132/243) done. Loss: 0.0079 lr:0.010000 network_time: 0.0273
|
519 |
+
[ Wed Sep 14 23:50:41 2022 ] Batch(232/243) done. Loss: 0.0117 lr:0.010000 network_time: 0.0312
|
520 |
+
[ Wed Sep 14 23:50:48 2022 ] Eval epoch: 70
|
521 |
+
[ Wed Sep 14 23:52:22 2022 ] Mean test loss of 796 batches: 2.6540184020996094.
|
522 |
+
[ Wed Sep 14 23:52:23 2022 ] Top1: 53.21%
|
523 |
+
[ Wed Sep 14 23:52:23 2022 ] Top5: 82.79%
|
524 |
+
[ Wed Sep 14 23:52:24 2022 ] Training epoch: 71
|
525 |
+
[ Wed Sep 14 23:53:32 2022 ] Batch(89/243) done. Loss: 0.0049 lr:0.010000 network_time: 0.0321
|
526 |
+
[ Wed Sep 14 23:54:45 2022 ] Batch(189/243) done. Loss: 0.0227 lr:0.010000 network_time: 0.0279
|
527 |
+
[ Wed Sep 14 23:55:24 2022 ] Eval epoch: 71
|
528 |
+
[ Wed Sep 14 23:56:57 2022 ] Mean test loss of 796 batches: 2.771545648574829.
|
529 |
+
[ Wed Sep 14 23:56:58 2022 ] Top1: 50.36%
|
530 |
+
[ Wed Sep 14 23:56:58 2022 ] Top5: 81.09%
|
531 |
+
[ Wed Sep 14 23:56:59 2022 ] Training epoch: 72
|
532 |
+
[ Wed Sep 14 23:57:36 2022 ] Batch(46/243) done. Loss: 0.0092 lr:0.010000 network_time: 0.0273
|
533 |
+
[ Wed Sep 14 23:58:49 2022 ] Batch(146/243) done. Loss: 0.0121 lr:0.010000 network_time: 0.0303
|
534 |
+
[ Wed Sep 14 23:59:59 2022 ] Eval epoch: 72
|
535 |
+
[ Thu Sep 15 00:01:33 2022 ] Mean test loss of 796 batches: 2.7130022048950195.
|
536 |
+
[ Thu Sep 15 00:01:33 2022 ] Top1: 52.53%
|
537 |
+
[ Thu Sep 15 00:01:34 2022 ] Top5: 82.31%
|
538 |
+
[ Thu Sep 15 00:01:34 2022 ] Training epoch: 73
|
539 |
+
[ Thu Sep 15 00:01:40 2022 ] Batch(3/243) done. Loss: 0.0085 lr:0.010000 network_time: 0.0277
|
540 |
+
[ Thu Sep 15 00:02:53 2022 ] Batch(103/243) done. Loss: 0.0057 lr:0.010000 network_time: 0.0288
|
541 |
+
[ Thu Sep 15 00:04:05 2022 ] Batch(203/243) done. Loss: 0.0071 lr:0.010000 network_time: 0.0289
|
542 |
+
[ Thu Sep 15 00:04:34 2022 ] Eval epoch: 73
|
543 |
+
[ Thu Sep 15 00:06:07 2022 ] Mean test loss of 796 batches: 2.7051308155059814.
|
544 |
+
[ Thu Sep 15 00:06:07 2022 ] Top1: 52.59%
|
545 |
+
[ Thu Sep 15 00:06:08 2022 ] Top5: 82.37%
|
546 |
+
[ Thu Sep 15 00:06:08 2022 ] Training epoch: 74
|
547 |
+
[ Thu Sep 15 00:06:55 2022 ] Batch(60/243) done. Loss: 0.0133 lr:0.010000 network_time: 0.0303
|
548 |
+
[ Thu Sep 15 00:08:08 2022 ] Batch(160/243) done. Loss: 0.0161 lr:0.010000 network_time: 0.0272
|
549 |
+
[ Thu Sep 15 00:09:08 2022 ] Eval epoch: 74
|
550 |
+
[ Thu Sep 15 00:10:42 2022 ] Mean test loss of 796 batches: 2.7454113960266113.
|
551 |
+
[ Thu Sep 15 00:10:43 2022 ] Top1: 53.42%
|
552 |
+
[ Thu Sep 15 00:10:43 2022 ] Top5: 82.85%
|
553 |
+
[ Thu Sep 15 00:10:43 2022 ] Training epoch: 75
|
554 |
+
[ Thu Sep 15 00:10:59 2022 ] Batch(17/243) done. Loss: 0.0106 lr:0.010000 network_time: 0.0302
|
555 |
+
[ Thu Sep 15 00:12:12 2022 ] Batch(117/243) done. Loss: 0.0101 lr:0.010000 network_time: 0.0315
|
556 |
+
[ Thu Sep 15 00:13:25 2022 ] Batch(217/243) done. Loss: 0.0074 lr:0.010000 network_time: 0.0309
|
557 |
+
[ Thu Sep 15 00:13:44 2022 ] Eval epoch: 75
|
558 |
+
[ Thu Sep 15 00:15:17 2022 ] Mean test loss of 796 batches: 2.6957931518554688.
|
559 |
+
[ Thu Sep 15 00:15:17 2022 ] Top1: 53.34%
|
560 |
+
[ Thu Sep 15 00:15:18 2022 ] Top5: 82.92%
|
561 |
+
[ Thu Sep 15 00:15:18 2022 ] Training epoch: 76
|
562 |
+
[ Thu Sep 15 00:16:15 2022 ] Batch(74/243) done. Loss: 0.0067 lr:0.010000 network_time: 0.0269
|
563 |
+
[ Thu Sep 15 00:17:28 2022 ] Batch(174/243) done. Loss: 0.0176 lr:0.010000 network_time: 0.0273
|
564 |
+
[ Thu Sep 15 00:18:18 2022 ] Eval epoch: 76
|
565 |
+
[ Thu Sep 15 00:19:51 2022 ] Mean test loss of 796 batches: 2.671660900115967.
|
566 |
+
[ Thu Sep 15 00:19:52 2022 ] Top1: 52.39%
|
567 |
+
[ Thu Sep 15 00:19:52 2022 ] Top5: 82.38%
|
568 |
+
[ Thu Sep 15 00:19:52 2022 ] Training epoch: 77
|
569 |
+
[ Thu Sep 15 00:20:18 2022 ] Batch(31/243) done. Loss: 0.0083 lr:0.010000 network_time: 0.0286
|
570 |
+
[ Thu Sep 15 00:21:31 2022 ] Batch(131/243) done. Loss: 0.0144 lr:0.010000 network_time: 0.0280
|
571 |
+
[ Thu Sep 15 00:22:44 2022 ] Batch(231/243) done. Loss: 0.0086 lr:0.010000 network_time: 0.0455
|
572 |
+
[ Thu Sep 15 00:22:53 2022 ] Eval epoch: 77
|
573 |
+
[ Thu Sep 15 00:24:25 2022 ] Mean test loss of 796 batches: 2.7283172607421875.
|
574 |
+
[ Thu Sep 15 00:24:26 2022 ] Top1: 52.29%
|
575 |
+
[ Thu Sep 15 00:24:26 2022 ] Top5: 82.03%
|
576 |
+
[ Thu Sep 15 00:24:26 2022 ] Training epoch: 78
|
577 |
+
[ Thu Sep 15 00:25:34 2022 ] Batch(88/243) done. Loss: 0.0064 lr:0.010000 network_time: 0.0271
|
578 |
+
[ Thu Sep 15 00:26:47 2022 ] Batch(188/243) done. Loss: 0.0194 lr:0.010000 network_time: 0.0329
|
579 |
+
[ Thu Sep 15 00:27:27 2022 ] Eval epoch: 78
|
580 |
+
[ Thu Sep 15 00:29:00 2022 ] Mean test loss of 796 batches: 2.826481580734253.
|
581 |
+
[ Thu Sep 15 00:29:00 2022 ] Top1: 51.79%
|
582 |
+
[ Thu Sep 15 00:29:00 2022 ] Top5: 81.89%
|
583 |
+
[ Thu Sep 15 00:29:01 2022 ] Training epoch: 79
|
584 |
+
[ Thu Sep 15 00:29:37 2022 ] Batch(45/243) done. Loss: 0.0074 lr:0.010000 network_time: 0.0269
|
585 |
+
[ Thu Sep 15 00:30:50 2022 ] Batch(145/243) done. Loss: 0.0053 lr:0.010000 network_time: 0.0278
|
586 |
+
[ Thu Sep 15 00:32:01 2022 ] Eval epoch: 79
|
587 |
+
[ Thu Sep 15 00:33:34 2022 ] Mean test loss of 796 batches: 2.7605230808258057.
|
588 |
+
[ Thu Sep 15 00:33:34 2022 ] Top1: 52.66%
|
589 |
+
[ Thu Sep 15 00:33:35 2022 ] Top5: 82.48%
|
590 |
+
[ Thu Sep 15 00:33:35 2022 ] Training epoch: 80
|
591 |
+
[ Thu Sep 15 00:33:40 2022 ] Batch(2/243) done. Loss: 0.0047 lr:0.010000 network_time: 0.0335
|
592 |
+
[ Thu Sep 15 00:34:53 2022 ] Batch(102/243) done. Loss: 0.0056 lr:0.010000 network_time: 0.0275
|
593 |
+
[ Thu Sep 15 00:36:06 2022 ] Batch(202/243) done. Loss: 0.0122 lr:0.010000 network_time: 0.0267
|
594 |
+
[ Thu Sep 15 00:36:35 2022 ] Eval epoch: 80
|
595 |
+
[ Thu Sep 15 00:38:08 2022 ] Mean test loss of 796 batches: 2.718104600906372.
|
596 |
+
[ Thu Sep 15 00:38:09 2022 ] Top1: 52.58%
|
597 |
+
[ Thu Sep 15 00:38:09 2022 ] Top5: 82.38%
|
598 |
+
[ Thu Sep 15 00:38:09 2022 ] Training epoch: 81
|
599 |
+
[ Thu Sep 15 00:38:56 2022 ] Batch(59/243) done. Loss: 0.0089 lr:0.001000 network_time: 0.0282
|
600 |
+
[ Thu Sep 15 00:40:09 2022 ] Batch(159/243) done. Loss: 0.0033 lr:0.001000 network_time: 0.0361
|
601 |
+
[ Thu Sep 15 00:41:09 2022 ] Eval epoch: 81
|
602 |
+
[ Thu Sep 15 00:42:43 2022 ] Mean test loss of 796 batches: 2.718365430831909.
|
603 |
+
[ Thu Sep 15 00:42:43 2022 ] Top1: 52.48%
|
604 |
+
[ Thu Sep 15 00:42:44 2022 ] Top5: 82.39%
|
605 |
+
[ Thu Sep 15 00:42:44 2022 ] Training epoch: 82
|
606 |
+
[ Thu Sep 15 00:42:59 2022 ] Batch(16/243) done. Loss: 0.0101 lr:0.001000 network_time: 0.0280
|
607 |
+
[ Thu Sep 15 00:44:12 2022 ] Batch(116/243) done. Loss: 0.0033 lr:0.001000 network_time: 0.0307
|
608 |
+
[ Thu Sep 15 00:45:25 2022 ] Batch(216/243) done. Loss: 0.0155 lr:0.001000 network_time: 0.0332
|
609 |
+
[ Thu Sep 15 00:45:44 2022 ] Eval epoch: 82
|
610 |
+
[ Thu Sep 15 00:47:17 2022 ] Mean test loss of 796 batches: 2.7449679374694824.
|
611 |
+
[ Thu Sep 15 00:47:17 2022 ] Top1: 52.72%
|
612 |
+
[ Thu Sep 15 00:47:17 2022 ] Top5: 82.64%
|
613 |
+
[ Thu Sep 15 00:47:18 2022 ] Training epoch: 83
|
614 |
+
[ Thu Sep 15 00:48:15 2022 ] Batch(73/243) done. Loss: 0.0083 lr:0.001000 network_time: 0.0306
|
615 |
+
[ Thu Sep 15 00:49:27 2022 ] Batch(173/243) done. Loss: 0.0050 lr:0.001000 network_time: 0.0270
|
616 |
+
[ Thu Sep 15 00:50:18 2022 ] Eval epoch: 83
|
617 |
+
[ Thu Sep 15 00:51:51 2022 ] Mean test loss of 796 batches: 2.822268486022949.
|
618 |
+
[ Thu Sep 15 00:51:51 2022 ] Top1: 52.45%
|
619 |
+
[ Thu Sep 15 00:51:52 2022 ] Top5: 82.06%
|
620 |
+
[ Thu Sep 15 00:51:52 2022 ] Training epoch: 84
|
621 |
+
[ Thu Sep 15 00:52:18 2022 ] Batch(30/243) done. Loss: 0.0095 lr:0.001000 network_time: 0.0279
|
622 |
+
[ Thu Sep 15 00:53:30 2022 ] Batch(130/243) done. Loss: 0.0173 lr:0.001000 network_time: 0.0269
|
623 |
+
[ Thu Sep 15 00:54:43 2022 ] Batch(230/243) done. Loss: 0.0036 lr:0.001000 network_time: 0.0300
|
624 |
+
[ Thu Sep 15 00:54:52 2022 ] Eval epoch: 84
|
625 |
+
[ Thu Sep 15 00:56:26 2022 ] Mean test loss of 796 batches: 2.6593453884124756.
|
626 |
+
[ Thu Sep 15 00:56:27 2022 ] Top1: 53.58%
|
627 |
+
[ Thu Sep 15 00:56:27 2022 ] Top5: 83.14%
|
628 |
+
[ Thu Sep 15 00:56:27 2022 ] Training epoch: 85
|
629 |
+
[ Thu Sep 15 00:57:34 2022 ] Batch(87/243) done. Loss: 0.0185 lr:0.001000 network_time: 0.0267
|
630 |
+
[ Thu Sep 15 00:58:47 2022 ] Batch(187/243) done. Loss: 0.0083 lr:0.001000 network_time: 0.0271
|
631 |
+
[ Thu Sep 15 00:59:28 2022 ] Eval epoch: 85
|
632 |
+
[ Thu Sep 15 01:01:01 2022 ] Mean test loss of 796 batches: 2.702404737472534.
|
633 |
+
[ Thu Sep 15 01:01:01 2022 ] Top1: 53.10%
|
634 |
+
[ Thu Sep 15 01:01:02 2022 ] Top5: 82.78%
|
635 |
+
[ Thu Sep 15 01:01:02 2022 ] Training epoch: 86
|
636 |
+
[ Thu Sep 15 01:01:38 2022 ] Batch(44/243) done. Loss: 0.0119 lr:0.001000 network_time: 0.0265
|
637 |
+
[ Thu Sep 15 01:02:50 2022 ] Batch(144/243) done. Loss: 0.0163 lr:0.001000 network_time: 0.0269
|
638 |
+
[ Thu Sep 15 01:04:02 2022 ] Eval epoch: 86
|
639 |
+
[ Thu Sep 15 01:05:35 2022 ] Mean test loss of 796 batches: 2.6936655044555664.
|
640 |
+
[ Thu Sep 15 01:05:36 2022 ] Top1: 52.86%
|
641 |
+
[ Thu Sep 15 01:05:36 2022 ] Top5: 82.57%
|
642 |
+
[ Thu Sep 15 01:05:36 2022 ] Training epoch: 87
|
643 |
+
[ Thu Sep 15 01:05:41 2022 ] Batch(1/243) done. Loss: 0.0072 lr:0.001000 network_time: 0.0245
|
644 |
+
[ Thu Sep 15 01:06:54 2022 ] Batch(101/243) done. Loss: 0.0078 lr:0.001000 network_time: 0.0275
|
645 |
+
[ Thu Sep 15 01:08:06 2022 ] Batch(201/243) done. Loss: 0.0066 lr:0.001000 network_time: 0.0276
|
646 |
+
[ Thu Sep 15 01:08:37 2022 ] Eval epoch: 87
|
647 |
+
[ Thu Sep 15 01:10:10 2022 ] Mean test loss of 796 batches: 2.7110776901245117.
|
648 |
+
[ Thu Sep 15 01:10:11 2022 ] Top1: 52.20%
|
649 |
+
[ Thu Sep 15 01:10:11 2022 ] Top5: 82.28%
|
650 |
+
[ Thu Sep 15 01:10:11 2022 ] Training epoch: 88
|
651 |
+
[ Thu Sep 15 01:10:57 2022 ] Batch(58/243) done. Loss: 0.0064 lr:0.001000 network_time: 0.0315
|
652 |
+
[ Thu Sep 15 01:12:10 2022 ] Batch(158/243) done. Loss: 0.0125 lr:0.001000 network_time: 0.0266
|
653 |
+
[ Thu Sep 15 01:13:11 2022 ] Eval epoch: 88
|
654 |
+
[ Thu Sep 15 01:14:44 2022 ] Mean test loss of 796 batches: 2.755002498626709.
|
655 |
+
[ Thu Sep 15 01:14:45 2022 ] Top1: 52.74%
|
656 |
+
[ Thu Sep 15 01:14:45 2022 ] Top5: 82.36%
|
657 |
+
[ Thu Sep 15 01:14:45 2022 ] Training epoch: 89
|
658 |
+
[ Thu Sep 15 01:15:00 2022 ] Batch(15/243) done. Loss: 0.0059 lr:0.001000 network_time: 0.0282
|
659 |
+
[ Thu Sep 15 01:16:13 2022 ] Batch(115/243) done. Loss: 0.0055 lr:0.001000 network_time: 0.0269
|
660 |
+
[ Thu Sep 15 01:17:26 2022 ] Batch(215/243) done. Loss: 0.0053 lr:0.001000 network_time: 0.0314
|
661 |
+
[ Thu Sep 15 01:17:46 2022 ] Eval epoch: 89
|
662 |
+
[ Thu Sep 15 01:19:19 2022 ] Mean test loss of 796 batches: 2.7093260288238525.
|
663 |
+
[ Thu Sep 15 01:19:19 2022 ] Top1: 52.87%
|
664 |
+
[ Thu Sep 15 01:19:20 2022 ] Top5: 82.58%
|
665 |
+
[ Thu Sep 15 01:19:20 2022 ] Training epoch: 90
|
666 |
+
[ Thu Sep 15 01:20:16 2022 ] Batch(72/243) done. Loss: 0.0056 lr:0.001000 network_time: 0.0516
|
667 |
+
[ Thu Sep 15 01:21:29 2022 ] Batch(172/243) done. Loss: 0.0102 lr:0.001000 network_time: 0.0275
|
668 |
+
[ Thu Sep 15 01:22:20 2022 ] Eval epoch: 90
|
669 |
+
[ Thu Sep 15 01:23:53 2022 ] Mean test loss of 796 batches: 2.71431303024292.
|
670 |
+
[ Thu Sep 15 01:23:54 2022 ] Top1: 53.00%
|
671 |
+
[ Thu Sep 15 01:23:54 2022 ] Top5: 82.56%
|
672 |
+
[ Thu Sep 15 01:23:54 2022 ] Training epoch: 91
|
673 |
+
[ Thu Sep 15 01:24:19 2022 ] Batch(29/243) done. Loss: 0.0107 lr:0.001000 network_time: 0.0299
|
674 |
+
[ Thu Sep 15 01:25:32 2022 ] Batch(129/243) done. Loss: 0.0092 lr:0.001000 network_time: 0.0271
|
675 |
+
[ Thu Sep 15 01:26:45 2022 ] Batch(229/243) done. Loss: 0.0047 lr:0.001000 network_time: 0.0313
|
676 |
+
[ Thu Sep 15 01:26:54 2022 ] Eval epoch: 91
|
677 |
+
[ Thu Sep 15 01:28:28 2022 ] Mean test loss of 796 batches: 2.732354164123535.
|
678 |
+
[ Thu Sep 15 01:28:28 2022 ] Top1: 52.52%
|
679 |
+
[ Thu Sep 15 01:28:29 2022 ] Top5: 82.25%
|
680 |
+
[ Thu Sep 15 01:28:29 2022 ] Training epoch: 92
|
681 |
+
[ Thu Sep 15 01:29:35 2022 ] Batch(86/243) done. Loss: 0.0046 lr:0.001000 network_time: 0.0280
|
682 |
+
[ Thu Sep 15 01:30:48 2022 ] Batch(186/243) done. Loss: 0.0053 lr:0.001000 network_time: 0.0270
|
683 |
+
[ Thu Sep 15 01:31:29 2022 ] Eval epoch: 92
|
684 |
+
[ Thu Sep 15 01:33:03 2022 ] Mean test loss of 796 batches: 2.710573196411133.
|
685 |
+
[ Thu Sep 15 01:33:03 2022 ] Top1: 53.56%
|
686 |
+
[ Thu Sep 15 01:33:04 2022 ] Top5: 83.14%
|
687 |
+
[ Thu Sep 15 01:33:04 2022 ] Training epoch: 93
|
688 |
+
[ Thu Sep 15 01:33:39 2022 ] Batch(43/243) done. Loss: 0.0047 lr:0.001000 network_time: 0.0268
|
689 |
+
[ Thu Sep 15 01:34:52 2022 ] Batch(143/243) done. Loss: 0.0108 lr:0.001000 network_time: 0.0303
|
690 |
+
[ Thu Sep 15 01:36:04 2022 ] Eval epoch: 93
|
691 |
+
[ Thu Sep 15 01:37:37 2022 ] Mean test loss of 796 batches: 2.7435684204101562.
|
692 |
+
[ Thu Sep 15 01:37:38 2022 ] Top1: 52.97%
|
693 |
+
[ Thu Sep 15 01:37:38 2022 ] Top5: 82.68%
|
694 |
+
[ Thu Sep 15 01:37:38 2022 ] Training epoch: 94
|
695 |
+
[ Thu Sep 15 01:37:42 2022 ] Batch(0/243) done. Loss: 0.0251 lr:0.001000 network_time: 0.0575
|
696 |
+
[ Thu Sep 15 01:38:55 2022 ] Batch(100/243) done. Loss: 0.0031 lr:0.001000 network_time: 0.0354
|
697 |
+
[ Thu Sep 15 01:40:08 2022 ] Batch(200/243) done. Loss: 0.0062 lr:0.001000 network_time: 0.0263
|
698 |
+
[ Thu Sep 15 01:40:39 2022 ] Eval epoch: 94
|
699 |
+
[ Thu Sep 15 01:42:12 2022 ] Mean test loss of 796 batches: 2.8339927196502686.
|
700 |
+
[ Thu Sep 15 01:42:13 2022 ] Top1: 49.99%
|
701 |
+
[ Thu Sep 15 01:42:13 2022 ] Top5: 80.98%
|
702 |
+
[ Thu Sep 15 01:42:13 2022 ] Training epoch: 95
|
703 |
+
[ Thu Sep 15 01:42:58 2022 ] Batch(57/243) done. Loss: 0.0037 lr:0.001000 network_time: 0.0306
|
704 |
+
[ Thu Sep 15 01:44:11 2022 ] Batch(157/243) done. Loss: 0.0046 lr:0.001000 network_time: 0.0276
|
705 |
+
[ Thu Sep 15 01:45:14 2022 ] Eval epoch: 95
|
706 |
+
[ Thu Sep 15 01:46:47 2022 ] Mean test loss of 796 batches: 2.682378053665161.
|
707 |
+
[ Thu Sep 15 01:46:47 2022 ] Top1: 52.81%
|
708 |
+
[ Thu Sep 15 01:46:48 2022 ] Top5: 82.45%
|
709 |
+
[ Thu Sep 15 01:46:48 2022 ] Training epoch: 96
|
710 |
+
[ Thu Sep 15 01:47:02 2022 ] Batch(14/243) done. Loss: 0.0071 lr:0.001000 network_time: 0.0259
|
711 |
+
[ Thu Sep 15 01:48:15 2022 ] Batch(114/243) done. Loss: 0.0159 lr:0.001000 network_time: 0.0266
|
712 |
+
[ Thu Sep 15 01:49:28 2022 ] Batch(214/243) done. Loss: 0.0060 lr:0.001000 network_time: 0.0269
|
713 |
+
[ Thu Sep 15 01:49:48 2022 ] Eval epoch: 96
|
714 |
+
[ Thu Sep 15 01:51:22 2022 ] Mean test loss of 796 batches: 2.7707955837249756.
|
715 |
+
[ Thu Sep 15 01:51:22 2022 ] Top1: 52.46%
|
716 |
+
[ Thu Sep 15 01:51:23 2022 ] Top5: 82.37%
|
717 |
+
[ Thu Sep 15 01:51:23 2022 ] Training epoch: 97
|
718 |
+
[ Thu Sep 15 01:52:18 2022 ] Batch(71/243) done. Loss: 0.0095 lr:0.001000 network_time: 0.0325
|
719 |
+
[ Thu Sep 15 01:53:31 2022 ] Batch(171/243) done. Loss: 0.0051 lr:0.001000 network_time: 0.0266
|
720 |
+
[ Thu Sep 15 01:54:23 2022 ] Eval epoch: 97
|
721 |
+
[ Thu Sep 15 01:55:56 2022 ] Mean test loss of 796 batches: 2.725510597229004.
|
722 |
+
[ Thu Sep 15 01:55:57 2022 ] Top1: 52.79%
|
723 |
+
[ Thu Sep 15 01:55:57 2022 ] Top5: 82.58%
|
724 |
+
[ Thu Sep 15 01:55:58 2022 ] Training epoch: 98
|
725 |
+
[ Thu Sep 15 01:56:22 2022 ] Batch(28/243) done. Loss: 0.0046 lr:0.001000 network_time: 0.0261
|
726 |
+
[ Thu Sep 15 01:57:34 2022 ] Batch(128/243) done. Loss: 0.0079 lr:0.001000 network_time: 0.0325
|
727 |
+
[ Thu Sep 15 01:58:47 2022 ] Batch(228/243) done. Loss: 0.0101 lr:0.001000 network_time: 0.0305
|
728 |
+
[ Thu Sep 15 01:58:58 2022 ] Eval epoch: 98
|
729 |
+
[ Thu Sep 15 02:00:31 2022 ] Mean test loss of 796 batches: 2.7130801677703857.
|
730 |
+
[ Thu Sep 15 02:00:32 2022 ] Top1: 53.37%
|
731 |
+
[ Thu Sep 15 02:00:32 2022 ] Top5: 82.82%
|
732 |
+
[ Thu Sep 15 02:00:32 2022 ] Training epoch: 99
|
733 |
+
[ Thu Sep 15 02:01:38 2022 ] Batch(85/243) done. Loss: 0.0145 lr:0.001000 network_time: 0.0272
|
734 |
+
[ Thu Sep 15 02:02:51 2022 ] Batch(185/243) done. Loss: 0.0849 lr:0.001000 network_time: 0.0275
|
735 |
+
[ Thu Sep 15 02:03:32 2022 ] Eval epoch: 99
|
736 |
+
[ Thu Sep 15 02:05:06 2022 ] Mean test loss of 796 batches: 2.702904224395752.
|
737 |
+
[ Thu Sep 15 02:05:06 2022 ] Top1: 53.17%
|
738 |
+
[ Thu Sep 15 02:05:07 2022 ] Top5: 82.73%
|
739 |
+
[ Thu Sep 15 02:05:07 2022 ] Training epoch: 100
|
740 |
+
[ Thu Sep 15 02:05:41 2022 ] Batch(42/243) done. Loss: 0.0102 lr:0.001000 network_time: 0.0273
|
741 |
+
[ Thu Sep 15 02:06:54 2022 ] Batch(142/243) done. Loss: 0.0022 lr:0.001000 network_time: 0.0318
|
742 |
+
[ Thu Sep 15 02:08:07 2022 ] Batch(242/243) done. Loss: 0.0068 lr:0.001000 network_time: 0.0308
|
743 |
+
[ Thu Sep 15 02:08:07 2022 ] Eval epoch: 100
|
744 |
+
[ Thu Sep 15 02:09:40 2022 ] Mean test loss of 796 batches: 2.74697208404541.
|
745 |
+
[ Thu Sep 15 02:09:41 2022 ] Top1: 53.47%
|
746 |
+
[ Thu Sep 15 02:09:42 2022 ] Top5: 82.99%
|
747 |
+
[ Thu Sep 15 02:09:42 2022 ] Training epoch: 101
|
748 |
+
[ Thu Sep 15 02:10:58 2022 ] Batch(99/243) done. Loss: 0.0039 lr:0.000100 network_time: 0.0306
|
749 |
+
[ Thu Sep 15 02:12:11 2022 ] Batch(199/243) done. Loss: 0.0048 lr:0.000100 network_time: 0.0266
|
750 |
+
[ Thu Sep 15 02:12:42 2022 ] Eval epoch: 101
|
751 |
+
[ Thu Sep 15 02:14:16 2022 ] Mean test loss of 796 batches: 2.763756275177002.
|
752 |
+
[ Thu Sep 15 02:14:16 2022 ] Top1: 53.25%
|
753 |
+
[ Thu Sep 15 02:14:17 2022 ] Top5: 82.73%
|
754 |
+
[ Thu Sep 15 02:14:17 2022 ] Training epoch: 102
|
755 |
+
[ Thu Sep 15 02:15:02 2022 ] Batch(56/243) done. Loss: 0.0045 lr:0.000100 network_time: 0.0257
|
756 |
+
[ Thu Sep 15 02:16:15 2022 ] Batch(156/243) done. Loss: 0.0088 lr:0.000100 network_time: 0.0262
|
757 |
+
[ Thu Sep 15 02:17:18 2022 ] Eval epoch: 102
|
758 |
+
[ Thu Sep 15 02:18:52 2022 ] Mean test loss of 796 batches: 2.7571358680725098.
|
759 |
+
[ Thu Sep 15 02:18:52 2022 ] Top1: 52.87%
|
760 |
+
[ Thu Sep 15 02:18:52 2022 ] Top5: 82.69%
|
761 |
+
[ Thu Sep 15 02:18:53 2022 ] Training epoch: 103
|
762 |
+
[ Thu Sep 15 02:19:06 2022 ] Batch(13/243) done. Loss: 0.0021 lr:0.000100 network_time: 0.0316
|
763 |
+
[ Thu Sep 15 02:20:19 2022 ] Batch(113/243) done. Loss: 0.0048 lr:0.000100 network_time: 0.0274
|
764 |
+
[ Thu Sep 15 02:21:31 2022 ] Batch(213/243) done. Loss: 0.0023 lr:0.000100 network_time: 0.0336
|
765 |
+
[ Thu Sep 15 02:21:53 2022 ] Eval epoch: 103
|
766 |
+
[ Thu Sep 15 02:23:26 2022 ] Mean test loss of 796 batches: 2.692415952682495.
|
767 |
+
[ Thu Sep 15 02:23:26 2022 ] Top1: 52.04%
|
768 |
+
[ Thu Sep 15 02:23:27 2022 ] Top5: 82.16%
|
769 |
+
[ Thu Sep 15 02:23:27 2022 ] Training epoch: 104
|
770 |
+
[ Thu Sep 15 02:24:21 2022 ] Batch(70/243) done. Loss: 0.0102 lr:0.000100 network_time: 0.0269
|
771 |
+
[ Thu Sep 15 02:25:34 2022 ] Batch(170/243) done. Loss: 0.0059 lr:0.000100 network_time: 0.0278
|
772 |
+
[ Thu Sep 15 02:26:27 2022 ] Eval epoch: 104
|
773 |
+
[ Thu Sep 15 02:28:00 2022 ] Mean test loss of 796 batches: 2.7434446811676025.
|
774 |
+
[ Thu Sep 15 02:28:00 2022 ] Top1: 53.44%
|
775 |
+
[ Thu Sep 15 02:28:01 2022 ] Top5: 82.78%
|
776 |
+
[ Thu Sep 15 02:28:01 2022 ] Training epoch: 105
|
777 |
+
[ Thu Sep 15 02:28:25 2022 ] Batch(27/243) done. Loss: 0.0211 lr:0.000100 network_time: 0.0272
|
778 |
+
[ Thu Sep 15 02:29:38 2022 ] Batch(127/243) done. Loss: 0.0127 lr:0.000100 network_time: 0.0269
|
779 |
+
[ Thu Sep 15 02:30:50 2022 ] Batch(227/243) done. Loss: 0.0139 lr:0.000100 network_time: 0.0337
|
780 |
+
[ Thu Sep 15 02:31:02 2022 ] Eval epoch: 105
|
781 |
+
[ Thu Sep 15 02:32:35 2022 ] Mean test loss of 796 batches: 2.795769691467285.
|
782 |
+
[ Thu Sep 15 02:32:35 2022 ] Top1: 52.07%
|
783 |
+
[ Thu Sep 15 02:32:36 2022 ] Top5: 82.01%
|
784 |
+
[ Thu Sep 15 02:32:36 2022 ] Training epoch: 106
|
785 |
+
[ Thu Sep 15 02:33:41 2022 ] Batch(84/243) done. Loss: 0.0073 lr:0.000100 network_time: 0.0274
|
786 |
+
[ Thu Sep 15 02:34:54 2022 ] Batch(184/243) done. Loss: 0.0051 lr:0.000100 network_time: 0.0267
|
787 |
+
[ Thu Sep 15 02:35:37 2022 ] Eval epoch: 106
|
788 |
+
[ Thu Sep 15 02:37:10 2022 ] Mean test loss of 796 batches: 2.712216377258301.
|
789 |
+
[ Thu Sep 15 02:37:11 2022 ] Top1: 53.32%
|
790 |
+
[ Thu Sep 15 02:37:11 2022 ] Top5: 82.78%
|
791 |
+
[ Thu Sep 15 02:37:11 2022 ] Training epoch: 107
|
792 |
+
[ Thu Sep 15 02:37:45 2022 ] Batch(41/243) done. Loss: 0.0143 lr:0.000100 network_time: 0.0266
|
793 |
+
[ Thu Sep 15 02:38:58 2022 ] Batch(141/243) done. Loss: 0.0063 lr:0.000100 network_time: 0.0290
|
794 |
+
[ Thu Sep 15 02:40:11 2022 ] Batch(241/243) done. Loss: 0.0055 lr:0.000100 network_time: 0.0302
|
795 |
+
[ Thu Sep 15 02:40:12 2022 ] Eval epoch: 107
|
796 |
+
[ Thu Sep 15 02:41:45 2022 ] Mean test loss of 796 batches: 2.7313079833984375.
|
797 |
+
[ Thu Sep 15 02:41:46 2022 ] Top1: 52.23%
|
798 |
+
[ Thu Sep 15 02:41:47 2022 ] Top5: 82.21%
|
799 |
+
[ Thu Sep 15 02:41:47 2022 ] Training epoch: 108
|
800 |
+
[ Thu Sep 15 02:43:02 2022 ] Batch(98/243) done. Loss: 0.0028 lr:0.000100 network_time: 0.0365
|
801 |
+
[ Thu Sep 15 02:44:15 2022 ] Batch(198/243) done. Loss: 0.0055 lr:0.000100 network_time: 0.0281
|
802 |
+
[ Thu Sep 15 02:44:48 2022 ] Eval epoch: 108
|
803 |
+
[ Thu Sep 15 02:46:21 2022 ] Mean test loss of 796 batches: 2.706906318664551.
|
804 |
+
[ Thu Sep 15 02:46:22 2022 ] Top1: 53.04%
|
805 |
+
[ Thu Sep 15 02:46:22 2022 ] Top5: 82.57%
|
806 |
+
[ Thu Sep 15 02:46:22 2022 ] Training epoch: 109
|
807 |
+
[ Thu Sep 15 02:47:06 2022 ] Batch(55/243) done. Loss: 0.0072 lr:0.000100 network_time: 0.0318
|
808 |
+
[ Thu Sep 15 02:48:18 2022 ] Batch(155/243) done. Loss: 0.0065 lr:0.000100 network_time: 0.0317
|
809 |
+
[ Thu Sep 15 02:49:22 2022 ] Eval epoch: 109
|
810 |
+
[ Thu Sep 15 02:50:56 2022 ] Mean test loss of 796 batches: 2.666076898574829.
|
811 |
+
[ Thu Sep 15 02:50:56 2022 ] Top1: 53.15%
|
812 |
+
[ Thu Sep 15 02:50:56 2022 ] Top5: 82.74%
|
813 |
+
[ Thu Sep 15 02:50:57 2022 ] Training epoch: 110
|
814 |
+
[ Thu Sep 15 02:51:09 2022 ] Batch(12/243) done. Loss: 0.0069 lr:0.000100 network_time: 0.0263
|
815 |
+
[ Thu Sep 15 02:52:22 2022 ] Batch(112/243) done. Loss: 0.0100 lr:0.000100 network_time: 0.0275
|
816 |
+
[ Thu Sep 15 02:53:35 2022 ] Batch(212/243) done. Loss: 0.0072 lr:0.000100 network_time: 0.0272
|
817 |
+
[ Thu Sep 15 02:53:57 2022 ] Eval epoch: 110
|
818 |
+
[ Thu Sep 15 02:55:30 2022 ] Mean test loss of 796 batches: 2.782313585281372.
|
819 |
+
[ Thu Sep 15 02:55:31 2022 ] Top1: 50.79%
|
820 |
+
[ Thu Sep 15 02:55:31 2022 ] Top5: 81.20%
|
821 |
+
[ Thu Sep 15 02:55:31 2022 ] Training epoch: 111
|
822 |
+
[ Thu Sep 15 02:56:25 2022 ] Batch(69/243) done. Loss: 0.0072 lr:0.000100 network_time: 0.0277
|
823 |
+
[ Thu Sep 15 02:57:38 2022 ] Batch(169/243) done. Loss: 0.0077 lr:0.000100 network_time: 0.0303
|
824 |
+
[ Thu Sep 15 02:58:31 2022 ] Eval epoch: 111
|
825 |
+
[ Thu Sep 15 03:00:05 2022 ] Mean test loss of 796 batches: 2.7520694732666016.
|
826 |
+
[ Thu Sep 15 03:00:06 2022 ] Top1: 52.88%
|
827 |
+
[ Thu Sep 15 03:00:06 2022 ] Top5: 82.42%
|
828 |
+
[ Thu Sep 15 03:00:06 2022 ] Training epoch: 112
|
829 |
+
[ Thu Sep 15 03:00:29 2022 ] Batch(26/243) done. Loss: 0.0079 lr:0.000100 network_time: 0.0264
|
830 |
+
[ Thu Sep 15 03:01:42 2022 ] Batch(126/243) done. Loss: 0.0070 lr:0.000100 network_time: 0.0292
|
831 |
+
[ Thu Sep 15 03:02:54 2022 ] Batch(226/243) done. Loss: 0.0054 lr:0.000100 network_time: 0.0280
|
832 |
+
[ Thu Sep 15 03:03:06 2022 ] Eval epoch: 112
|
833 |
+
[ Thu Sep 15 03:04:39 2022 ] Mean test loss of 796 batches: 2.70778226852417.
|
834 |
+
[ Thu Sep 15 03:04:40 2022 ] Top1: 52.64%
|
835 |
+
[ Thu Sep 15 03:04:40 2022 ] Top5: 82.31%
|
836 |
+
[ Thu Sep 15 03:04:40 2022 ] Training epoch: 113
|
837 |
+
[ Thu Sep 15 03:05:45 2022 ] Batch(83/243) done. Loss: 0.0080 lr:0.000100 network_time: 0.0270
|
838 |
+
[ Thu Sep 15 03:06:57 2022 ] Batch(183/243) done. Loss: 0.0024 lr:0.000100 network_time: 0.0257
|
839 |
+
[ Thu Sep 15 03:07:41 2022 ] Eval epoch: 113
|
840 |
+
[ Thu Sep 15 03:09:14 2022 ] Mean test loss of 796 batches: 2.731163740158081.
|
841 |
+
[ Thu Sep 15 03:09:15 2022 ] Top1: 52.66%
|
842 |
+
[ Thu Sep 15 03:09:15 2022 ] Top5: 82.24%
|
843 |
+
[ Thu Sep 15 03:09:16 2022 ] Training epoch: 114
|
844 |
+
[ Thu Sep 15 03:09:48 2022 ] Batch(40/243) done. Loss: 0.0099 lr:0.000100 network_time: 0.0255
|
845 |
+
[ Thu Sep 15 03:11:01 2022 ] Batch(140/243) done. Loss: 0.0066 lr:0.000100 network_time: 0.0272
|
846 |
+
[ Thu Sep 15 03:12:14 2022 ] Batch(240/243) done. Loss: 0.0070 lr:0.000100 network_time: 0.0321
|
847 |
+
[ Thu Sep 15 03:12:16 2022 ] Eval epoch: 114
|
848 |
+
[ Thu Sep 15 03:13:49 2022 ] Mean test loss of 796 batches: 2.6991231441497803.
|
849 |
+
[ Thu Sep 15 03:13:49 2022 ] Top1: 52.93%
|
850 |
+
[ Thu Sep 15 03:13:50 2022 ] Top5: 82.75%
|
851 |
+
[ Thu Sep 15 03:13:50 2022 ] Training epoch: 115
|
852 |
+
[ Thu Sep 15 03:15:04 2022 ] Batch(97/243) done. Loss: 0.0059 lr:0.000100 network_time: 0.0321
|
853 |
+
[ Thu Sep 15 03:16:17 2022 ] Batch(197/243) done. Loss: 0.0041 lr:0.000100 network_time: 0.0268
|
854 |
+
[ Thu Sep 15 03:16:50 2022 ] Eval epoch: 115
|
855 |
+
[ Thu Sep 15 03:18:23 2022 ] Mean test loss of 796 batches: 2.6701998710632324.
|
856 |
+
[ Thu Sep 15 03:18:24 2022 ] Top1: 53.25%
|
857 |
+
[ Thu Sep 15 03:18:24 2022 ] Top5: 82.79%
|
858 |
+
[ Thu Sep 15 03:18:24 2022 ] Training epoch: 116
|
859 |
+
[ Thu Sep 15 03:19:07 2022 ] Batch(54/243) done. Loss: 0.0048 lr:0.000100 network_time: 0.0278
|
860 |
+
[ Thu Sep 15 03:20:20 2022 ] Batch(154/243) done. Loss: 0.0053 lr:0.000100 network_time: 0.0278
|
861 |
+
[ Thu Sep 15 03:21:24 2022 ] Eval epoch: 116
|
862 |
+
[ Thu Sep 15 03:22:57 2022 ] Mean test loss of 796 batches: 2.6070761680603027.
|
863 |
+
[ Thu Sep 15 03:22:58 2022 ] Top1: 53.54%
|
864 |
+
[ Thu Sep 15 03:22:58 2022 ] Top5: 83.07%
|
865 |
+
[ Thu Sep 15 03:22:58 2022 ] Training epoch: 117
|
866 |
+
[ Thu Sep 15 03:23:10 2022 ] Batch(11/243) done. Loss: 0.0049 lr:0.000100 network_time: 0.0337
|
867 |
+
[ Thu Sep 15 03:24:23 2022 ] Batch(111/243) done. Loss: 0.0064 lr:0.000100 network_time: 0.0279
|
868 |
+
[ Thu Sep 15 03:25:36 2022 ] Batch(211/243) done. Loss: 0.0091 lr:0.000100 network_time: 0.0264
|
869 |
+
[ Thu Sep 15 03:25:59 2022 ] Eval epoch: 117
|
870 |
+
[ Thu Sep 15 03:27:32 2022 ] Mean test loss of 796 batches: 2.7557594776153564.
|
871 |
+
[ Thu Sep 15 03:27:33 2022 ] Top1: 53.14%
|
872 |
+
[ Thu Sep 15 03:27:34 2022 ] Top5: 82.57%
|
873 |
+
[ Thu Sep 15 03:27:34 2022 ] Training epoch: 118
|
874 |
+
[ Thu Sep 15 03:28:27 2022 ] Batch(68/243) done. Loss: 0.0038 lr:0.000100 network_time: 0.0273
|
875 |
+
[ Thu Sep 15 03:29:40 2022 ] Batch(168/243) done. Loss: 0.0060 lr:0.000100 network_time: 0.0276
|
876 |
+
[ Thu Sep 15 03:30:34 2022 ] Eval epoch: 118
|
877 |
+
[ Thu Sep 15 03:32:08 2022 ] Mean test loss of 796 batches: 2.7875142097473145.
|
878 |
+
[ Thu Sep 15 03:32:08 2022 ] Top1: 51.65%
|
879 |
+
[ Thu Sep 15 03:32:09 2022 ] Top5: 81.81%
|
880 |
+
[ Thu Sep 15 03:32:09 2022 ] Training epoch: 119
|
881 |
+
[ Thu Sep 15 03:32:31 2022 ] Batch(25/243) done. Loss: 0.0088 lr:0.000100 network_time: 0.0341
|
882 |
+
[ Thu Sep 15 03:33:44 2022 ] Batch(125/243) done. Loss: 0.0112 lr:0.000100 network_time: 0.0273
|
883 |
+
[ Thu Sep 15 03:34:57 2022 ] Batch(225/243) done. Loss: 0.0063 lr:0.000100 network_time: 0.0305
|
884 |
+
[ Thu Sep 15 03:35:09 2022 ] Eval epoch: 119
|
885 |
+
[ Thu Sep 15 03:36:42 2022 ] Mean test loss of 796 batches: 2.72087025642395.
|
886 |
+
[ Thu Sep 15 03:36:43 2022 ] Top1: 52.42%
|
887 |
+
[ Thu Sep 15 03:36:43 2022 ] Top5: 82.27%
|
888 |
+
[ Thu Sep 15 03:36:44 2022 ] Training epoch: 120
|
889 |
+
[ Thu Sep 15 03:37:47 2022 ] Batch(82/243) done. Loss: 0.0040 lr:0.000100 network_time: 0.0303
|
890 |
+
[ Thu Sep 15 03:39:00 2022 ] Batch(182/243) done. Loss: 0.0095 lr:0.000100 network_time: 0.0283
|
891 |
+
[ Thu Sep 15 03:39:44 2022 ] Eval epoch: 120
|
892 |
+
[ Thu Sep 15 03:41:17 2022 ] Mean test loss of 796 batches: 2.7935328483581543.
|
893 |
+
[ Thu Sep 15 03:41:17 2022 ] Top1: 53.19%
|
894 |
+
[ Thu Sep 15 03:41:17 2022 ] Top5: 82.61%
|
895 |
+
[ Thu Sep 15 03:41:18 2022 ] Training epoch: 121
|
896 |
+
[ Thu Sep 15 03:41:50 2022 ] Batch(39/243) done. Loss: 0.0101 lr:0.000100 network_time: 0.0292
|
897 |
+
[ Thu Sep 15 03:43:03 2022 ] Batch(139/243) done. Loss: 0.0053 lr:0.000100 network_time: 0.0309
|
898 |
+
[ Thu Sep 15 03:44:16 2022 ] Batch(239/243) done. Loss: 0.0054 lr:0.000100 network_time: 0.0265
|
899 |
+
[ Thu Sep 15 03:44:18 2022 ] Eval epoch: 121
|
900 |
+
[ Thu Sep 15 03:45:51 2022 ] Mean test loss of 796 batches: 2.624255657196045.
|
901 |
+
[ Thu Sep 15 03:45:52 2022 ] Top1: 53.57%
|
902 |
+
[ Thu Sep 15 03:45:52 2022 ] Top5: 83.05%
|
903 |
+
[ Thu Sep 15 03:45:53 2022 ] Training epoch: 122
|
904 |
+
[ Thu Sep 15 03:47:06 2022 ] Batch(96/243) done. Loss: 0.0058 lr:0.000100 network_time: 0.0307
|
905 |
+
[ Thu Sep 15 03:48:19 2022 ] Batch(196/243) done. Loss: 0.0084 lr:0.000100 network_time: 0.0303
|
906 |
+
[ Thu Sep 15 03:48:53 2022 ] Eval epoch: 122
|
907 |
+
[ Thu Sep 15 03:50:26 2022 ] Mean test loss of 796 batches: 2.694089889526367.
|
908 |
+
[ Thu Sep 15 03:50:26 2022 ] Top1: 52.66%
|
909 |
+
[ Thu Sep 15 03:50:27 2022 ] Top5: 82.58%
|
910 |
+
[ Thu Sep 15 03:50:27 2022 ] Training epoch: 123
|
911 |
+
[ Thu Sep 15 03:51:09 2022 ] Batch(53/243) done. Loss: 0.0045 lr:0.000100 network_time: 0.0282
|
912 |
+
[ Thu Sep 15 03:52:22 2022 ] Batch(153/243) done. Loss: 0.0060 lr:0.000100 network_time: 0.0311
|
913 |
+
[ Thu Sep 15 03:53:27 2022 ] Eval epoch: 123
|
914 |
+
[ Thu Sep 15 03:55:01 2022 ] Mean test loss of 796 batches: 2.6755058765411377.
|
915 |
+
[ Thu Sep 15 03:55:01 2022 ] Top1: 52.82%
|
916 |
+
[ Thu Sep 15 03:55:01 2022 ] Top5: 82.64%
|
917 |
+
[ Thu Sep 15 03:55:02 2022 ] Training epoch: 124
|
918 |
+
[ Thu Sep 15 03:55:13 2022 ] Batch(10/243) done. Loss: 0.0052 lr:0.000100 network_time: 0.0279
|
919 |
+
[ Thu Sep 15 03:56:26 2022 ] Batch(110/243) done. Loss: 0.0048 lr:0.000100 network_time: 0.0298
|
920 |
+
[ Thu Sep 15 03:57:39 2022 ] Batch(210/243) done. Loss: 0.0032 lr:0.000100 network_time: 0.0269
|
921 |
+
[ Thu Sep 15 03:58:02 2022 ] Eval epoch: 124
|
922 |
+
[ Thu Sep 15 03:59:35 2022 ] Mean test loss of 796 batches: 2.736020803451538.
|
923 |
+
[ Thu Sep 15 03:59:36 2022 ] Top1: 53.41%
|
924 |
+
[ Thu Sep 15 03:59:36 2022 ] Top5: 82.84%
|
925 |
+
[ Thu Sep 15 03:59:36 2022 ] Training epoch: 125
|
926 |
+
[ Thu Sep 15 04:00:29 2022 ] Batch(67/243) done. Loss: 0.0056 lr:0.000100 network_time: 0.0287
|
927 |
+
[ Thu Sep 15 04:01:42 2022 ] Batch(167/243) done. Loss: 0.0105 lr:0.000100 network_time: 0.0271
|
928 |
+
[ Thu Sep 15 04:02:37 2022 ] Eval epoch: 125
|
929 |
+
[ Thu Sep 15 04:04:10 2022 ] Mean test loss of 796 batches: 2.765360116958618.
|
930 |
+
[ Thu Sep 15 04:04:10 2022 ] Top1: 51.01%
|
931 |
+
[ Thu Sep 15 04:04:10 2022 ] Top5: 81.69%
|
932 |
+
[ Thu Sep 15 04:04:11 2022 ] Training epoch: 126
|
933 |
+
[ Thu Sep 15 04:04:32 2022 ] Batch(24/243) done. Loss: 0.0049 lr:0.000100 network_time: 0.0307
|
934 |
+
[ Thu Sep 15 04:05:45 2022 ] Batch(124/243) done. Loss: 0.0100 lr:0.000100 network_time: 0.0299
|
935 |
+
[ Thu Sep 15 04:06:58 2022 ] Batch(224/243) done. Loss: 0.0066 lr:0.000100 network_time: 0.0310
|
936 |
+
[ Thu Sep 15 04:07:11 2022 ] Eval epoch: 126
|
937 |
+
[ Thu Sep 15 04:08:44 2022 ] Mean test loss of 796 batches: 2.742004156112671.
|
938 |
+
[ Thu Sep 15 04:08:44 2022 ] Top1: 53.03%
|
939 |
+
[ Thu Sep 15 04:08:45 2022 ] Top5: 82.69%
|
940 |
+
[ Thu Sep 15 04:08:45 2022 ] Training epoch: 127
|
941 |
+
[ Thu Sep 15 04:09:48 2022 ] Batch(81/243) done. Loss: 0.0123 lr:0.000100 network_time: 0.0330
|
942 |
+
[ Thu Sep 15 04:11:01 2022 ] Batch(181/243) done. Loss: 0.0086 lr:0.000100 network_time: 0.0273
|
943 |
+
[ Thu Sep 15 04:11:45 2022 ] Eval epoch: 127
|
944 |
+
[ Thu Sep 15 04:13:19 2022 ] Mean test loss of 796 batches: 2.7168538570404053.
|
945 |
+
[ Thu Sep 15 04:13:19 2022 ] Top1: 52.94%
|
946 |
+
[ Thu Sep 15 04:13:19 2022 ] Top5: 82.64%
|
947 |
+
[ Thu Sep 15 04:13:20 2022 ] Training epoch: 128
|
948 |
+
[ Thu Sep 15 04:13:51 2022 ] Batch(38/243) done. Loss: 0.0030 lr:0.000100 network_time: 0.0319
|
949 |
+
[ Thu Sep 15 04:15:04 2022 ] Batch(138/243) done. Loss: 0.0057 lr:0.000100 network_time: 0.0274
|
950 |
+
[ Thu Sep 15 04:16:17 2022 ] Batch(238/243) done. Loss: 0.0104 lr:0.000100 network_time: 0.0268
|
951 |
+
[ Thu Sep 15 04:16:20 2022 ] Eval epoch: 128
|
952 |
+
[ Thu Sep 15 04:17:53 2022 ] Mean test loss of 796 batches: 2.6489810943603516.
|
953 |
+
[ Thu Sep 15 04:17:53 2022 ] Top1: 53.19%
|
954 |
+
[ Thu Sep 15 04:17:54 2022 ] Top5: 82.92%
|
955 |
+
[ Thu Sep 15 04:17:54 2022 ] Training epoch: 129
|
956 |
+
[ Thu Sep 15 04:19:07 2022 ] Batch(95/243) done. Loss: 0.0094 lr:0.000100 network_time: 0.0305
|
957 |
+
[ Thu Sep 15 04:20:19 2022 ] Batch(195/243) done. Loss: 0.0079 lr:0.000100 network_time: 0.0319
|
958 |
+
[ Thu Sep 15 04:20:54 2022 ] Eval epoch: 129
|
959 |
+
[ Thu Sep 15 04:22:28 2022 ] Mean test loss of 796 batches: 2.7015435695648193.
|
960 |
+
[ Thu Sep 15 04:22:28 2022 ] Top1: 51.93%
|
961 |
+
[ Thu Sep 15 04:22:29 2022 ] Top5: 82.12%
|
962 |
+
[ Thu Sep 15 04:22:29 2022 ] Training epoch: 130
|
963 |
+
[ Thu Sep 15 04:23:11 2022 ] Batch(52/243) done. Loss: 0.0055 lr:0.000100 network_time: 0.0307
|
964 |
+
[ Thu Sep 15 04:24:23 2022 ] Batch(152/243) done. Loss: 0.0051 lr:0.000100 network_time: 0.0332
|
965 |
+
[ Thu Sep 15 04:25:29 2022 ] Eval epoch: 130
|
966 |
+
[ Thu Sep 15 04:27:03 2022 ] Mean test loss of 796 batches: 2.6610214710235596.
|
967 |
+
[ Thu Sep 15 04:27:04 2022 ] Top1: 53.26%
|
968 |
+
[ Thu Sep 15 04:27:04 2022 ] Top5: 82.82%
|
969 |
+
[ Thu Sep 15 04:27:04 2022 ] Training epoch: 131
|
970 |
+
[ Thu Sep 15 04:27:15 2022 ] Batch(9/243) done. Loss: 0.0044 lr:0.000100 network_time: 0.0285
|
971 |
+
[ Thu Sep 15 04:28:28 2022 ] Batch(109/243) done. Loss: 0.0049 lr:0.000100 network_time: 0.0311
|
972 |
+
[ Thu Sep 15 04:29:41 2022 ] Batch(209/243) done. Loss: 0.0111 lr:0.000100 network_time: 0.0398
|
973 |
+
[ Thu Sep 15 04:30:05 2022 ] Eval epoch: 131
|
974 |
+
[ Thu Sep 15 04:31:39 2022 ] Mean test loss of 796 batches: 2.6898159980773926.
|
975 |
+
[ Thu Sep 15 04:31:39 2022 ] Top1: 53.02%
|
976 |
+
[ Thu Sep 15 04:31:40 2022 ] Top5: 82.60%
|
977 |
+
[ Thu Sep 15 04:31:40 2022 ] Training epoch: 132
|
978 |
+
[ Thu Sep 15 04:32:32 2022 ] Batch(66/243) done. Loss: 0.0019 lr:0.000100 network_time: 0.0278
|
979 |
+
[ Thu Sep 15 04:33:45 2022 ] Batch(166/243) done. Loss: 0.0094 lr:0.000100 network_time: 0.0226
|
980 |
+
[ Thu Sep 15 04:34:40 2022 ] Eval epoch: 132
|
981 |
+
[ Thu Sep 15 04:36:14 2022 ] Mean test loss of 796 batches: 2.6874382495880127.
|
982 |
+
[ Thu Sep 15 04:36:14 2022 ] Top1: 52.61%
|
983 |
+
[ Thu Sep 15 04:36:15 2022 ] Top5: 82.28%
|
984 |
+
[ Thu Sep 15 04:36:15 2022 ] Training epoch: 133
|
985 |
+
[ Thu Sep 15 04:36:35 2022 ] Batch(23/243) done. Loss: 0.0040 lr:0.000100 network_time: 0.0257
|
986 |
+
[ Thu Sep 15 04:37:48 2022 ] Batch(123/243) done. Loss: 0.0057 lr:0.000100 network_time: 0.0328
|
987 |
+
[ Thu Sep 15 04:39:01 2022 ] Batch(223/243) done. Loss: 0.0105 lr:0.000100 network_time: 0.0271
|
988 |
+
[ Thu Sep 15 04:39:15 2022 ] Eval epoch: 133
|
989 |
+
[ Thu Sep 15 04:40:48 2022 ] Mean test loss of 796 batches: 2.885190725326538.
|
990 |
+
[ Thu Sep 15 04:40:48 2022 ] Top1: 49.37%
|
991 |
+
[ Thu Sep 15 04:40:49 2022 ] Top5: 80.21%
|
992 |
+
[ Thu Sep 15 04:40:49 2022 ] Training epoch: 134
|
993 |
+
[ Thu Sep 15 04:41:51 2022 ] Batch(80/243) done. Loss: 0.0058 lr:0.000100 network_time: 0.0280
|
994 |
+
[ Thu Sep 15 04:43:04 2022 ] Batch(180/243) done. Loss: 0.0040 lr:0.000100 network_time: 0.0283
|
995 |
+
[ Thu Sep 15 04:43:49 2022 ] Eval epoch: 134
|
996 |
+
[ Thu Sep 15 04:45:22 2022 ] Mean test loss of 796 batches: 2.6978790760040283.
|
997 |
+
[ Thu Sep 15 04:45:23 2022 ] Top1: 52.91%
|
998 |
+
[ Thu Sep 15 04:45:23 2022 ] Top5: 82.54%
|
999 |
+
[ Thu Sep 15 04:45:23 2022 ] Training epoch: 135
|
1000 |
+
[ Thu Sep 15 04:45:54 2022 ] Batch(37/243) done. Loss: 0.0038 lr:0.000100 network_time: 0.0266
|
1001 |
+
[ Thu Sep 15 04:47:07 2022 ] Batch(137/243) done. Loss: 0.0059 lr:0.000100 network_time: 0.0311
|
1002 |
+
[ Thu Sep 15 04:48:20 2022 ] Batch(237/243) done. Loss: 0.0091 lr:0.000100 network_time: 0.0278
|
1003 |
+
[ Thu Sep 15 04:48:24 2022 ] Eval epoch: 135
|
1004 |
+
[ Thu Sep 15 04:49:58 2022 ] Mean test loss of 796 batches: 2.644139289855957.
|
1005 |
+
[ Thu Sep 15 04:49:58 2022 ] Top1: 53.61%
|
1006 |
+
[ Thu Sep 15 04:49:58 2022 ] Top5: 83.10%
|
1007 |
+
[ Thu Sep 15 04:49:58 2022 ] Training epoch: 136
|
1008 |
+
[ Thu Sep 15 04:51:11 2022 ] Batch(94/243) done. Loss: 0.0077 lr:0.000100 network_time: 0.0305
|
1009 |
+
[ Thu Sep 15 04:52:24 2022 ] Batch(194/243) done. Loss: 0.0081 lr:0.000100 network_time: 0.0272
|
1010 |
+
[ Thu Sep 15 04:52:59 2022 ] Eval epoch: 136
|
1011 |
+
[ Thu Sep 15 04:54:32 2022 ] Mean test loss of 796 batches: 2.7351062297821045.
|
1012 |
+
[ Thu Sep 15 04:54:33 2022 ] Top1: 53.33%
|
1013 |
+
[ Thu Sep 15 04:54:34 2022 ] Top5: 82.60%
|
1014 |
+
[ Thu Sep 15 04:54:34 2022 ] Training epoch: 137
|
1015 |
+
[ Thu Sep 15 04:55:15 2022 ] Batch(51/243) done. Loss: 0.0118 lr:0.000100 network_time: 0.0272
|
1016 |
+
[ Thu Sep 15 04:56:27 2022 ] Batch(151/243) done. Loss: 0.0092 lr:0.000100 network_time: 0.0269
|
1017 |
+
[ Thu Sep 15 04:57:34 2022 ] Eval epoch: 137
|
1018 |
+
[ Thu Sep 15 04:59:07 2022 ] Mean test loss of 796 batches: 2.6785876750946045.
|
1019 |
+
[ Thu Sep 15 04:59:07 2022 ] Top1: 53.81%
|
1020 |
+
[ Thu Sep 15 04:59:08 2022 ] Top5: 83.08%
|
1021 |
+
[ Thu Sep 15 04:59:08 2022 ] Training epoch: 138
|
1022 |
+
[ Thu Sep 15 04:59:18 2022 ] Batch(8/243) done. Loss: 0.0041 lr:0.000100 network_time: 0.0278
|
1023 |
+
[ Thu Sep 15 05:00:30 2022 ] Batch(108/243) done. Loss: 0.0059 lr:0.000100 network_time: 0.0266
|
1024 |
+
[ Thu Sep 15 05:01:43 2022 ] Batch(208/243) done. Loss: 0.0105 lr:0.000100 network_time: 0.0305
|
1025 |
+
[ Thu Sep 15 05:02:08 2022 ] Eval epoch: 138
|
1026 |
+
[ Thu Sep 15 05:03:42 2022 ] Mean test loss of 796 batches: 2.7690837383270264.
|
1027 |
+
[ Thu Sep 15 05:03:42 2022 ] Top1: 52.37%
|
1028 |
+
[ Thu Sep 15 05:03:43 2022 ] Top5: 82.15%
|
1029 |
+
[ Thu Sep 15 05:03:43 2022 ] Training epoch: 139
|
1030 |
+
[ Thu Sep 15 05:04:34 2022 ] Batch(65/243) done. Loss: 0.0055 lr:0.000100 network_time: 0.0451
|
1031 |
+
[ Thu Sep 15 05:05:47 2022 ] Batch(165/243) done. Loss: 0.0025 lr:0.000100 network_time: 0.0278
|
1032 |
+
[ Thu Sep 15 05:06:43 2022 ] Eval epoch: 139
|
1033 |
+
[ Thu Sep 15 05:08:16 2022 ] Mean test loss of 796 batches: 2.723361015319824.
|
1034 |
+
[ Thu Sep 15 05:08:16 2022 ] Top1: 52.81%
|
1035 |
+
[ Thu Sep 15 05:08:17 2022 ] Top5: 82.44%
|
1036 |
+
[ Thu Sep 15 05:08:17 2022 ] Training epoch: 140
|
1037 |
+
[ Thu Sep 15 05:08:36 2022 ] Batch(22/243) done. Loss: 0.0100 lr:0.000100 network_time: 0.0315
|
1038 |
+
[ Thu Sep 15 05:09:49 2022 ] Batch(122/243) done. Loss: 0.0170 lr:0.000100 network_time: 0.0297
|
1039 |
+
[ Thu Sep 15 05:11:02 2022 ] Batch(222/243) done. Loss: 0.0133 lr:0.000100 network_time: 0.0276
|
1040 |
+
[ Thu Sep 15 05:11:17 2022 ] Eval epoch: 140
|
1041 |
+
[ Thu Sep 15 05:12:49 2022 ] Mean test loss of 796 batches: 2.719053030014038.
|
1042 |
+
[ Thu Sep 15 05:12:50 2022 ] Top1: 53.15%
|
1043 |
+
[ Thu Sep 15 05:12:50 2022 ] Top5: 82.74%
|
ckpt/Others/Shift-GCN/ntu120_xsub/ntu120_bone_motion_xsub/shift_gcn.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torch.autograd import Variable
|
5 |
+
import numpy as np
|
6 |
+
import math
|
7 |
+
|
8 |
+
import sys
|
9 |
+
sys.path.append("./model/Temporal_shift/")
|
10 |
+
|
11 |
+
from cuda.shift import Shift
|
12 |
+
|
13 |
+
|
14 |
+
def import_class(name):
|
15 |
+
components = name.split('.')
|
16 |
+
mod = __import__(components[0])
|
17 |
+
for comp in components[1:]:
|
18 |
+
mod = getattr(mod, comp)
|
19 |
+
return mod
|
20 |
+
|
21 |
+
def conv_init(conv):
|
22 |
+
nn.init.kaiming_normal(conv.weight, mode='fan_out')
|
23 |
+
nn.init.constant(conv.bias, 0)
|
24 |
+
|
25 |
+
|
26 |
+
def bn_init(bn, scale):
|
27 |
+
nn.init.constant(bn.weight, scale)
|
28 |
+
nn.init.constant(bn.bias, 0)
|
29 |
+
|
30 |
+
|
31 |
+
class tcn(nn.Module):
|
32 |
+
def __init__(self, in_channels, out_channels, kernel_size=9, stride=1):
|
33 |
+
super(tcn, self).__init__()
|
34 |
+
pad = int((kernel_size - 1) / 2)
|
35 |
+
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=(kernel_size, 1), padding=(pad, 0),
|
36 |
+
stride=(stride, 1))
|
37 |
+
|
38 |
+
self.bn = nn.BatchNorm2d(out_channels)
|
39 |
+
self.relu = nn.ReLU()
|
40 |
+
conv_init(self.conv)
|
41 |
+
bn_init(self.bn, 1)
|
42 |
+
|
43 |
+
def forward(self, x):
|
44 |
+
x = self.bn(self.conv(x))
|
45 |
+
return x
|
46 |
+
|
47 |
+
|
48 |
+
class Shift_tcn(nn.Module):
|
49 |
+
def __init__(self, in_channels, out_channels, kernel_size=9, stride=1):
|
50 |
+
super(Shift_tcn, self).__init__()
|
51 |
+
|
52 |
+
self.in_channels = in_channels
|
53 |
+
self.out_channels = out_channels
|
54 |
+
|
55 |
+
self.bn = nn.BatchNorm2d(in_channels)
|
56 |
+
self.bn2 = nn.BatchNorm2d(in_channels)
|
57 |
+
bn_init(self.bn2, 1)
|
58 |
+
self.relu = nn.ReLU(inplace=True)
|
59 |
+
self.shift_in = Shift(channel=in_channels, stride=1, init_scale=1)
|
60 |
+
self.shift_out = Shift(channel=out_channels, stride=stride, init_scale=1)
|
61 |
+
|
62 |
+
self.temporal_linear = nn.Conv2d(in_channels, out_channels, 1)
|
63 |
+
nn.init.kaiming_normal(self.temporal_linear.weight, mode='fan_out')
|
64 |
+
|
65 |
+
def forward(self, x):
|
66 |
+
x = self.bn(x)
|
67 |
+
# shift1
|
68 |
+
x = self.shift_in(x)
|
69 |
+
x = self.temporal_linear(x)
|
70 |
+
x = self.relu(x)
|
71 |
+
# shift2
|
72 |
+
x = self.shift_out(x)
|
73 |
+
x = self.bn2(x)
|
74 |
+
return x
|
75 |
+
|
76 |
+
|
77 |
+
class Shift_gcn(nn.Module):
|
78 |
+
def __init__(self, in_channels, out_channels, A, coff_embedding=4, num_subset=3):
|
79 |
+
super(Shift_gcn, self).__init__()
|
80 |
+
self.in_channels = in_channels
|
81 |
+
self.out_channels = out_channels
|
82 |
+
if in_channels != out_channels:
|
83 |
+
self.down = nn.Sequential(
|
84 |
+
nn.Conv2d(in_channels, out_channels, 1),
|
85 |
+
nn.BatchNorm2d(out_channels)
|
86 |
+
)
|
87 |
+
else:
|
88 |
+
self.down = lambda x: x
|
89 |
+
|
90 |
+
self.Linear_weight = nn.Parameter(torch.zeros(in_channels, out_channels, requires_grad=True, device='cuda'), requires_grad=True)
|
91 |
+
nn.init.normal_(self.Linear_weight, 0,math.sqrt(1.0/out_channels))
|
92 |
+
|
93 |
+
self.Linear_bias = nn.Parameter(torch.zeros(1,1,out_channels,requires_grad=True,device='cuda'),requires_grad=True)
|
94 |
+
nn.init.constant(self.Linear_bias, 0)
|
95 |
+
|
96 |
+
self.Feature_Mask = nn.Parameter(torch.ones(1,25,in_channels, requires_grad=True,device='cuda'),requires_grad=True)
|
97 |
+
nn.init.constant(self.Feature_Mask, 0)
|
98 |
+
|
99 |
+
self.bn = nn.BatchNorm1d(25*out_channels)
|
100 |
+
self.relu = nn.ReLU()
|
101 |
+
|
102 |
+
for m in self.modules():
|
103 |
+
if isinstance(m, nn.Conv2d):
|
104 |
+
conv_init(m)
|
105 |
+
elif isinstance(m, nn.BatchNorm2d):
|
106 |
+
bn_init(m, 1)
|
107 |
+
|
108 |
+
index_array = np.empty(25*in_channels).astype(np.int)
|
109 |
+
for i in range(25):
|
110 |
+
for j in range(in_channels):
|
111 |
+
index_array[i*in_channels + j] = (i*in_channels + j + j*in_channels)%(in_channels*25)
|
112 |
+
self.shift_in = nn.Parameter(torch.from_numpy(index_array),requires_grad=False)
|
113 |
+
|
114 |
+
index_array = np.empty(25*out_channels).astype(np.int)
|
115 |
+
for i in range(25):
|
116 |
+
for j in range(out_channels):
|
117 |
+
index_array[i*out_channels + j] = (i*out_channels + j - j*out_channels)%(out_channels*25)
|
118 |
+
self.shift_out = nn.Parameter(torch.from_numpy(index_array),requires_grad=False)
|
119 |
+
|
120 |
+
|
121 |
+
def forward(self, x0):
|
122 |
+
n, c, t, v = x0.size()
|
123 |
+
x = x0.permute(0,2,3,1).contiguous()
|
124 |
+
|
125 |
+
# shift1
|
126 |
+
x = x.view(n*t,v*c)
|
127 |
+
x = torch.index_select(x, 1, self.shift_in)
|
128 |
+
x = x.view(n*t,v,c)
|
129 |
+
x = x * (torch.tanh(self.Feature_Mask)+1)
|
130 |
+
|
131 |
+
x = torch.einsum('nwc,cd->nwd', (x, self.Linear_weight)).contiguous() # nt,v,c
|
132 |
+
x = x + self.Linear_bias
|
133 |
+
|
134 |
+
# shift2
|
135 |
+
x = x.view(n*t,-1)
|
136 |
+
x = torch.index_select(x, 1, self.shift_out)
|
137 |
+
x = self.bn(x)
|
138 |
+
x = x.view(n,t,v,self.out_channels).permute(0,3,1,2) # n,c,t,v
|
139 |
+
|
140 |
+
x = x + self.down(x0)
|
141 |
+
x = self.relu(x)
|
142 |
+
return x
|
143 |
+
|
144 |
+
|
145 |
+
class TCN_GCN_unit(nn.Module):
|
146 |
+
def __init__(self, in_channels, out_channels, A, stride=1, residual=True):
|
147 |
+
super(TCN_GCN_unit, self).__init__()
|
148 |
+
self.gcn1 = Shift_gcn(in_channels, out_channels, A)
|
149 |
+
self.tcn1 = Shift_tcn(out_channels, out_channels, stride=stride)
|
150 |
+
self.relu = nn.ReLU()
|
151 |
+
|
152 |
+
if not residual:
|
153 |
+
self.residual = lambda x: 0
|
154 |
+
|
155 |
+
elif (in_channels == out_channels) and (stride == 1):
|
156 |
+
self.residual = lambda x: x
|
157 |
+
else:
|
158 |
+
self.residual = tcn(in_channels, out_channels, kernel_size=1, stride=stride)
|
159 |
+
|
160 |
+
def forward(self, x):
|
161 |
+
x = self.tcn1(self.gcn1(x)) + self.residual(x)
|
162 |
+
return self.relu(x)
|
163 |
+
|
164 |
+
|
165 |
+
class Model(nn.Module):
|
166 |
+
def __init__(self, num_class=60, num_point=25, num_person=2, graph=None, graph_args=dict(), in_channels=3):
|
167 |
+
super(Model, self).__init__()
|
168 |
+
|
169 |
+
if graph is None:
|
170 |
+
raise ValueError()
|
171 |
+
else:
|
172 |
+
Graph = import_class(graph)
|
173 |
+
self.graph = Graph(**graph_args)
|
174 |
+
|
175 |
+
A = self.graph.A
|
176 |
+
self.data_bn = nn.BatchNorm1d(num_person * in_channels * num_point)
|
177 |
+
|
178 |
+
self.l1 = TCN_GCN_unit(3, 64, A, residual=False)
|
179 |
+
self.l2 = TCN_GCN_unit(64, 64, A)
|
180 |
+
self.l3 = TCN_GCN_unit(64, 64, A)
|
181 |
+
self.l4 = TCN_GCN_unit(64, 64, A)
|
182 |
+
self.l5 = TCN_GCN_unit(64, 128, A, stride=2)
|
183 |
+
self.l6 = TCN_GCN_unit(128, 128, A)
|
184 |
+
self.l7 = TCN_GCN_unit(128, 128, A)
|
185 |
+
self.l8 = TCN_GCN_unit(128, 256, A, stride=2)
|
186 |
+
self.l9 = TCN_GCN_unit(256, 256, A)
|
187 |
+
self.l10 = TCN_GCN_unit(256, 256, A)
|
188 |
+
|
189 |
+
self.fc = nn.Linear(256, num_class)
|
190 |
+
nn.init.normal(self.fc.weight, 0, math.sqrt(2. / num_class))
|
191 |
+
bn_init(self.data_bn, 1)
|
192 |
+
|
193 |
+
def forward(self, x):
|
194 |
+
N, C, T, V, M = x.size()
|
195 |
+
|
196 |
+
x = x.permute(0, 4, 3, 1, 2).contiguous().view(N, M * V * C, T)
|
197 |
+
x = self.data_bn(x)
|
198 |
+
x = x.view(N, M, V, C, T).permute(0, 1, 3, 4, 2).contiguous().view(N * M, C, T, V)
|
199 |
+
|
200 |
+
x = self.l1(x)
|
201 |
+
x = self.l2(x)
|
202 |
+
x = self.l3(x)
|
203 |
+
x = self.l4(x)
|
204 |
+
x = self.l5(x)
|
205 |
+
x = self.l6(x)
|
206 |
+
x = self.l7(x)
|
207 |
+
x = self.l8(x)
|
208 |
+
x = self.l9(x)
|
209 |
+
x = self.l10(x)
|
210 |
+
|
211 |
+
# N*M,C,T,V
|
212 |
+
c_new = x.size(1)
|
213 |
+
x = x.view(N, M, c_new, -1)
|
214 |
+
x = x.mean(3).mean(1)
|
215 |
+
|
216 |
+
return self.fc(x)
|
ckpt/Others/Shift-GCN/ntu120_xsub/ntu120_bone_xsub/config.yaml
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Experiment_name: ntu120_bone_xsub
|
2 |
+
base_lr: 0.1
|
3 |
+
batch_size: 64
|
4 |
+
config: ./config/ntu120_xsub/train_bone.yaml
|
5 |
+
device:
|
6 |
+
- 0
|
7 |
+
- 1
|
8 |
+
eval_interval: 5
|
9 |
+
feeder: feeders.feeder.Feeder
|
10 |
+
ignore_weights: []
|
11 |
+
log_interval: 100
|
12 |
+
model: model.shift_gcn.Model
|
13 |
+
model_args:
|
14 |
+
graph: graph.ntu_rgb_d.Graph
|
15 |
+
graph_args:
|
16 |
+
labeling_mode: spatial
|
17 |
+
num_class: 120
|
18 |
+
num_person: 2
|
19 |
+
num_point: 25
|
20 |
+
model_saved_name: ./save_models/ntu120_bone_xsub
|
21 |
+
nesterov: true
|
22 |
+
num_epoch: 140
|
23 |
+
num_worker: 32
|
24 |
+
only_train_epoch: 1
|
25 |
+
only_train_part: true
|
26 |
+
optimizer: SGD
|
27 |
+
phase: train
|
28 |
+
print_log: true
|
29 |
+
save_interval: 2
|
30 |
+
save_score: false
|
31 |
+
seed: 1
|
32 |
+
show_topk:
|
33 |
+
- 1
|
34 |
+
- 5
|
35 |
+
start_epoch: 0
|
36 |
+
step:
|
37 |
+
- 60
|
38 |
+
- 80
|
39 |
+
- 100
|
40 |
+
test_batch_size: 64
|
41 |
+
test_feeder_args:
|
42 |
+
data_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/val_data_bone.npy
|
43 |
+
label_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/val_label.pkl
|
44 |
+
train_feeder_args:
|
45 |
+
data_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/train_data_bone.npy
|
46 |
+
debug: false
|
47 |
+
label_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/train_label.pkl
|
48 |
+
normalization: false
|
49 |
+
random_choose: false
|
50 |
+
random_move: false
|
51 |
+
random_shift: false
|
52 |
+
window_size: -1
|
53 |
+
warm_up_epoch: 0
|
54 |
+
weight_decay: 0.0001
|
55 |
+
weights: null
|
56 |
+
work_dir: ./work_dir/ntu120_bone_xsub
|
ckpt/Others/Shift-GCN/ntu120_xsub/ntu120_bone_xsub/eval_results/best_acc.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a1052d9d03789bd0448c62585aae1cc2edbab1c92ceaf3e29ecfb558c94dd972
|
3 |
+
size 29946137
|
ckpt/Others/Shift-GCN/ntu120_xsub/ntu120_bone_xsub/log.txt
ADDED
@@ -0,0 +1,1043 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[ Wed Sep 14 18:31:34 2022 ] Parameters:
|
2 |
+
{'work_dir': './work_dir/ntu120_bone_xsub', 'model_saved_name': './save_models/ntu120_bone_xsub', 'Experiment_name': 'ntu120_bone_xsub', 'config': './config/ntu120_xsub/train_bone.yaml', 'phase': 'train', 'save_score': False, 'seed': 1, 'log_interval': 100, 'save_interval': 2, 'eval_interval': 5, 'print_log': True, 'show_topk': [1, 5], 'feeder': 'feeders.feeder.Feeder', 'num_worker': 32, 'train_feeder_args': {'data_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/train_data_bone.npy', 'label_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/train_label.pkl', 'debug': False, 'random_choose': False, 'random_shift': False, 'random_move': False, 'window_size': -1, 'normalization': False}, 'test_feeder_args': {'data_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/val_data_bone.npy', 'label_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/val_label.pkl'}, 'model': 'model.shift_gcn.Model', 'model_args': {'num_class': 120, 'num_point': 25, 'num_person': 2, 'graph': 'graph.ntu_rgb_d.Graph', 'graph_args': {'labeling_mode': 'spatial'}}, 'weights': None, 'ignore_weights': [], 'base_lr': 0.1, 'step': [60, 80, 100], 'device': [0, 1], 'optimizer': 'SGD', 'nesterov': True, 'batch_size': 64, 'test_batch_size': 64, 'start_epoch': 0, 'num_epoch': 140, 'weight_decay': 0.0001, 'only_train_part': True, 'only_train_epoch': 1, 'warm_up_epoch': 0}
|
3 |
+
|
4 |
+
[ Wed Sep 14 18:31:34 2022 ] Training epoch: 1
|
5 |
+
[ Wed Sep 14 18:32:53 2022 ] Batch(99/243) done. Loss: 4.0333 lr:0.100000 network_time: 0.0258
|
6 |
+
[ Wed Sep 14 18:34:05 2022 ] Batch(199/243) done. Loss: 2.7616 lr:0.100000 network_time: 0.0307
|
7 |
+
[ Wed Sep 14 18:34:37 2022 ] Eval epoch: 1
|
8 |
+
[ Wed Sep 14 18:36:11 2022 ] Mean test loss of 796 batches: 5.216921806335449.
|
9 |
+
[ Wed Sep 14 18:36:12 2022 ] Top1: 8.18%
|
10 |
+
[ Wed Sep 14 18:36:12 2022 ] Top5: 22.12%
|
11 |
+
[ Wed Sep 14 18:36:12 2022 ] Training epoch: 2
|
12 |
+
[ Wed Sep 14 18:36:57 2022 ] Batch(56/243) done. Loss: 2.9609 lr:0.100000 network_time: 0.0478
|
13 |
+
[ Wed Sep 14 18:38:09 2022 ] Batch(156/243) done. Loss: 2.6439 lr:0.100000 network_time: 0.0272
|
14 |
+
[ Wed Sep 14 18:39:12 2022 ] Eval epoch: 2
|
15 |
+
[ Wed Sep 14 18:40:46 2022 ] Mean test loss of 796 batches: 4.073986053466797.
|
16 |
+
[ Wed Sep 14 18:40:46 2022 ] Top1: 16.06%
|
17 |
+
[ Wed Sep 14 18:40:46 2022 ] Top5: 34.36%
|
18 |
+
[ Wed Sep 14 18:40:47 2022 ] Training epoch: 3
|
19 |
+
[ Wed Sep 14 18:41:00 2022 ] Batch(13/243) done. Loss: 1.7683 lr:0.100000 network_time: 0.0276
|
20 |
+
[ Wed Sep 14 18:42:13 2022 ] Batch(113/243) done. Loss: 1.9985 lr:0.100000 network_time: 0.0261
|
21 |
+
[ Wed Sep 14 18:43:25 2022 ] Batch(213/243) done. Loss: 2.0935 lr:0.100000 network_time: 0.0276
|
22 |
+
[ Wed Sep 14 18:43:46 2022 ] Eval epoch: 3
|
23 |
+
[ Wed Sep 14 18:45:21 2022 ] Mean test loss of 796 batches: 3.8530473709106445.
|
24 |
+
[ Wed Sep 14 18:45:21 2022 ] Top1: 17.67%
|
25 |
+
[ Wed Sep 14 18:45:21 2022 ] Top5: 40.53%
|
26 |
+
[ Wed Sep 14 18:45:22 2022 ] Training epoch: 4
|
27 |
+
[ Wed Sep 14 18:46:16 2022 ] Batch(70/243) done. Loss: 1.3666 lr:0.100000 network_time: 0.0311
|
28 |
+
[ Wed Sep 14 18:47:28 2022 ] Batch(170/243) done. Loss: 1.5859 lr:0.100000 network_time: 0.0311
|
29 |
+
[ Wed Sep 14 18:48:21 2022 ] Eval epoch: 4
|
30 |
+
[ Wed Sep 14 18:49:55 2022 ] Mean test loss of 796 batches: 3.4396579265594482.
|
31 |
+
[ Wed Sep 14 18:49:56 2022 ] Top1: 22.98%
|
32 |
+
[ Wed Sep 14 18:49:56 2022 ] Top5: 51.04%
|
33 |
+
[ Wed Sep 14 18:49:56 2022 ] Training epoch: 5
|
34 |
+
[ Wed Sep 14 18:50:20 2022 ] Batch(27/243) done. Loss: 1.4973 lr:0.100000 network_time: 0.0293
|
35 |
+
[ Wed Sep 14 18:51:32 2022 ] Batch(127/243) done. Loss: 1.3234 lr:0.100000 network_time: 0.0268
|
36 |
+
[ Wed Sep 14 18:52:45 2022 ] Batch(227/243) done. Loss: 1.5324 lr:0.100000 network_time: 0.0314
|
37 |
+
[ Wed Sep 14 18:52:56 2022 ] Eval epoch: 5
|
38 |
+
[ Wed Sep 14 18:54:30 2022 ] Mean test loss of 796 batches: 3.1425249576568604.
|
39 |
+
[ Wed Sep 14 18:54:30 2022 ] Top1: 26.86%
|
40 |
+
[ Wed Sep 14 18:54:31 2022 ] Top5: 56.16%
|
41 |
+
[ Wed Sep 14 18:54:31 2022 ] Training epoch: 6
|
42 |
+
[ Wed Sep 14 18:55:35 2022 ] Batch(84/243) done. Loss: 1.4138 lr:0.100000 network_time: 0.0277
|
43 |
+
[ Wed Sep 14 18:56:48 2022 ] Batch(184/243) done. Loss: 1.0573 lr:0.100000 network_time: 0.0303
|
44 |
+
[ Wed Sep 14 18:57:30 2022 ] Eval epoch: 6
|
45 |
+
[ Wed Sep 14 18:59:05 2022 ] Mean test loss of 796 batches: 3.0790634155273438.
|
46 |
+
[ Wed Sep 14 18:59:05 2022 ] Top1: 29.51%
|
47 |
+
[ Wed Sep 14 18:59:06 2022 ] Top5: 62.24%
|
48 |
+
[ Wed Sep 14 18:59:06 2022 ] Training epoch: 7
|
49 |
+
[ Wed Sep 14 18:59:39 2022 ] Batch(41/243) done. Loss: 1.3634 lr:0.100000 network_time: 0.0323
|
50 |
+
[ Wed Sep 14 19:00:52 2022 ] Batch(141/243) done. Loss: 0.9326 lr:0.100000 network_time: 0.0267
|
51 |
+
[ Wed Sep 14 19:02:05 2022 ] Batch(241/243) done. Loss: 1.1295 lr:0.100000 network_time: 0.0270
|
52 |
+
[ Wed Sep 14 19:02:05 2022 ] Eval epoch: 7
|
53 |
+
[ Wed Sep 14 19:03:39 2022 ] Mean test loss of 796 batches: 2.927468776702881.
|
54 |
+
[ Wed Sep 14 19:03:40 2022 ] Top1: 30.35%
|
55 |
+
[ Wed Sep 14 19:03:40 2022 ] Top5: 64.28%
|
56 |
+
[ Wed Sep 14 19:03:40 2022 ] Training epoch: 8
|
57 |
+
[ Wed Sep 14 19:04:55 2022 ] Batch(98/243) done. Loss: 0.7392 lr:0.100000 network_time: 0.0268
|
58 |
+
[ Wed Sep 14 19:06:07 2022 ] Batch(198/243) done. Loss: 0.8407 lr:0.100000 network_time: 0.0263
|
59 |
+
[ Wed Sep 14 19:06:40 2022 ] Eval epoch: 8
|
60 |
+
[ Wed Sep 14 19:08:14 2022 ] Mean test loss of 796 batches: 2.743701457977295.
|
61 |
+
[ Wed Sep 14 19:08:14 2022 ] Top1: 33.74%
|
62 |
+
[ Wed Sep 14 19:08:15 2022 ] Top5: 66.94%
|
63 |
+
[ Wed Sep 14 19:08:15 2022 ] Training epoch: 9
|
64 |
+
[ Wed Sep 14 19:08:58 2022 ] Batch(55/243) done. Loss: 1.3084 lr:0.100000 network_time: 0.0283
|
65 |
+
[ Wed Sep 14 19:10:11 2022 ] Batch(155/243) done. Loss: 1.2042 lr:0.100000 network_time: 0.0276
|
66 |
+
[ Wed Sep 14 19:11:14 2022 ] Eval epoch: 9
|
67 |
+
[ Wed Sep 14 19:12:48 2022 ] Mean test loss of 796 batches: 3.0599684715270996.
|
68 |
+
[ Wed Sep 14 19:12:48 2022 ] Top1: 29.85%
|
69 |
+
[ Wed Sep 14 19:12:49 2022 ] Top5: 60.50%
|
70 |
+
[ Wed Sep 14 19:12:49 2022 ] Training epoch: 10
|
71 |
+
[ Wed Sep 14 19:13:01 2022 ] Batch(12/243) done. Loss: 1.1141 lr:0.100000 network_time: 0.0263
|
72 |
+
[ Wed Sep 14 19:14:14 2022 ] Batch(112/243) done. Loss: 1.2123 lr:0.100000 network_time: 0.0273
|
73 |
+
[ Wed Sep 14 19:15:26 2022 ] Batch(212/243) done. Loss: 1.2073 lr:0.100000 network_time: 0.0266
|
74 |
+
[ Wed Sep 14 19:15:48 2022 ] Eval epoch: 10
|
75 |
+
[ Wed Sep 14 19:17:23 2022 ] Mean test loss of 796 batches: 2.714928388595581.
|
76 |
+
[ Wed Sep 14 19:17:23 2022 ] Top1: 36.63%
|
77 |
+
[ Wed Sep 14 19:17:24 2022 ] Top5: 69.90%
|
78 |
+
[ Wed Sep 14 19:17:24 2022 ] Training epoch: 11
|
79 |
+
[ Wed Sep 14 19:18:17 2022 ] Batch(69/243) done. Loss: 1.0347 lr:0.100000 network_time: 0.0312
|
80 |
+
[ Wed Sep 14 19:19:30 2022 ] Batch(169/243) done. Loss: 0.8520 lr:0.100000 network_time: 0.0276
|
81 |
+
[ Wed Sep 14 19:20:23 2022 ] Eval epoch: 11
|
82 |
+
[ Wed Sep 14 19:21:58 2022 ] Mean test loss of 796 batches: 2.830739736557007.
|
83 |
+
[ Wed Sep 14 19:21:58 2022 ] Top1: 32.54%
|
84 |
+
[ Wed Sep 14 19:21:59 2022 ] Top5: 67.73%
|
85 |
+
[ Wed Sep 14 19:21:59 2022 ] Training epoch: 12
|
86 |
+
[ Wed Sep 14 19:22:21 2022 ] Batch(26/243) done. Loss: 0.6660 lr:0.100000 network_time: 0.0264
|
87 |
+
[ Wed Sep 14 19:23:34 2022 ] Batch(126/243) done. Loss: 0.9330 lr:0.100000 network_time: 0.0293
|
88 |
+
[ Wed Sep 14 19:24:46 2022 ] Batch(226/243) done. Loss: 1.0268 lr:0.100000 network_time: 0.0297
|
89 |
+
[ Wed Sep 14 19:24:58 2022 ] Eval epoch: 12
|
90 |
+
[ Wed Sep 14 19:26:32 2022 ] Mean test loss of 796 batches: 3.2985918521881104.
|
91 |
+
[ Wed Sep 14 19:26:33 2022 ] Top1: 29.22%
|
92 |
+
[ Wed Sep 14 19:26:33 2022 ] Top5: 63.29%
|
93 |
+
[ Wed Sep 14 19:26:33 2022 ] Training epoch: 13
|
94 |
+
[ Wed Sep 14 19:27:37 2022 ] Batch(83/243) done. Loss: 0.7545 lr:0.100000 network_time: 0.0276
|
95 |
+
[ Wed Sep 14 19:28:50 2022 ] Batch(183/243) done. Loss: 0.6929 lr:0.100000 network_time: 0.0271
|
96 |
+
[ Wed Sep 14 19:29:33 2022 ] Eval epoch: 13
|
97 |
+
[ Wed Sep 14 19:31:08 2022 ] Mean test loss of 796 batches: 2.562110424041748.
|
98 |
+
[ Wed Sep 14 19:31:08 2022 ] Top1: 38.93%
|
99 |
+
[ Wed Sep 14 19:31:09 2022 ] Top5: 72.60%
|
100 |
+
[ Wed Sep 14 19:31:09 2022 ] Training epoch: 14
|
101 |
+
[ Wed Sep 14 19:31:42 2022 ] Batch(40/243) done. Loss: 0.5393 lr:0.100000 network_time: 0.0281
|
102 |
+
[ Wed Sep 14 19:32:54 2022 ] Batch(140/243) done. Loss: 0.9207 lr:0.100000 network_time: 0.0263
|
103 |
+
[ Wed Sep 14 19:34:07 2022 ] Batch(240/243) done. Loss: 0.8997 lr:0.100000 network_time: 0.0302
|
104 |
+
[ Wed Sep 14 19:34:09 2022 ] Eval epoch: 14
|
105 |
+
[ Wed Sep 14 19:35:43 2022 ] Mean test loss of 796 batches: 2.663928508758545.
|
106 |
+
[ Wed Sep 14 19:35:43 2022 ] Top1: 37.57%
|
107 |
+
[ Wed Sep 14 19:35:44 2022 ] Top5: 71.04%
|
108 |
+
[ Wed Sep 14 19:35:44 2022 ] Training epoch: 15
|
109 |
+
[ Wed Sep 14 19:36:58 2022 ] Batch(97/243) done. Loss: 0.6897 lr:0.100000 network_time: 0.0320
|
110 |
+
[ Wed Sep 14 19:38:10 2022 ] Batch(197/243) done. Loss: 0.6975 lr:0.100000 network_time: 0.0268
|
111 |
+
[ Wed Sep 14 19:38:43 2022 ] Eval epoch: 15
|
112 |
+
[ Wed Sep 14 19:40:17 2022 ] Mean test loss of 796 batches: 2.4152395725250244.
|
113 |
+
[ Wed Sep 14 19:40:18 2022 ] Top1: 40.93%
|
114 |
+
[ Wed Sep 14 19:40:18 2022 ] Top5: 75.42%
|
115 |
+
[ Wed Sep 14 19:40:18 2022 ] Training epoch: 16
|
116 |
+
[ Wed Sep 14 19:41:01 2022 ] Batch(54/243) done. Loss: 0.3969 lr:0.100000 network_time: 0.0268
|
117 |
+
[ Wed Sep 14 19:42:14 2022 ] Batch(154/243) done. Loss: 0.7158 lr:0.100000 network_time: 0.0274
|
118 |
+
[ Wed Sep 14 19:43:18 2022 ] Eval epoch: 16
|
119 |
+
[ Wed Sep 14 19:44:52 2022 ] Mean test loss of 796 batches: 2.5785508155822754.
|
120 |
+
[ Wed Sep 14 19:44:53 2022 ] Top1: 38.90%
|
121 |
+
[ Wed Sep 14 19:44:53 2022 ] Top5: 72.23%
|
122 |
+
[ Wed Sep 14 19:44:53 2022 ] Training epoch: 17
|
123 |
+
[ Wed Sep 14 19:45:04 2022 ] Batch(11/243) done. Loss: 0.7059 lr:0.100000 network_time: 0.0301
|
124 |
+
[ Wed Sep 14 19:46:17 2022 ] Batch(111/243) done. Loss: 0.7283 lr:0.100000 network_time: 0.0274
|
125 |
+
[ Wed Sep 14 19:47:30 2022 ] Batch(211/243) done. Loss: 0.9291 lr:0.100000 network_time: 0.0276
|
126 |
+
[ Wed Sep 14 19:47:52 2022 ] Eval epoch: 17
|
127 |
+
[ Wed Sep 14 19:49:26 2022 ] Mean test loss of 796 batches: 2.557190179824829.
|
128 |
+
[ Wed Sep 14 19:49:27 2022 ] Top1: 40.76%
|
129 |
+
[ Wed Sep 14 19:49:27 2022 ] Top5: 74.72%
|
130 |
+
[ Wed Sep 14 19:49:27 2022 ] Training epoch: 18
|
131 |
+
[ Wed Sep 14 19:50:20 2022 ] Batch(68/243) done. Loss: 0.5587 lr:0.100000 network_time: 0.0295
|
132 |
+
[ Wed Sep 14 19:51:32 2022 ] Batch(168/243) done. Loss: 0.3922 lr:0.100000 network_time: 0.0279
|
133 |
+
[ Wed Sep 14 19:52:26 2022 ] Eval epoch: 18
|
134 |
+
[ Wed Sep 14 19:54:00 2022 ] Mean test loss of 796 batches: 3.573277235031128.
|
135 |
+
[ Wed Sep 14 19:54:01 2022 ] Top1: 33.62%
|
136 |
+
[ Wed Sep 14 19:54:01 2022 ] Top5: 67.25%
|
137 |
+
[ Wed Sep 14 19:54:01 2022 ] Training epoch: 19
|
138 |
+
[ Wed Sep 14 19:54:23 2022 ] Batch(25/243) done. Loss: 0.6683 lr:0.100000 network_time: 0.0347
|
139 |
+
[ Wed Sep 14 19:55:35 2022 ] Batch(125/243) done. Loss: 0.7018 lr:0.100000 network_time: 0.0299
|
140 |
+
[ Wed Sep 14 19:56:48 2022 ] Batch(225/243) done. Loss: 0.6643 lr:0.100000 network_time: 0.0296
|
141 |
+
[ Wed Sep 14 19:57:01 2022 ] Eval epoch: 19
|
142 |
+
[ Wed Sep 14 19:58:35 2022 ] Mean test loss of 796 batches: 2.8546314239501953.
|
143 |
+
[ Wed Sep 14 19:58:35 2022 ] Top1: 39.64%
|
144 |
+
[ Wed Sep 14 19:58:35 2022 ] Top5: 72.18%
|
145 |
+
[ Wed Sep 14 19:58:36 2022 ] Training epoch: 20
|
146 |
+
[ Wed Sep 14 19:59:39 2022 ] Batch(82/243) done. Loss: 0.4966 lr:0.100000 network_time: 0.0263
|
147 |
+
[ Wed Sep 14 20:00:51 2022 ] Batch(182/243) done. Loss: 0.4008 lr:0.100000 network_time: 0.0315
|
148 |
+
[ Wed Sep 14 20:01:35 2022 ] Eval epoch: 20
|
149 |
+
[ Wed Sep 14 20:03:09 2022 ] Mean test loss of 796 batches: 2.6202304363250732.
|
150 |
+
[ Wed Sep 14 20:03:10 2022 ] Top1: 40.66%
|
151 |
+
[ Wed Sep 14 20:03:10 2022 ] Top5: 74.78%
|
152 |
+
[ Wed Sep 14 20:03:10 2022 ] Training epoch: 21
|
153 |
+
[ Wed Sep 14 20:03:42 2022 ] Batch(39/243) done. Loss: 0.3239 lr:0.100000 network_time: 0.0299
|
154 |
+
[ Wed Sep 14 20:04:55 2022 ] Batch(139/243) done. Loss: 0.4198 lr:0.100000 network_time: 0.0265
|
155 |
+
[ Wed Sep 14 20:06:07 2022 ] Batch(239/243) done. Loss: 0.7220 lr:0.100000 network_time: 0.0266
|
156 |
+
[ Wed Sep 14 20:06:09 2022 ] Eval epoch: 21
|
157 |
+
[ Wed Sep 14 20:07:44 2022 ] Mean test loss of 796 batches: 2.5382893085479736.
|
158 |
+
[ Wed Sep 14 20:07:44 2022 ] Top1: 41.41%
|
159 |
+
[ Wed Sep 14 20:07:45 2022 ] Top5: 75.24%
|
160 |
+
[ Wed Sep 14 20:07:45 2022 ] Training epoch: 22
|
161 |
+
[ Wed Sep 14 20:08:58 2022 ] Batch(96/243) done. Loss: 0.4248 lr:0.100000 network_time: 0.0270
|
162 |
+
[ Wed Sep 14 20:10:11 2022 ] Batch(196/243) done. Loss: 0.4894 lr:0.100000 network_time: 0.0313
|
163 |
+
[ Wed Sep 14 20:10:44 2022 ] Eval epoch: 22
|
164 |
+
[ Wed Sep 14 20:12:19 2022 ] Mean test loss of 796 batches: 2.62750244140625.
|
165 |
+
[ Wed Sep 14 20:12:19 2022 ] Top1: 42.49%
|
166 |
+
[ Wed Sep 14 20:12:20 2022 ] Top5: 75.99%
|
167 |
+
[ Wed Sep 14 20:12:20 2022 ] Training epoch: 23
|
168 |
+
[ Wed Sep 14 20:13:02 2022 ] Batch(53/243) done. Loss: 0.3055 lr:0.100000 network_time: 0.0299
|
169 |
+
[ Wed Sep 14 20:14:15 2022 ] Batch(153/243) done. Loss: 0.6483 lr:0.100000 network_time: 0.0312
|
170 |
+
[ Wed Sep 14 20:15:19 2022 ] Eval epoch: 23
|
171 |
+
[ Wed Sep 14 20:16:55 2022 ] Mean test loss of 796 batches: 2.8056583404541016.
|
172 |
+
[ Wed Sep 14 20:16:55 2022 ] Top1: 39.39%
|
173 |
+
[ Wed Sep 14 20:16:56 2022 ] Top5: 72.92%
|
174 |
+
[ Wed Sep 14 20:16:56 2022 ] Training epoch: 24
|
175 |
+
[ Wed Sep 14 20:17:06 2022 ] Batch(10/243) done. Loss: 0.4323 lr:0.100000 network_time: 0.0284
|
176 |
+
[ Wed Sep 14 20:18:19 2022 ] Batch(110/243) done. Loss: 0.8153 lr:0.100000 network_time: 0.0274
|
177 |
+
[ Wed Sep 14 20:19:32 2022 ] Batch(210/243) done. Loss: 0.4780 lr:0.100000 network_time: 0.0277
|
178 |
+
[ Wed Sep 14 20:19:55 2022 ] Eval epoch: 24
|
179 |
+
[ Wed Sep 14 20:21:30 2022 ] Mean test loss of 796 batches: 2.699596405029297.
|
180 |
+
[ Wed Sep 14 20:21:30 2022 ] Top1: 42.59%
|
181 |
+
[ Wed Sep 14 20:21:31 2022 ] Top5: 74.85%
|
182 |
+
[ Wed Sep 14 20:21:31 2022 ] Training epoch: 25
|
183 |
+
[ Wed Sep 14 20:22:23 2022 ] Batch(67/243) done. Loss: 0.5537 lr:0.100000 network_time: 0.0284
|
184 |
+
[ Wed Sep 14 20:23:36 2022 ] Batch(167/243) done. Loss: 0.4563 lr:0.100000 network_time: 0.0269
|
185 |
+
[ Wed Sep 14 20:24:30 2022 ] Eval epoch: 25
|
186 |
+
[ Wed Sep 14 20:26:04 2022 ] Mean test loss of 796 batches: 2.6026360988616943.
|
187 |
+
[ Wed Sep 14 20:26:05 2022 ] Top1: 40.69%
|
188 |
+
[ Wed Sep 14 20:26:06 2022 ] Top5: 74.59%
|
189 |
+
[ Wed Sep 14 20:26:06 2022 ] Training epoch: 26
|
190 |
+
[ Wed Sep 14 20:26:27 2022 ] Batch(24/243) done. Loss: 0.4626 lr:0.100000 network_time: 0.0276
|
191 |
+
[ Wed Sep 14 20:27:39 2022 ] Batch(124/243) done. Loss: 0.4110 lr:0.100000 network_time: 0.0280
|
192 |
+
[ Wed Sep 14 20:28:52 2022 ] Batch(224/243) done. Loss: 0.6452 lr:0.100000 network_time: 0.0310
|
193 |
+
[ Wed Sep 14 20:29:05 2022 ] Eval epoch: 26
|
194 |
+
[ Wed Sep 14 20:30:39 2022 ] Mean test loss of 796 batches: 2.294908046722412.
|
195 |
+
[ Wed Sep 14 20:30:40 2022 ] Top1: 45.39%
|
196 |
+
[ Wed Sep 14 20:30:40 2022 ] Top5: 78.63%
|
197 |
+
[ Wed Sep 14 20:30:40 2022 ] Training epoch: 27
|
198 |
+
[ Wed Sep 14 20:31:42 2022 ] Batch(81/243) done. Loss: 0.5657 lr:0.100000 network_time: 0.0266
|
199 |
+
[ Wed Sep 14 20:32:55 2022 ] Batch(181/243) done. Loss: 0.4664 lr:0.100000 network_time: 0.0307
|
200 |
+
[ Wed Sep 14 20:33:39 2022 ] Eval epoch: 27
|
201 |
+
[ Wed Sep 14 20:35:14 2022 ] Mean test loss of 796 batches: 2.6094589233398438.
|
202 |
+
[ Wed Sep 14 20:35:14 2022 ] Top1: 39.99%
|
203 |
+
[ Wed Sep 14 20:35:14 2022 ] Top5: 73.88%
|
204 |
+
[ Wed Sep 14 20:35:15 2022 ] Training epoch: 28
|
205 |
+
[ Wed Sep 14 20:35:45 2022 ] Batch(38/243) done. Loss: 0.2889 lr:0.100000 network_time: 0.0319
|
206 |
+
[ Wed Sep 14 20:36:58 2022 ] Batch(138/243) done. Loss: 0.5320 lr:0.100000 network_time: 0.0270
|
207 |
+
[ Wed Sep 14 20:38:11 2022 ] Batch(238/243) done. Loss: 0.4978 lr:0.100000 network_time: 0.0313
|
208 |
+
[ Wed Sep 14 20:38:14 2022 ] Eval epoch: 28
|
209 |
+
[ Wed Sep 14 20:39:48 2022 ] Mean test loss of 796 batches: 2.759406089782715.
|
210 |
+
[ Wed Sep 14 20:39:48 2022 ] Top1: 40.93%
|
211 |
+
[ Wed Sep 14 20:39:49 2022 ] Top5: 73.80%
|
212 |
+
[ Wed Sep 14 20:39:49 2022 ] Training epoch: 29
|
213 |
+
[ Wed Sep 14 20:41:01 2022 ] Batch(95/243) done. Loss: 0.5033 lr:0.100000 network_time: 0.0310
|
214 |
+
[ Wed Sep 14 20:42:14 2022 ] Batch(195/243) done. Loss: 0.6511 lr:0.100000 network_time: 0.0275
|
215 |
+
[ Wed Sep 14 20:42:48 2022 ] Eval epoch: 29
|
216 |
+
[ Wed Sep 14 20:44:22 2022 ] Mean test loss of 796 batches: 2.587949275970459.
|
217 |
+
[ Wed Sep 14 20:44:23 2022 ] Top1: 42.27%
|
218 |
+
[ Wed Sep 14 20:44:24 2022 ] Top5: 75.12%
|
219 |
+
[ Wed Sep 14 20:44:24 2022 ] Training epoch: 30
|
220 |
+
[ Wed Sep 14 20:45:05 2022 ] Batch(52/243) done. Loss: 0.2909 lr:0.100000 network_time: 0.0269
|
221 |
+
[ Wed Sep 14 20:46:17 2022 ] Batch(152/243) done. Loss: 0.3604 lr:0.100000 network_time: 0.0255
|
222 |
+
[ Wed Sep 14 20:47:23 2022 ] Eval epoch: 30
|
223 |
+
[ Wed Sep 14 20:48:57 2022 ] Mean test loss of 796 batches: 2.8285579681396484.
|
224 |
+
[ Wed Sep 14 20:48:57 2022 ] Top1: 42.68%
|
225 |
+
[ Wed Sep 14 20:48:58 2022 ] Top5: 76.09%
|
226 |
+
[ Wed Sep 14 20:48:58 2022 ] Training epoch: 31
|
227 |
+
[ Wed Sep 14 20:49:08 2022 ] Batch(9/243) done. Loss: 0.3543 lr:0.100000 network_time: 0.0257
|
228 |
+
[ Wed Sep 14 20:50:20 2022 ] Batch(109/243) done. Loss: 0.2743 lr:0.100000 network_time: 0.0277
|
229 |
+
[ Wed Sep 14 20:51:33 2022 ] Batch(209/243) done. Loss: 0.5345 lr:0.100000 network_time: 0.0279
|
230 |
+
[ Wed Sep 14 20:51:57 2022 ] Eval epoch: 31
|
231 |
+
[ Wed Sep 14 20:53:31 2022 ] Mean test loss of 796 batches: 2.879929542541504.
|
232 |
+
[ Wed Sep 14 20:53:32 2022 ] Top1: 41.34%
|
233 |
+
[ Wed Sep 14 20:53:32 2022 ] Top5: 74.41%
|
234 |
+
[ Wed Sep 14 20:53:32 2022 ] Training epoch: 32
|
235 |
+
[ Wed Sep 14 20:54:24 2022 ] Batch(66/243) done. Loss: 0.4370 lr:0.100000 network_time: 0.0273
|
236 |
+
[ Wed Sep 14 20:55:37 2022 ] Batch(166/243) done. Loss: 0.5667 lr:0.100000 network_time: 0.0312
|
237 |
+
[ Wed Sep 14 20:56:32 2022 ] Eval epoch: 32
|
238 |
+
[ Wed Sep 14 20:58:06 2022 ] Mean test loss of 796 batches: 2.7939627170562744.
|
239 |
+
[ Wed Sep 14 20:58:06 2022 ] Top1: 41.09%
|
240 |
+
[ Wed Sep 14 20:58:07 2022 ] Top5: 74.35%
|
241 |
+
[ Wed Sep 14 20:58:07 2022 ] Training epoch: 33
|
242 |
+
[ Wed Sep 14 20:58:27 2022 ] Batch(23/243) done. Loss: 0.4639 lr:0.100000 network_time: 0.0295
|
243 |
+
[ Wed Sep 14 20:59:40 2022 ] Batch(123/243) done. Loss: 0.6343 lr:0.100000 network_time: 0.0281
|
244 |
+
[ Wed Sep 14 21:00:52 2022 ] Batch(223/243) done. Loss: 0.6872 lr:0.100000 network_time: 0.0264
|
245 |
+
[ Wed Sep 14 21:01:06 2022 ] Eval epoch: 33
|
246 |
+
[ Wed Sep 14 21:02:41 2022 ] Mean test loss of 796 batches: 2.557569980621338.
|
247 |
+
[ Wed Sep 14 21:02:41 2022 ] Top1: 43.26%
|
248 |
+
[ Wed Sep 14 21:02:42 2022 ] Top5: 75.92%
|
249 |
+
[ Wed Sep 14 21:02:42 2022 ] Training epoch: 34
|
250 |
+
[ Wed Sep 14 21:03:43 2022 ] Batch(80/243) done. Loss: 0.2682 lr:0.100000 network_time: 0.0271
|
251 |
+
[ Wed Sep 14 21:04:56 2022 ] Batch(180/243) done. Loss: 0.3253 lr:0.100000 network_time: 0.0424
|
252 |
+
[ Wed Sep 14 21:05:41 2022 ] Eval epoch: 34
|
253 |
+
[ Wed Sep 14 21:07:15 2022 ] Mean test loss of 796 batches: 2.8215174674987793.
|
254 |
+
[ Wed Sep 14 21:07:16 2022 ] Top1: 44.03%
|
255 |
+
[ Wed Sep 14 21:07:16 2022 ] Top5: 75.30%
|
256 |
+
[ Wed Sep 14 21:07:17 2022 ] Training epoch: 35
|
257 |
+
[ Wed Sep 14 21:07:47 2022 ] Batch(37/243) done. Loss: 0.3251 lr:0.100000 network_time: 0.0257
|
258 |
+
[ Wed Sep 14 21:08:59 2022 ] Batch(137/243) done. Loss: 0.3628 lr:0.100000 network_time: 0.0301
|
259 |
+
[ Wed Sep 14 21:10:12 2022 ] Batch(237/243) done. Loss: 0.4573 lr:0.100000 network_time: 0.0282
|
260 |
+
[ Wed Sep 14 21:10:16 2022 ] Eval epoch: 35
|
261 |
+
[ Wed Sep 14 21:11:50 2022 ] Mean test loss of 796 batches: 2.5117599964141846.
|
262 |
+
[ Wed Sep 14 21:11:51 2022 ] Top1: 46.17%
|
263 |
+
[ Wed Sep 14 21:11:51 2022 ] Top5: 78.81%
|
264 |
+
[ Wed Sep 14 21:11:51 2022 ] Training epoch: 36
|
265 |
+
[ Wed Sep 14 21:13:03 2022 ] Batch(94/243) done. Loss: 0.4862 lr:0.100000 network_time: 0.0277
|
266 |
+
[ Wed Sep 14 21:14:16 2022 ] Batch(194/243) done. Loss: 0.3950 lr:0.100000 network_time: 0.0279
|
267 |
+
[ Wed Sep 14 21:14:51 2022 ] Eval epoch: 36
|
268 |
+
[ Wed Sep 14 21:16:25 2022 ] Mean test loss of 796 batches: 2.567964553833008.
|
269 |
+
[ Wed Sep 14 21:16:25 2022 ] Top1: 45.67%
|
270 |
+
[ Wed Sep 14 21:16:26 2022 ] Top5: 77.48%
|
271 |
+
[ Wed Sep 14 21:16:26 2022 ] Training epoch: 37
|
272 |
+
[ Wed Sep 14 21:17:06 2022 ] Batch(51/243) done. Loss: 0.2134 lr:0.100000 network_time: 0.0267
|
273 |
+
[ Wed Sep 14 21:18:19 2022 ] Batch(151/243) done. Loss: 0.3702 lr:0.100000 network_time: 0.0268
|
274 |
+
[ Wed Sep 14 21:19:25 2022 ] Eval epoch: 37
|
275 |
+
[ Wed Sep 14 21:21:00 2022 ] Mean test loss of 796 batches: 2.9781603813171387.
|
276 |
+
[ Wed Sep 14 21:21:00 2022 ] Top1: 41.35%
|
277 |
+
[ Wed Sep 14 21:21:01 2022 ] Top5: 74.87%
|
278 |
+
[ Wed Sep 14 21:21:01 2022 ] Training epoch: 38
|
279 |
+
[ Wed Sep 14 21:21:10 2022 ] Batch(8/243) done. Loss: 0.4388 lr:0.100000 network_time: 0.0315
|
280 |
+
[ Wed Sep 14 21:22:22 2022 ] Batch(108/243) done. Loss: 0.3741 lr:0.100000 network_time: 0.0425
|
281 |
+
[ Wed Sep 14 21:23:35 2022 ] Batch(208/243) done. Loss: 0.3047 lr:0.100000 network_time: 0.0265
|
282 |
+
[ Wed Sep 14 21:24:00 2022 ] Eval epoch: 38
|
283 |
+
[ Wed Sep 14 21:25:34 2022 ] Mean test loss of 796 batches: 2.579361915588379.
|
284 |
+
[ Wed Sep 14 21:25:35 2022 ] Top1: 46.73%
|
285 |
+
[ Wed Sep 14 21:25:35 2022 ] Top5: 77.56%
|
286 |
+
[ Wed Sep 14 21:25:35 2022 ] Training epoch: 39
|
287 |
+
[ Wed Sep 14 21:26:25 2022 ] Batch(65/243) done. Loss: 0.5252 lr:0.100000 network_time: 0.0289
|
288 |
+
[ Wed Sep 14 21:27:38 2022 ] Batch(165/243) done. Loss: 0.3791 lr:0.100000 network_time: 0.0277
|
289 |
+
[ Wed Sep 14 21:28:34 2022 ] Eval epoch: 39
|
290 |
+
[ Wed Sep 14 21:30:08 2022 ] Mean test loss of 796 batches: 3.3219752311706543.
|
291 |
+
[ Wed Sep 14 21:30:09 2022 ] Top1: 37.83%
|
292 |
+
[ Wed Sep 14 21:30:10 2022 ] Top5: 71.83%
|
293 |
+
[ Wed Sep 14 21:30:10 2022 ] Training epoch: 40
|
294 |
+
[ Wed Sep 14 21:30:29 2022 ] Batch(22/243) done. Loss: 0.2710 lr:0.100000 network_time: 0.0310
|
295 |
+
[ Wed Sep 14 21:31:42 2022 ] Batch(122/243) done. Loss: 0.2538 lr:0.100000 network_time: 0.0274
|
296 |
+
[ Wed Sep 14 21:32:54 2022 ] Batch(222/243) done. Loss: 0.2920 lr:0.100000 network_time: 0.0306
|
297 |
+
[ Wed Sep 14 21:33:09 2022 ] Eval epoch: 40
|
298 |
+
[ Wed Sep 14 21:34:43 2022 ] Mean test loss of 796 batches: 3.5191311836242676.
|
299 |
+
[ Wed Sep 14 21:34:44 2022 ] Top1: 38.85%
|
300 |
+
[ Wed Sep 14 21:34:44 2022 ] Top5: 71.95%
|
301 |
+
[ Wed Sep 14 21:34:45 2022 ] Training epoch: 41
|
302 |
+
[ Wed Sep 14 21:35:45 2022 ] Batch(79/243) done. Loss: 0.3196 lr:0.100000 network_time: 0.0346
|
303 |
+
[ Wed Sep 14 21:36:58 2022 ] Batch(179/243) done. Loss: 0.3180 lr:0.100000 network_time: 0.0276
|
304 |
+
[ Wed Sep 14 21:37:44 2022 ] Eval epoch: 41
|
305 |
+
[ Wed Sep 14 21:39:19 2022 ] Mean test loss of 796 batches: 2.699187994003296.
|
306 |
+
[ Wed Sep 14 21:39:19 2022 ] Top1: 44.14%
|
307 |
+
[ Wed Sep 14 21:39:20 2022 ] Top5: 76.58%
|
308 |
+
[ Wed Sep 14 21:39:20 2022 ] Training epoch: 42
|
309 |
+
[ Wed Sep 14 21:39:49 2022 ] Batch(36/243) done. Loss: 0.3361 lr:0.100000 network_time: 0.0279
|
310 |
+
[ Wed Sep 14 21:41:02 2022 ] Batch(136/243) done. Loss: 0.3384 lr:0.100000 network_time: 0.0274
|
311 |
+
[ Wed Sep 14 21:42:15 2022 ] Batch(236/243) done. Loss: 0.3603 lr:0.100000 network_time: 0.0276
|
312 |
+
[ Wed Sep 14 21:42:19 2022 ] Eval epoch: 42
|
313 |
+
[ Wed Sep 14 21:43:54 2022 ] Mean test loss of 796 batches: 2.974973678588867.
|
314 |
+
[ Wed Sep 14 21:43:54 2022 ] Top1: 41.72%
|
315 |
+
[ Wed Sep 14 21:43:55 2022 ] Top5: 74.08%
|
316 |
+
[ Wed Sep 14 21:43:55 2022 ] Training epoch: 43
|
317 |
+
[ Wed Sep 14 21:45:06 2022 ] Batch(93/243) done. Loss: 0.1706 lr:0.100000 network_time: 0.0312
|
318 |
+
[ Wed Sep 14 21:46:19 2022 ] Batch(193/243) done. Loss: 0.4081 lr:0.100000 network_time: 0.0270
|
319 |
+
[ Wed Sep 14 21:46:54 2022 ] Eval epoch: 43
|
320 |
+
[ Wed Sep 14 21:48:28 2022 ] Mean test loss of 796 batches: 3.3875744342803955.
|
321 |
+
[ Wed Sep 14 21:48:29 2022 ] Top1: 39.21%
|
322 |
+
[ Wed Sep 14 21:48:29 2022 ] Top5: 71.23%
|
323 |
+
[ Wed Sep 14 21:48:29 2022 ] Training epoch: 44
|
324 |
+
[ Wed Sep 14 21:49:09 2022 ] Batch(50/243) done. Loss: 0.2592 lr:0.100000 network_time: 0.0343
|
325 |
+
[ Wed Sep 14 21:50:22 2022 ] Batch(150/243) done. Loss: 0.3864 lr:0.100000 network_time: 0.0309
|
326 |
+
[ Wed Sep 14 21:51:29 2022 ] Eval epoch: 44
|
327 |
+
[ Wed Sep 14 21:53:03 2022 ] Mean test loss of 796 batches: 2.42459774017334.
|
328 |
+
[ Wed Sep 14 21:53:04 2022 ] Top1: 45.90%
|
329 |
+
[ Wed Sep 14 21:53:04 2022 ] Top5: 78.51%
|
330 |
+
[ Wed Sep 14 21:53:04 2022 ] Training epoch: 45
|
331 |
+
[ Wed Sep 14 21:53:12 2022 ] Batch(7/243) done. Loss: 0.2629 lr:0.100000 network_time: 0.0267
|
332 |
+
[ Wed Sep 14 21:54:25 2022 ] Batch(107/243) done. Loss: 0.3106 lr:0.100000 network_time: 0.0310
|
333 |
+
[ Wed Sep 14 21:55:37 2022 ] Batch(207/243) done. Loss: 0.3254 lr:0.100000 network_time: 0.0313
|
334 |
+
[ Wed Sep 14 21:56:03 2022 ] Eval epoch: 45
|
335 |
+
[ Wed Sep 14 21:57:38 2022 ] Mean test loss of 796 batches: 2.780808925628662.
|
336 |
+
[ Wed Sep 14 21:57:38 2022 ] Top1: 41.82%
|
337 |
+
[ Wed Sep 14 21:57:39 2022 ] Top5: 75.46%
|
338 |
+
[ Wed Sep 14 21:57:39 2022 ] Training epoch: 46
|
339 |
+
[ Wed Sep 14 21:58:29 2022 ] Batch(64/243) done. Loss: 0.1354 lr:0.100000 network_time: 0.0274
|
340 |
+
[ Wed Sep 14 21:59:42 2022 ] Batch(164/243) done. Loss: 0.3815 lr:0.100000 network_time: 0.0284
|
341 |
+
[ Wed Sep 14 22:00:38 2022 ] Eval epoch: 46
|
342 |
+
[ Wed Sep 14 22:02:13 2022 ] Mean test loss of 796 batches: 2.7003347873687744.
|
343 |
+
[ Wed Sep 14 22:02:13 2022 ] Top1: 45.25%
|
344 |
+
[ Wed Sep 14 22:02:13 2022 ] Top5: 76.78%
|
345 |
+
[ Wed Sep 14 22:02:14 2022 ] Training epoch: 47
|
346 |
+
[ Wed Sep 14 22:02:32 2022 ] Batch(21/243) done. Loss: 0.1768 lr:0.100000 network_time: 0.0306
|
347 |
+
[ Wed Sep 14 22:03:45 2022 ] Batch(121/243) done. Loss: 0.2490 lr:0.100000 network_time: 0.0309
|
348 |
+
[ Wed Sep 14 22:04:57 2022 ] Batch(221/243) done. Loss: 0.2552 lr:0.100000 network_time: 0.0270
|
349 |
+
[ Wed Sep 14 22:05:13 2022 ] Eval epoch: 47
|
350 |
+
[ Wed Sep 14 22:06:47 2022 ] Mean test loss of 796 batches: 2.9509265422821045.
|
351 |
+
[ Wed Sep 14 22:06:48 2022 ] Top1: 44.42%
|
352 |
+
[ Wed Sep 14 22:06:48 2022 ] Top5: 76.73%
|
353 |
+
[ Wed Sep 14 22:06:48 2022 ] Training epoch: 48
|
354 |
+
[ Wed Sep 14 22:07:49 2022 ] Batch(78/243) done. Loss: 0.3004 lr:0.100000 network_time: 0.0286
|
355 |
+
[ Wed Sep 14 22:09:01 2022 ] Batch(178/243) done. Loss: 0.5320 lr:0.100000 network_time: 0.0322
|
356 |
+
[ Wed Sep 14 22:09:48 2022 ] Eval epoch: 48
|
357 |
+
[ Wed Sep 14 22:11:22 2022 ] Mean test loss of 796 batches: 2.4312541484832764.
|
358 |
+
[ Wed Sep 14 22:11:23 2022 ] Top1: 47.98%
|
359 |
+
[ Wed Sep 14 22:11:23 2022 ] Top5: 79.85%
|
360 |
+
[ Wed Sep 14 22:11:23 2022 ] Training epoch: 49
|
361 |
+
[ Wed Sep 14 22:11:52 2022 ] Batch(35/243) done. Loss: 0.2771 lr:0.100000 network_time: 0.0266
|
362 |
+
[ Wed Sep 14 22:13:05 2022 ] Batch(135/243) done. Loss: 0.2653 lr:0.100000 network_time: 0.0279
|
363 |
+
[ Wed Sep 14 22:14:18 2022 ] Batch(235/243) done. Loss: 0.4622 lr:0.100000 network_time: 0.0278
|
364 |
+
[ Wed Sep 14 22:14:23 2022 ] Eval epoch: 49
|
365 |
+
[ Wed Sep 14 22:15:57 2022 ] Mean test loss of 796 batches: 2.64970064163208.
|
366 |
+
[ Wed Sep 14 22:15:58 2022 ] Top1: 44.03%
|
367 |
+
[ Wed Sep 14 22:15:58 2022 ] Top5: 77.05%
|
368 |
+
[ Wed Sep 14 22:15:58 2022 ] Training epoch: 50
|
369 |
+
[ Wed Sep 14 22:17:08 2022 ] Batch(92/243) done. Loss: 0.3453 lr:0.100000 network_time: 0.0259
|
370 |
+
[ Wed Sep 14 22:18:21 2022 ] Batch(192/243) done. Loss: 0.3537 lr:0.100000 network_time: 0.0268
|
371 |
+
[ Wed Sep 14 22:18:58 2022 ] Eval epoch: 50
|
372 |
+
[ Wed Sep 14 22:20:32 2022 ] Mean test loss of 796 batches: 2.8408055305480957.
|
373 |
+
[ Wed Sep 14 22:20:32 2022 ] Top1: 46.56%
|
374 |
+
[ Wed Sep 14 22:20:33 2022 ] Top5: 77.21%
|
375 |
+
[ Wed Sep 14 22:20:33 2022 ] Training epoch: 51
|
376 |
+
[ Wed Sep 14 22:21:12 2022 ] Batch(49/243) done. Loss: 0.2958 lr:0.100000 network_time: 0.0264
|
377 |
+
[ Wed Sep 14 22:22:25 2022 ] Batch(149/243) done. Loss: 0.3390 lr:0.100000 network_time: 0.0269
|
378 |
+
[ Wed Sep 14 22:23:32 2022 ] Eval epoch: 51
|
379 |
+
[ Wed Sep 14 22:25:07 2022 ] Mean test loss of 796 batches: 2.830892324447632.
|
380 |
+
[ Wed Sep 14 22:25:07 2022 ] Top1: 44.75%
|
381 |
+
[ Wed Sep 14 22:25:08 2022 ] Top5: 76.30%
|
382 |
+
[ Wed Sep 14 22:25:08 2022 ] Training epoch: 52
|
383 |
+
[ Wed Sep 14 22:25:15 2022 ] Batch(6/243) done. Loss: 0.3292 lr:0.100000 network_time: 0.0263
|
384 |
+
[ Wed Sep 14 22:26:28 2022 ] Batch(106/243) done. Loss: 0.2284 lr:0.100000 network_time: 0.0329
|
385 |
+
[ Wed Sep 14 22:27:41 2022 ] Batch(206/243) done. Loss: 0.3900 lr:0.100000 network_time: 0.0271
|
386 |
+
[ Wed Sep 14 22:28:07 2022 ] Eval epoch: 52
|
387 |
+
[ Wed Sep 14 22:29:42 2022 ] Mean test loss of 796 batches: 2.779292583465576.
|
388 |
+
[ Wed Sep 14 22:29:42 2022 ] Top1: 43.91%
|
389 |
+
[ Wed Sep 14 22:29:42 2022 ] Top5: 76.34%
|
390 |
+
[ Wed Sep 14 22:29:43 2022 ] Training epoch: 53
|
391 |
+
[ Wed Sep 14 22:30:32 2022 ] Batch(63/243) done. Loss: 0.1874 lr:0.100000 network_time: 0.0328
|
392 |
+
[ Wed Sep 14 22:31:45 2022 ] Batch(163/243) done. Loss: 0.3138 lr:0.100000 network_time: 0.0266
|
393 |
+
[ Wed Sep 14 22:32:42 2022 ] Eval epoch: 53
|
394 |
+
[ Wed Sep 14 22:34:16 2022 ] Mean test loss of 796 batches: 2.5557665824890137.
|
395 |
+
[ Wed Sep 14 22:34:17 2022 ] Top1: 47.09%
|
396 |
+
[ Wed Sep 14 22:34:17 2022 ] Top5: 79.82%
|
397 |
+
[ Wed Sep 14 22:34:18 2022 ] Training epoch: 54
|
398 |
+
[ Wed Sep 14 22:34:35 2022 ] Batch(20/243) done. Loss: 0.3232 lr:0.100000 network_time: 0.0292
|
399 |
+
[ Wed Sep 14 22:35:48 2022 ] Batch(120/243) done. Loss: 0.2636 lr:0.100000 network_time: 0.0275
|
400 |
+
[ Wed Sep 14 22:37:01 2022 ] Batch(220/243) done. Loss: 0.4322 lr:0.100000 network_time: 0.0311
|
401 |
+
[ Wed Sep 14 22:37:17 2022 ] Eval epoch: 54
|
402 |
+
[ Wed Sep 14 22:38:51 2022 ] Mean test loss of 796 batches: 2.8570163249969482.
|
403 |
+
[ Wed Sep 14 22:38:52 2022 ] Top1: 44.39%
|
404 |
+
[ Wed Sep 14 22:38:52 2022 ] Top5: 76.48%
|
405 |
+
[ Wed Sep 14 22:38:52 2022 ] Training epoch: 55
|
406 |
+
[ Wed Sep 14 22:39:52 2022 ] Batch(77/243) done. Loss: 0.3885 lr:0.100000 network_time: 0.0258
|
407 |
+
[ Wed Sep 14 22:41:04 2022 ] Batch(177/243) done. Loss: 0.3764 lr:0.100000 network_time: 0.0309
|
408 |
+
[ Wed Sep 14 22:41:52 2022 ] Eval epoch: 55
|
409 |
+
[ Wed Sep 14 22:43:26 2022 ] Mean test loss of 796 batches: 2.8412747383117676.
|
410 |
+
[ Wed Sep 14 22:43:26 2022 ] Top1: 45.56%
|
411 |
+
[ Wed Sep 14 22:43:27 2022 ] Top5: 77.42%
|
412 |
+
[ Wed Sep 14 22:43:27 2022 ] Training epoch: 56
|
413 |
+
[ Wed Sep 14 22:43:55 2022 ] Batch(34/243) done. Loss: 0.2089 lr:0.100000 network_time: 0.0321
|
414 |
+
[ Wed Sep 14 22:45:07 2022 ] Batch(134/243) done. Loss: 0.4471 lr:0.100000 network_time: 0.0274
|
415 |
+
[ Wed Sep 14 22:46:20 2022 ] Batch(234/243) done. Loss: 0.3233 lr:0.100000 network_time: 0.0344
|
416 |
+
[ Wed Sep 14 22:46:26 2022 ] Eval epoch: 56
|
417 |
+
[ Wed Sep 14 22:48:00 2022 ] Mean test loss of 796 batches: 3.0499653816223145.
|
418 |
+
[ Wed Sep 14 22:48:01 2022 ] Top1: 42.66%
|
419 |
+
[ Wed Sep 14 22:48:01 2022 ] Top5: 74.60%
|
420 |
+
[ Wed Sep 14 22:48:01 2022 ] Training epoch: 57
|
421 |
+
[ Wed Sep 14 22:49:11 2022 ] Batch(91/243) done. Loss: 0.4092 lr:0.100000 network_time: 0.0315
|
422 |
+
[ Wed Sep 14 22:50:24 2022 ] Batch(191/243) done. Loss: 0.2308 lr:0.100000 network_time: 0.0271
|
423 |
+
[ Wed Sep 14 22:51:01 2022 ] Eval epoch: 57
|
424 |
+
[ Wed Sep 14 22:52:35 2022 ] Mean test loss of 796 batches: 3.305689811706543.
|
425 |
+
[ Wed Sep 14 22:52:36 2022 ] Top1: 41.40%
|
426 |
+
[ Wed Sep 14 22:52:36 2022 ] Top5: 73.17%
|
427 |
+
[ Wed Sep 14 22:52:36 2022 ] Training epoch: 58
|
428 |
+
[ Wed Sep 14 22:53:15 2022 ] Batch(48/243) done. Loss: 0.2153 lr:0.100000 network_time: 0.0272
|
429 |
+
[ Wed Sep 14 22:54:27 2022 ] Batch(148/243) done. Loss: 0.1952 lr:0.100000 network_time: 0.0259
|
430 |
+
[ Wed Sep 14 22:55:36 2022 ] Eval epoch: 58
|
431 |
+
[ Wed Sep 14 22:57:10 2022 ] Mean test loss of 796 batches: 2.48647403717041.
|
432 |
+
[ Wed Sep 14 22:57:10 2022 ] Top1: 47.80%
|
433 |
+
[ Wed Sep 14 22:57:11 2022 ] Top5: 78.56%
|
434 |
+
[ Wed Sep 14 22:57:11 2022 ] Training epoch: 59
|
435 |
+
[ Wed Sep 14 22:57:18 2022 ] Batch(5/243) done. Loss: 0.2518 lr:0.100000 network_time: 0.0274
|
436 |
+
[ Wed Sep 14 22:58:30 2022 ] Batch(105/243) done. Loss: 0.3340 lr:0.100000 network_time: 0.0277
|
437 |
+
[ Wed Sep 14 22:59:43 2022 ] Batch(205/243) done. Loss: 0.2099 lr:0.100000 network_time: 0.0283
|
438 |
+
[ Wed Sep 14 23:00:10 2022 ] Eval epoch: 59
|
439 |
+
[ Wed Sep 14 23:01:45 2022 ] Mean test loss of 796 batches: 3.046830177307129.
|
440 |
+
[ Wed Sep 14 23:01:46 2022 ] Top1: 43.71%
|
441 |
+
[ Wed Sep 14 23:01:46 2022 ] Top5: 76.29%
|
442 |
+
[ Wed Sep 14 23:01:46 2022 ] Training epoch: 60
|
443 |
+
[ Wed Sep 14 23:02:34 2022 ] Batch(62/243) done. Loss: 0.2846 lr:0.100000 network_time: 0.0267
|
444 |
+
[ Wed Sep 14 23:03:47 2022 ] Batch(162/243) done. Loss: 0.2350 lr:0.100000 network_time: 0.0270
|
445 |
+
[ Wed Sep 14 23:04:45 2022 ] Eval epoch: 60
|
446 |
+
[ Wed Sep 14 23:06:19 2022 ] Mean test loss of 796 batches: 2.672731399536133.
|
447 |
+
[ Wed Sep 14 23:06:20 2022 ] Top1: 45.65%
|
448 |
+
[ Wed Sep 14 23:06:20 2022 ] Top5: 77.72%
|
449 |
+
[ Wed Sep 14 23:06:21 2022 ] Training epoch: 61
|
450 |
+
[ Wed Sep 14 23:06:38 2022 ] Batch(19/243) done. Loss: 0.2963 lr:0.010000 network_time: 0.0297
|
451 |
+
[ Wed Sep 14 23:07:50 2022 ] Batch(119/243) done. Loss: 0.1329 lr:0.010000 network_time: 0.0278
|
452 |
+
[ Wed Sep 14 23:09:03 2022 ] Batch(219/243) done. Loss: 0.0661 lr:0.010000 network_time: 0.0258
|
453 |
+
[ Wed Sep 14 23:09:20 2022 ] Eval epoch: 61
|
454 |
+
[ Wed Sep 14 23:10:54 2022 ] Mean test loss of 796 batches: 2.2649903297424316.
|
455 |
+
[ Wed Sep 14 23:10:55 2022 ] Top1: 52.45%
|
456 |
+
[ Wed Sep 14 23:10:55 2022 ] Top5: 82.87%
|
457 |
+
[ Wed Sep 14 23:10:55 2022 ] Training epoch: 62
|
458 |
+
[ Wed Sep 14 23:11:54 2022 ] Batch(76/243) done. Loss: 0.0351 lr:0.010000 network_time: 0.0317
|
459 |
+
[ Wed Sep 14 23:13:07 2022 ] Batch(176/243) done. Loss: 0.1236 lr:0.010000 network_time: 0.0274
|
460 |
+
[ Wed Sep 14 23:13:55 2022 ] Eval epoch: 62
|
461 |
+
[ Wed Sep 14 23:15:29 2022 ] Mean test loss of 796 batches: 2.304346799850464.
|
462 |
+
[ Wed Sep 14 23:15:30 2022 ] Top1: 52.60%
|
463 |
+
[ Wed Sep 14 23:15:30 2022 ] Top5: 82.88%
|
464 |
+
[ Wed Sep 14 23:15:30 2022 ] Training epoch: 63
|
465 |
+
[ Wed Sep 14 23:15:58 2022 ] Batch(33/243) done. Loss: 0.0665 lr:0.010000 network_time: 0.0267
|
466 |
+
[ Wed Sep 14 23:17:10 2022 ] Batch(133/243) done. Loss: 0.0376 lr:0.010000 network_time: 0.0266
|
467 |
+
[ Wed Sep 14 23:18:23 2022 ] Batch(233/243) done. Loss: 0.0498 lr:0.010000 network_time: 0.0271
|
468 |
+
[ Wed Sep 14 23:18:30 2022 ] Eval epoch: 63
|
469 |
+
[ Wed Sep 14 23:20:04 2022 ] Mean test loss of 796 batches: 2.3135626316070557.
|
470 |
+
[ Wed Sep 14 23:20:05 2022 ] Top1: 53.06%
|
471 |
+
[ Wed Sep 14 23:20:05 2022 ] Top5: 83.14%
|
472 |
+
[ Wed Sep 14 23:20:05 2022 ] Training epoch: 64
|
473 |
+
[ Wed Sep 14 23:21:14 2022 ] Batch(90/243) done. Loss: 0.0455 lr:0.010000 network_time: 0.0272
|
474 |
+
[ Wed Sep 14 23:22:27 2022 ] Batch(190/243) done. Loss: 0.0182 lr:0.010000 network_time: 0.0251
|
475 |
+
[ Wed Sep 14 23:23:05 2022 ] Eval epoch: 64
|
476 |
+
[ Wed Sep 14 23:24:39 2022 ] Mean test loss of 796 batches: 2.324078321456909.
|
477 |
+
[ Wed Sep 14 23:24:40 2022 ] Top1: 53.30%
|
478 |
+
[ Wed Sep 14 23:24:40 2022 ] Top5: 83.26%
|
479 |
+
[ Wed Sep 14 23:24:41 2022 ] Training epoch: 65
|
480 |
+
[ Wed Sep 14 23:25:18 2022 ] Batch(47/243) done. Loss: 0.0222 lr:0.010000 network_time: 0.0284
|
481 |
+
[ Wed Sep 14 23:26:31 2022 ] Batch(147/243) done. Loss: 0.1275 lr:0.010000 network_time: 0.0282
|
482 |
+
[ Wed Sep 14 23:27:40 2022 ] Eval epoch: 65
|
483 |
+
[ Wed Sep 14 23:29:14 2022 ] Mean test loss of 796 batches: 2.2940661907196045.
|
484 |
+
[ Wed Sep 14 23:29:15 2022 ] Top1: 53.94%
|
485 |
+
[ Wed Sep 14 23:29:15 2022 ] Top5: 83.59%
|
486 |
+
[ Wed Sep 14 23:29:15 2022 ] Training epoch: 66
|
487 |
+
[ Wed Sep 14 23:29:21 2022 ] Batch(4/243) done. Loss: 0.0503 lr:0.010000 network_time: 0.0273
|
488 |
+
[ Wed Sep 14 23:30:34 2022 ] Batch(104/243) done. Loss: 0.0199 lr:0.010000 network_time: 0.0265
|
489 |
+
[ Wed Sep 14 23:31:47 2022 ] Batch(204/243) done. Loss: 0.0553 lr:0.010000 network_time: 0.0272
|
490 |
+
[ Wed Sep 14 23:32:15 2022 ] Eval epoch: 66
|
491 |
+
[ Wed Sep 14 23:33:49 2022 ] Mean test loss of 796 batches: 2.326700448989868.
|
492 |
+
[ Wed Sep 14 23:33:50 2022 ] Top1: 53.68%
|
493 |
+
[ Wed Sep 14 23:33:50 2022 ] Top5: 83.44%
|
494 |
+
[ Wed Sep 14 23:33:50 2022 ] Training epoch: 67
|
495 |
+
[ Wed Sep 14 23:34:38 2022 ] Batch(61/243) done. Loss: 0.0315 lr:0.010000 network_time: 0.0284
|
496 |
+
[ Wed Sep 14 23:35:51 2022 ] Batch(161/243) done. Loss: 0.0202 lr:0.010000 network_time: 0.0287
|
497 |
+
[ Wed Sep 14 23:36:50 2022 ] Eval epoch: 67
|
498 |
+
[ Wed Sep 14 23:38:24 2022 ] Mean test loss of 796 batches: 2.369642972946167.
|
499 |
+
[ Wed Sep 14 23:38:24 2022 ] Top1: 53.27%
|
500 |
+
[ Wed Sep 14 23:38:25 2022 ] Top5: 83.38%
|
501 |
+
[ Wed Sep 14 23:38:25 2022 ] Training epoch: 68
|
502 |
+
[ Wed Sep 14 23:38:41 2022 ] Batch(18/243) done. Loss: 0.0330 lr:0.010000 network_time: 0.0361
|
503 |
+
[ Wed Sep 14 23:39:54 2022 ] Batch(118/243) done. Loss: 0.0168 lr:0.010000 network_time: 0.0333
|
504 |
+
[ Wed Sep 14 23:41:07 2022 ] Batch(218/243) done. Loss: 0.0458 lr:0.010000 network_time: 0.0287
|
505 |
+
[ Wed Sep 14 23:41:24 2022 ] Eval epoch: 68
|
506 |
+
[ Wed Sep 14 23:42:58 2022 ] Mean test loss of 796 batches: 2.3233730792999268.
|
507 |
+
[ Wed Sep 14 23:42:58 2022 ] Top1: 53.88%
|
508 |
+
[ Wed Sep 14 23:42:59 2022 ] Top5: 83.64%
|
509 |
+
[ Wed Sep 14 23:42:59 2022 ] Training epoch: 69
|
510 |
+
[ Wed Sep 14 23:43:57 2022 ] Batch(75/243) done. Loss: 0.0249 lr:0.010000 network_time: 0.0281
|
511 |
+
[ Wed Sep 14 23:45:10 2022 ] Batch(175/243) done. Loss: 0.0364 lr:0.010000 network_time: 0.0272
|
512 |
+
[ Wed Sep 14 23:45:59 2022 ] Eval epoch: 69
|
513 |
+
[ Wed Sep 14 23:47:33 2022 ] Mean test loss of 796 batches: 2.3240044116973877.
|
514 |
+
[ Wed Sep 14 23:47:34 2022 ] Top1: 53.81%
|
515 |
+
[ Wed Sep 14 23:47:34 2022 ] Top5: 83.58%
|
516 |
+
[ Wed Sep 14 23:47:34 2022 ] Training epoch: 70
|
517 |
+
[ Wed Sep 14 23:48:00 2022 ] Batch(32/243) done. Loss: 0.0142 lr:0.010000 network_time: 0.0316
|
518 |
+
[ Wed Sep 14 23:49:13 2022 ] Batch(132/243) done. Loss: 0.0259 lr:0.010000 network_time: 0.0279
|
519 |
+
[ Wed Sep 14 23:50:26 2022 ] Batch(232/243) done. Loss: 0.0082 lr:0.010000 network_time: 0.0283
|
520 |
+
[ Wed Sep 14 23:50:33 2022 ] Eval epoch: 70
|
521 |
+
[ Wed Sep 14 23:52:08 2022 ] Mean test loss of 796 batches: 2.3367578983306885.
|
522 |
+
[ Wed Sep 14 23:52:08 2022 ] Top1: 54.09%
|
523 |
+
[ Wed Sep 14 23:52:09 2022 ] Top5: 83.63%
|
524 |
+
[ Wed Sep 14 23:52:09 2022 ] Training epoch: 71
|
525 |
+
[ Wed Sep 14 23:53:17 2022 ] Batch(89/243) done. Loss: 0.0175 lr:0.010000 network_time: 0.0269
|
526 |
+
[ Wed Sep 14 23:54:30 2022 ] Batch(189/243) done. Loss: 0.0308 lr:0.010000 network_time: 0.0320
|
527 |
+
[ Wed Sep 14 23:55:08 2022 ] Eval epoch: 71
|
528 |
+
[ Wed Sep 14 23:56:43 2022 ] Mean test loss of 796 batches: 2.4088292121887207.
|
529 |
+
[ Wed Sep 14 23:56:43 2022 ] Top1: 52.97%
|
530 |
+
[ Wed Sep 14 23:56:43 2022 ] Top5: 82.94%
|
531 |
+
[ Wed Sep 14 23:56:43 2022 ] Training epoch: 72
|
532 |
+
[ Wed Sep 14 23:57:20 2022 ] Batch(46/243) done. Loss: 0.0128 lr:0.010000 network_time: 0.0322
|
533 |
+
[ Wed Sep 14 23:58:33 2022 ] Batch(146/243) done. Loss: 0.0299 lr:0.010000 network_time: 0.0311
|
534 |
+
[ Wed Sep 14 23:59:43 2022 ] Eval epoch: 72
|
535 |
+
[ Thu Sep 15 00:01:17 2022 ] Mean test loss of 796 batches: 2.378607749938965.
|
536 |
+
[ Thu Sep 15 00:01:18 2022 ] Top1: 53.90%
|
537 |
+
[ Thu Sep 15 00:01:18 2022 ] Top5: 83.48%
|
538 |
+
[ Thu Sep 15 00:01:18 2022 ] Training epoch: 73
|
539 |
+
[ Thu Sep 15 00:01:24 2022 ] Batch(3/243) done. Loss: 0.0092 lr:0.010000 network_time: 0.0333
|
540 |
+
[ Thu Sep 15 00:02:36 2022 ] Batch(103/243) done. Loss: 0.0151 lr:0.010000 network_time: 0.0275
|
541 |
+
[ Thu Sep 15 00:03:49 2022 ] Batch(203/243) done. Loss: 0.0208 lr:0.010000 network_time: 0.0284
|
542 |
+
[ Thu Sep 15 00:04:18 2022 ] Eval epoch: 73
|
543 |
+
[ Thu Sep 15 00:05:52 2022 ] Mean test loss of 796 batches: 2.3335354328155518.
|
544 |
+
[ Thu Sep 15 00:05:53 2022 ] Top1: 54.40%
|
545 |
+
[ Thu Sep 15 00:05:53 2022 ] Top5: 83.74%
|
546 |
+
[ Thu Sep 15 00:05:53 2022 ] Training epoch: 74
|
547 |
+
[ Thu Sep 15 00:06:40 2022 ] Batch(60/243) done. Loss: 0.0226 lr:0.010000 network_time: 0.0270
|
548 |
+
[ Thu Sep 15 00:07:53 2022 ] Batch(160/243) done. Loss: 0.0229 lr:0.010000 network_time: 0.0280
|
549 |
+
[ Thu Sep 15 00:08:53 2022 ] Eval epoch: 74
|
550 |
+
[ Thu Sep 15 00:10:27 2022 ] Mean test loss of 796 batches: 2.417653799057007.
|
551 |
+
[ Thu Sep 15 00:10:27 2022 ] Top1: 53.48%
|
552 |
+
[ Thu Sep 15 00:10:28 2022 ] Top5: 83.25%
|
553 |
+
[ Thu Sep 15 00:10:29 2022 ] Training epoch: 75
|
554 |
+
[ Thu Sep 15 00:10:44 2022 ] Batch(17/243) done. Loss: 0.0171 lr:0.010000 network_time: 0.0279
|
555 |
+
[ Thu Sep 15 00:11:57 2022 ] Batch(117/243) done. Loss: 0.0161 lr:0.010000 network_time: 0.0274
|
556 |
+
[ Thu Sep 15 00:13:10 2022 ] Batch(217/243) done. Loss: 0.0076 lr:0.010000 network_time: 0.0333
|
557 |
+
[ Thu Sep 15 00:13:28 2022 ] Eval epoch: 75
|
558 |
+
[ Thu Sep 15 00:15:02 2022 ] Mean test loss of 796 batches: 2.3814995288848877.
|
559 |
+
[ Thu Sep 15 00:15:02 2022 ] Top1: 53.89%
|
560 |
+
[ Thu Sep 15 00:15:03 2022 ] Top5: 83.51%
|
561 |
+
[ Thu Sep 15 00:15:03 2022 ] Training epoch: 76
|
562 |
+
[ Thu Sep 15 00:16:00 2022 ] Batch(74/243) done. Loss: 0.0306 lr:0.010000 network_time: 0.0282
|
563 |
+
[ Thu Sep 15 00:17:13 2022 ] Batch(174/243) done. Loss: 0.0138 lr:0.010000 network_time: 0.0271
|
564 |
+
[ Thu Sep 15 00:18:02 2022 ] Eval epoch: 76
|
565 |
+
[ Thu Sep 15 00:19:36 2022 ] Mean test loss of 796 batches: 2.4096171855926514.
|
566 |
+
[ Thu Sep 15 00:19:37 2022 ] Top1: 53.70%
|
567 |
+
[ Thu Sep 15 00:19:37 2022 ] Top5: 83.48%
|
568 |
+
[ Thu Sep 15 00:19:37 2022 ] Training epoch: 77
|
569 |
+
[ Thu Sep 15 00:20:03 2022 ] Batch(31/243) done. Loss: 0.0179 lr:0.010000 network_time: 0.0348
|
570 |
+
[ Thu Sep 15 00:21:16 2022 ] Batch(131/243) done. Loss: 0.0148 lr:0.010000 network_time: 0.0276
|
571 |
+
[ Thu Sep 15 00:22:29 2022 ] Batch(231/243) done. Loss: 0.0238 lr:0.010000 network_time: 0.0473
|
572 |
+
[ Thu Sep 15 00:22:37 2022 ] Eval epoch: 77
|
573 |
+
[ Thu Sep 15 00:24:11 2022 ] Mean test loss of 796 batches: 2.3831140995025635.
|
574 |
+
[ Thu Sep 15 00:24:11 2022 ] Top1: 54.25%
|
575 |
+
[ Thu Sep 15 00:24:12 2022 ] Top5: 83.61%
|
576 |
+
[ Thu Sep 15 00:24:12 2022 ] Training epoch: 78
|
577 |
+
[ Thu Sep 15 00:25:19 2022 ] Batch(88/243) done. Loss: 0.0447 lr:0.010000 network_time: 0.0364
|
578 |
+
[ Thu Sep 15 00:26:32 2022 ] Batch(188/243) done. Loss: 0.0100 lr:0.010000 network_time: 0.0273
|
579 |
+
[ Thu Sep 15 00:27:12 2022 ] Eval epoch: 78
|
580 |
+
[ Thu Sep 15 00:28:46 2022 ] Mean test loss of 796 batches: 2.429424285888672.
|
581 |
+
[ Thu Sep 15 00:28:46 2022 ] Top1: 53.82%
|
582 |
+
[ Thu Sep 15 00:28:47 2022 ] Top5: 83.37%
|
583 |
+
[ Thu Sep 15 00:28:47 2022 ] Training epoch: 79
|
584 |
+
[ Thu Sep 15 00:29:23 2022 ] Batch(45/243) done. Loss: 0.0190 lr:0.010000 network_time: 0.0356
|
585 |
+
[ Thu Sep 15 00:30:36 2022 ] Batch(145/243) done. Loss: 0.0106 lr:0.010000 network_time: 0.0277
|
586 |
+
[ Thu Sep 15 00:31:47 2022 ] Eval epoch: 79
|
587 |
+
[ Thu Sep 15 00:33:21 2022 ] Mean test loss of 796 batches: 2.470181465148926.
|
588 |
+
[ Thu Sep 15 00:33:21 2022 ] Top1: 53.71%
|
589 |
+
[ Thu Sep 15 00:33:22 2022 ] Top5: 83.12%
|
590 |
+
[ Thu Sep 15 00:33:22 2022 ] Training epoch: 80
|
591 |
+
[ Thu Sep 15 00:33:27 2022 ] Batch(2/243) done. Loss: 0.0179 lr:0.010000 network_time: 0.0323
|
592 |
+
[ Thu Sep 15 00:34:39 2022 ] Batch(102/243) done. Loss: 0.0104 lr:0.010000 network_time: 0.0280
|
593 |
+
[ Thu Sep 15 00:35:52 2022 ] Batch(202/243) done. Loss: 0.0254 lr:0.010000 network_time: 0.0310
|
594 |
+
[ Thu Sep 15 00:36:21 2022 ] Eval epoch: 80
|
595 |
+
[ Thu Sep 15 00:37:56 2022 ] Mean test loss of 796 batches: 2.436082601547241.
|
596 |
+
[ Thu Sep 15 00:37:57 2022 ] Top1: 53.77%
|
597 |
+
[ Thu Sep 15 00:37:57 2022 ] Top5: 83.38%
|
598 |
+
[ Thu Sep 15 00:37:58 2022 ] Training epoch: 81
|
599 |
+
[ Thu Sep 15 00:38:44 2022 ] Batch(59/243) done. Loss: 0.0275 lr:0.001000 network_time: 0.0314
|
600 |
+
[ Thu Sep 15 00:39:56 2022 ] Batch(159/243) done. Loss: 0.0067 lr:0.001000 network_time: 0.0274
|
601 |
+
[ Thu Sep 15 00:40:57 2022 ] Eval epoch: 81
|
602 |
+
[ Thu Sep 15 00:42:31 2022 ] Mean test loss of 796 batches: 2.405709981918335.
|
603 |
+
[ Thu Sep 15 00:42:32 2022 ] Top1: 53.71%
|
604 |
+
[ Thu Sep 15 00:42:33 2022 ] Top5: 83.41%
|
605 |
+
[ Thu Sep 15 00:42:33 2022 ] Training epoch: 82
|
606 |
+
[ Thu Sep 15 00:42:48 2022 ] Batch(16/243) done. Loss: 0.0293 lr:0.001000 network_time: 0.0645
|
607 |
+
[ Thu Sep 15 00:44:00 2022 ] Batch(116/243) done. Loss: 0.0058 lr:0.001000 network_time: 0.0276
|
608 |
+
[ Thu Sep 15 00:45:13 2022 ] Batch(216/243) done. Loss: 0.0168 lr:0.001000 network_time: 0.0275
|
609 |
+
[ Thu Sep 15 00:45:32 2022 ] Eval epoch: 82
|
610 |
+
[ Thu Sep 15 00:47:07 2022 ] Mean test loss of 796 batches: 2.4298956394195557.
|
611 |
+
[ Thu Sep 15 00:47:07 2022 ] Top1: 53.66%
|
612 |
+
[ Thu Sep 15 00:47:07 2022 ] Top5: 83.36%
|
613 |
+
[ Thu Sep 15 00:47:08 2022 ] Training epoch: 83
|
614 |
+
[ Thu Sep 15 00:48:04 2022 ] Batch(73/243) done. Loss: 0.0350 lr:0.001000 network_time: 0.0306
|
615 |
+
[ Thu Sep 15 00:49:16 2022 ] Batch(173/243) done. Loss: 0.0067 lr:0.001000 network_time: 0.0314
|
616 |
+
[ Thu Sep 15 00:50:07 2022 ] Eval epoch: 83
|
617 |
+
[ Thu Sep 15 00:51:41 2022 ] Mean test loss of 796 batches: 2.4424381256103516.
|
618 |
+
[ Thu Sep 15 00:51:41 2022 ] Top1: 53.44%
|
619 |
+
[ Thu Sep 15 00:51:41 2022 ] Top5: 83.01%
|
620 |
+
[ Thu Sep 15 00:51:42 2022 ] Training epoch: 84
|
621 |
+
[ Thu Sep 15 00:52:07 2022 ] Batch(30/243) done. Loss: 0.0322 lr:0.001000 network_time: 0.0310
|
622 |
+
[ Thu Sep 15 00:53:19 2022 ] Batch(130/243) done. Loss: 0.0077 lr:0.001000 network_time: 0.0262
|
623 |
+
[ Thu Sep 15 00:54:32 2022 ] Batch(230/243) done. Loss: 0.0145 lr:0.001000 network_time: 0.0306
|
624 |
+
[ Thu Sep 15 00:54:41 2022 ] Eval epoch: 84
|
625 |
+
[ Thu Sep 15 00:56:16 2022 ] Mean test loss of 796 batches: 2.3991408348083496.
|
626 |
+
[ Thu Sep 15 00:56:16 2022 ] Top1: 54.34%
|
627 |
+
[ Thu Sep 15 00:56:16 2022 ] Top5: 83.64%
|
628 |
+
[ Thu Sep 15 00:56:17 2022 ] Training epoch: 85
|
629 |
+
[ Thu Sep 15 00:57:23 2022 ] Batch(87/243) done. Loss: 0.0150 lr:0.001000 network_time: 0.0257
|
630 |
+
[ Thu Sep 15 00:58:36 2022 ] Batch(187/243) done. Loss: 0.0192 lr:0.001000 network_time: 0.0315
|
631 |
+
[ Thu Sep 15 00:59:16 2022 ] Eval epoch: 85
|
632 |
+
[ Thu Sep 15 01:00:50 2022 ] Mean test loss of 796 batches: 2.388627290725708.
|
633 |
+
[ Thu Sep 15 01:00:51 2022 ] Top1: 54.17%
|
634 |
+
[ Thu Sep 15 01:00:51 2022 ] Top5: 83.64%
|
635 |
+
[ Thu Sep 15 01:00:51 2022 ] Training epoch: 86
|
636 |
+
[ Thu Sep 15 01:01:26 2022 ] Batch(44/243) done. Loss: 0.0126 lr:0.001000 network_time: 0.0272
|
637 |
+
[ Thu Sep 15 01:02:39 2022 ] Batch(144/243) done. Loss: 0.0083 lr:0.001000 network_time: 0.0273
|
638 |
+
[ Thu Sep 15 01:03:51 2022 ] Eval epoch: 86
|
639 |
+
[ Thu Sep 15 01:05:25 2022 ] Mean test loss of 796 batches: 2.4415183067321777.
|
640 |
+
[ Thu Sep 15 01:05:25 2022 ] Top1: 53.66%
|
641 |
+
[ Thu Sep 15 01:05:25 2022 ] Top5: 83.21%
|
642 |
+
[ Thu Sep 15 01:05:26 2022 ] Training epoch: 87
|
643 |
+
[ Thu Sep 15 01:05:30 2022 ] Batch(1/243) done. Loss: 0.0151 lr:0.001000 network_time: 0.0328
|
644 |
+
[ Thu Sep 15 01:06:42 2022 ] Batch(101/243) done. Loss: 0.0092 lr:0.001000 network_time: 0.0268
|
645 |
+
[ Thu Sep 15 01:07:55 2022 ] Batch(201/243) done. Loss: 0.0195 lr:0.001000 network_time: 0.0277
|
646 |
+
[ Thu Sep 15 01:08:25 2022 ] Eval epoch: 87
|
647 |
+
[ Thu Sep 15 01:09:59 2022 ] Mean test loss of 796 batches: 2.3931989669799805.
|
648 |
+
[ Thu Sep 15 01:09:59 2022 ] Top1: 54.22%
|
649 |
+
[ Thu Sep 15 01:10:00 2022 ] Top5: 83.68%
|
650 |
+
[ Thu Sep 15 01:10:00 2022 ] Training epoch: 88
|
651 |
+
[ Thu Sep 15 01:10:45 2022 ] Batch(58/243) done. Loss: 0.0041 lr:0.001000 network_time: 0.0272
|
652 |
+
[ Thu Sep 15 01:11:58 2022 ] Batch(158/243) done. Loss: 0.0124 lr:0.001000 network_time: 0.0261
|
653 |
+
[ Thu Sep 15 01:12:59 2022 ] Eval epoch: 88
|
654 |
+
[ Thu Sep 15 01:14:33 2022 ] Mean test loss of 796 batches: 2.4158730506896973.
|
655 |
+
[ Thu Sep 15 01:14:34 2022 ] Top1: 53.63%
|
656 |
+
[ Thu Sep 15 01:14:34 2022 ] Top5: 83.43%
|
657 |
+
[ Thu Sep 15 01:14:34 2022 ] Training epoch: 89
|
658 |
+
[ Thu Sep 15 01:14:49 2022 ] Batch(15/243) done. Loss: 0.0167 lr:0.001000 network_time: 0.0307
|
659 |
+
[ Thu Sep 15 01:16:01 2022 ] Batch(115/243) done. Loss: 0.0156 lr:0.001000 network_time: 0.0321
|
660 |
+
[ Thu Sep 15 01:17:14 2022 ] Batch(215/243) done. Loss: 0.0198 lr:0.001000 network_time: 0.0273
|
661 |
+
[ Thu Sep 15 01:17:34 2022 ] Eval epoch: 89
|
662 |
+
[ Thu Sep 15 01:19:08 2022 ] Mean test loss of 796 batches: 2.423422336578369.
|
663 |
+
[ Thu Sep 15 01:19:08 2022 ] Top1: 53.97%
|
664 |
+
[ Thu Sep 15 01:19:08 2022 ] Top5: 83.38%
|
665 |
+
[ Thu Sep 15 01:19:09 2022 ] Training epoch: 90
|
666 |
+
[ Thu Sep 15 01:20:04 2022 ] Batch(72/243) done. Loss: 0.0045 lr:0.001000 network_time: 0.0310
|
667 |
+
[ Thu Sep 15 01:21:17 2022 ] Batch(172/243) done. Loss: 0.0155 lr:0.001000 network_time: 0.0261
|
668 |
+
[ Thu Sep 15 01:22:08 2022 ] Eval epoch: 90
|
669 |
+
[ Thu Sep 15 01:23:42 2022 ] Mean test loss of 796 batches: 2.404895782470703.
|
670 |
+
[ Thu Sep 15 01:23:43 2022 ] Top1: 54.01%
|
671 |
+
[ Thu Sep 15 01:23:43 2022 ] Top5: 83.52%
|
672 |
+
[ Thu Sep 15 01:23:43 2022 ] Training epoch: 91
|
673 |
+
[ Thu Sep 15 01:24:08 2022 ] Batch(29/243) done. Loss: 0.0065 lr:0.001000 network_time: 0.0261
|
674 |
+
[ Thu Sep 15 01:25:21 2022 ] Batch(129/243) done. Loss: 0.0080 lr:0.001000 network_time: 0.0266
|
675 |
+
[ Thu Sep 15 01:26:33 2022 ] Batch(229/243) done. Loss: 0.0078 lr:0.001000 network_time: 0.0277
|
676 |
+
[ Thu Sep 15 01:26:43 2022 ] Eval epoch: 91
|
677 |
+
[ Thu Sep 15 01:28:17 2022 ] Mean test loss of 796 batches: 2.4108152389526367.
|
678 |
+
[ Thu Sep 15 01:28:17 2022 ] Top1: 54.08%
|
679 |
+
[ Thu Sep 15 01:28:18 2022 ] Top5: 83.47%
|
680 |
+
[ Thu Sep 15 01:28:18 2022 ] Training epoch: 92
|
681 |
+
[ Thu Sep 15 01:29:24 2022 ] Batch(86/243) done. Loss: 0.0084 lr:0.001000 network_time: 0.0262
|
682 |
+
[ Thu Sep 15 01:30:36 2022 ] Batch(186/243) done. Loss: 0.0131 lr:0.001000 network_time: 0.0280
|
683 |
+
[ Thu Sep 15 01:31:17 2022 ] Eval epoch: 92
|
684 |
+
[ Thu Sep 15 01:32:52 2022 ] Mean test loss of 796 batches: 2.399904727935791.
|
685 |
+
[ Thu Sep 15 01:32:52 2022 ] Top1: 54.41%
|
686 |
+
[ Thu Sep 15 01:32:53 2022 ] Top5: 83.67%
|
687 |
+
[ Thu Sep 15 01:32:53 2022 ] Training epoch: 93
|
688 |
+
[ Thu Sep 15 01:33:27 2022 ] Batch(43/243) done. Loss: 0.0037 lr:0.001000 network_time: 0.0279
|
689 |
+
[ Thu Sep 15 01:34:40 2022 ] Batch(143/243) done. Loss: 0.0218 lr:0.001000 network_time: 0.0304
|
690 |
+
[ Thu Sep 15 01:35:52 2022 ] Eval epoch: 93
|
691 |
+
[ Thu Sep 15 01:37:26 2022 ] Mean test loss of 796 batches: 2.442288398742676.
|
692 |
+
[ Thu Sep 15 01:37:26 2022 ] Top1: 53.80%
|
693 |
+
[ Thu Sep 15 01:37:27 2022 ] Top5: 83.27%
|
694 |
+
[ Thu Sep 15 01:37:27 2022 ] Training epoch: 94
|
695 |
+
[ Thu Sep 15 01:37:30 2022 ] Batch(0/243) done. Loss: 0.0418 lr:0.001000 network_time: 0.0714
|
696 |
+
[ Thu Sep 15 01:38:43 2022 ] Batch(100/243) done. Loss: 0.0049 lr:0.001000 network_time: 0.0263
|
697 |
+
[ Thu Sep 15 01:39:56 2022 ] Batch(200/243) done. Loss: 0.0088 lr:0.001000 network_time: 0.0297
|
698 |
+
[ Thu Sep 15 01:40:26 2022 ] Eval epoch: 94
|
699 |
+
[ Thu Sep 15 01:42:01 2022 ] Mean test loss of 796 batches: 2.4109578132629395.
|
700 |
+
[ Thu Sep 15 01:42:02 2022 ] Top1: 53.79%
|
701 |
+
[ Thu Sep 15 01:42:02 2022 ] Top5: 83.39%
|
702 |
+
[ Thu Sep 15 01:42:02 2022 ] Training epoch: 95
|
703 |
+
[ Thu Sep 15 01:42:47 2022 ] Batch(57/243) done. Loss: 0.0056 lr:0.001000 network_time: 0.0256
|
704 |
+
[ Thu Sep 15 01:44:00 2022 ] Batch(157/243) done. Loss: 0.0071 lr:0.001000 network_time: 0.0262
|
705 |
+
[ Thu Sep 15 01:45:02 2022 ] Eval epoch: 95
|
706 |
+
[ Thu Sep 15 01:46:37 2022 ] Mean test loss of 796 batches: 2.416574001312256.
|
707 |
+
[ Thu Sep 15 01:46:37 2022 ] Top1: 53.87%
|
708 |
+
[ Thu Sep 15 01:46:38 2022 ] Top5: 83.41%
|
709 |
+
[ Thu Sep 15 01:46:38 2022 ] Training epoch: 96
|
710 |
+
[ Thu Sep 15 01:46:51 2022 ] Batch(14/243) done. Loss: 0.0216 lr:0.001000 network_time: 0.0610
|
711 |
+
[ Thu Sep 15 01:48:04 2022 ] Batch(114/243) done. Loss: 0.0123 lr:0.001000 network_time: 0.0275
|
712 |
+
[ Thu Sep 15 01:49:17 2022 ] Batch(214/243) done. Loss: 0.0047 lr:0.001000 network_time: 0.0274
|
713 |
+
[ Thu Sep 15 01:49:37 2022 ] Eval epoch: 96
|
714 |
+
[ Thu Sep 15 01:51:11 2022 ] Mean test loss of 796 batches: 2.443953514099121.
|
715 |
+
[ Thu Sep 15 01:51:12 2022 ] Top1: 53.56%
|
716 |
+
[ Thu Sep 15 01:51:12 2022 ] Top5: 83.21%
|
717 |
+
[ Thu Sep 15 01:51:12 2022 ] Training epoch: 97
|
718 |
+
[ Thu Sep 15 01:52:07 2022 ] Batch(71/243) done. Loss: 0.0031 lr:0.001000 network_time: 0.0323
|
719 |
+
[ Thu Sep 15 01:53:20 2022 ] Batch(171/243) done. Loss: 0.0060 lr:0.001000 network_time: 0.0280
|
720 |
+
[ Thu Sep 15 01:54:12 2022 ] Eval epoch: 97
|
721 |
+
[ Thu Sep 15 01:55:47 2022 ] Mean test loss of 796 batches: 2.4506213665008545.
|
722 |
+
[ Thu Sep 15 01:55:47 2022 ] Top1: 53.61%
|
723 |
+
[ Thu Sep 15 01:55:47 2022 ] Top5: 83.26%
|
724 |
+
[ Thu Sep 15 01:55:48 2022 ] Training epoch: 98
|
725 |
+
[ Thu Sep 15 01:56:11 2022 ] Batch(28/243) done. Loss: 0.0082 lr:0.001000 network_time: 0.0274
|
726 |
+
[ Thu Sep 15 01:57:24 2022 ] Batch(128/243) done. Loss: 0.0251 lr:0.001000 network_time: 0.0305
|
727 |
+
[ Thu Sep 15 01:58:37 2022 ] Batch(228/243) done. Loss: 0.0272 lr:0.001000 network_time: 0.0311
|
728 |
+
[ Thu Sep 15 01:58:47 2022 ] Eval epoch: 98
|
729 |
+
[ Thu Sep 15 02:00:21 2022 ] Mean test loss of 796 batches: 2.4064249992370605.
|
730 |
+
[ Thu Sep 15 02:00:22 2022 ] Top1: 54.19%
|
731 |
+
[ Thu Sep 15 02:00:22 2022 ] Top5: 83.56%
|
732 |
+
[ Thu Sep 15 02:00:22 2022 ] Training epoch: 99
|
733 |
+
[ Thu Sep 15 02:01:27 2022 ] Batch(85/243) done. Loss: 0.0195 lr:0.001000 network_time: 0.0282
|
734 |
+
[ Thu Sep 15 02:02:40 2022 ] Batch(185/243) done. Loss: 0.0101 lr:0.001000 network_time: 0.0315
|
735 |
+
[ Thu Sep 15 02:03:21 2022 ] Eval epoch: 99
|
736 |
+
[ Thu Sep 15 02:04:55 2022 ] Mean test loss of 796 batches: 2.4065332412719727.
|
737 |
+
[ Thu Sep 15 02:04:56 2022 ] Top1: 54.13%
|
738 |
+
[ Thu Sep 15 02:04:56 2022 ] Top5: 83.58%
|
739 |
+
[ Thu Sep 15 02:04:56 2022 ] Training epoch: 100
|
740 |
+
[ Thu Sep 15 02:05:30 2022 ] Batch(42/243) done. Loss: 0.0187 lr:0.001000 network_time: 0.0292
|
741 |
+
[ Thu Sep 15 02:06:43 2022 ] Batch(142/243) done. Loss: 0.0032 lr:0.001000 network_time: 0.0285
|
742 |
+
[ Thu Sep 15 02:07:55 2022 ] Batch(242/243) done. Loss: 0.0084 lr:0.001000 network_time: 0.0274
|
743 |
+
[ Thu Sep 15 02:07:56 2022 ] Eval epoch: 100
|
744 |
+
[ Thu Sep 15 02:09:30 2022 ] Mean test loss of 796 batches: 2.4123075008392334.
|
745 |
+
[ Thu Sep 15 02:09:30 2022 ] Top1: 54.21%
|
746 |
+
[ Thu Sep 15 02:09:30 2022 ] Top5: 83.67%
|
747 |
+
[ Thu Sep 15 02:09:31 2022 ] Training epoch: 101
|
748 |
+
[ Thu Sep 15 02:10:46 2022 ] Batch(99/243) done. Loss: 0.0112 lr:0.000100 network_time: 0.0311
|
749 |
+
[ Thu Sep 15 02:11:58 2022 ] Batch(199/243) done. Loss: 0.0069 lr:0.000100 network_time: 0.0312
|
750 |
+
[ Thu Sep 15 02:12:30 2022 ] Eval epoch: 101
|
751 |
+
[ Thu Sep 15 02:14:04 2022 ] Mean test loss of 796 batches: 2.413454055786133.
|
752 |
+
[ Thu Sep 15 02:14:04 2022 ] Top1: 54.20%
|
753 |
+
[ Thu Sep 15 02:14:05 2022 ] Top5: 83.54%
|
754 |
+
[ Thu Sep 15 02:14:05 2022 ] Training epoch: 102
|
755 |
+
[ Thu Sep 15 02:14:49 2022 ] Batch(56/243) done. Loss: 0.0052 lr:0.000100 network_time: 0.0307
|
756 |
+
[ Thu Sep 15 02:16:01 2022 ] Batch(156/243) done. Loss: 0.0132 lr:0.000100 network_time: 0.0269
|
757 |
+
[ Thu Sep 15 02:17:04 2022 ] Eval epoch: 102
|
758 |
+
[ Thu Sep 15 02:18:38 2022 ] Mean test loss of 796 batches: 2.4486000537872314.
|
759 |
+
[ Thu Sep 15 02:18:39 2022 ] Top1: 53.84%
|
760 |
+
[ Thu Sep 15 02:18:39 2022 ] Top5: 83.29%
|
761 |
+
[ Thu Sep 15 02:18:39 2022 ] Training epoch: 103
|
762 |
+
[ Thu Sep 15 02:18:52 2022 ] Batch(13/243) done. Loss: 0.0056 lr:0.000100 network_time: 0.0281
|
763 |
+
[ Thu Sep 15 02:20:05 2022 ] Batch(113/243) done. Loss: 0.0058 lr:0.000100 network_time: 0.0279
|
764 |
+
[ Thu Sep 15 02:21:17 2022 ] Batch(213/243) done. Loss: 0.0091 lr:0.000100 network_time: 0.0270
|
765 |
+
[ Thu Sep 15 02:21:39 2022 ] Eval epoch: 103
|
766 |
+
[ Thu Sep 15 02:23:12 2022 ] Mean test loss of 796 batches: 2.4214422702789307.
|
767 |
+
[ Thu Sep 15 02:23:13 2022 ] Top1: 53.80%
|
768 |
+
[ Thu Sep 15 02:23:14 2022 ] Top5: 83.33%
|
769 |
+
[ Thu Sep 15 02:23:14 2022 ] Training epoch: 104
|
770 |
+
[ Thu Sep 15 02:24:08 2022 ] Batch(70/243) done. Loss: 0.0093 lr:0.000100 network_time: 0.0286
|
771 |
+
[ Thu Sep 15 02:25:21 2022 ] Batch(170/243) done. Loss: 0.0136 lr:0.000100 network_time: 0.0276
|
772 |
+
[ Thu Sep 15 02:26:13 2022 ] Eval epoch: 104
|
773 |
+
[ Thu Sep 15 02:27:47 2022 ] Mean test loss of 796 batches: 2.4433953762054443.
|
774 |
+
[ Thu Sep 15 02:27:47 2022 ] Top1: 53.95%
|
775 |
+
[ Thu Sep 15 02:27:48 2022 ] Top5: 83.43%
|
776 |
+
[ Thu Sep 15 02:27:48 2022 ] Training epoch: 105
|
777 |
+
[ Thu Sep 15 02:28:11 2022 ] Batch(27/243) done. Loss: 0.0233 lr:0.000100 network_time: 0.0272
|
778 |
+
[ Thu Sep 15 02:29:24 2022 ] Batch(127/243) done. Loss: 0.0035 lr:0.000100 network_time: 0.0274
|
779 |
+
[ Thu Sep 15 02:30:36 2022 ] Batch(227/243) done. Loss: 0.0237 lr:0.000100 network_time: 0.0299
|
780 |
+
[ Thu Sep 15 02:30:47 2022 ] Eval epoch: 105
|
781 |
+
[ Thu Sep 15 02:32:21 2022 ] Mean test loss of 796 batches: 2.4214446544647217.
|
782 |
+
[ Thu Sep 15 02:32:21 2022 ] Top1: 53.84%
|
783 |
+
[ Thu Sep 15 02:32:22 2022 ] Top5: 83.38%
|
784 |
+
[ Thu Sep 15 02:32:22 2022 ] Training epoch: 106
|
785 |
+
[ Thu Sep 15 02:33:26 2022 ] Batch(84/243) done. Loss: 0.0060 lr:0.000100 network_time: 0.0311
|
786 |
+
[ Thu Sep 15 02:34:39 2022 ] Batch(184/243) done. Loss: 0.0091 lr:0.000100 network_time: 0.0271
|
787 |
+
[ Thu Sep 15 02:35:21 2022 ] Eval epoch: 106
|
788 |
+
[ Thu Sep 15 02:36:55 2022 ] Mean test loss of 796 batches: 2.4069089889526367.
|
789 |
+
[ Thu Sep 15 02:36:55 2022 ] Top1: 54.07%
|
790 |
+
[ Thu Sep 15 02:36:56 2022 ] Top5: 83.57%
|
791 |
+
[ Thu Sep 15 02:36:56 2022 ] Training epoch: 107
|
792 |
+
[ Thu Sep 15 02:37:30 2022 ] Batch(41/243) done. Loss: 0.0087 lr:0.000100 network_time: 0.0273
|
793 |
+
[ Thu Sep 15 02:38:42 2022 ] Batch(141/243) done. Loss: 0.0113 lr:0.000100 network_time: 0.0438
|
794 |
+
[ Thu Sep 15 02:39:55 2022 ] Batch(241/243) done. Loss: 0.0101 lr:0.000100 network_time: 0.0268
|
795 |
+
[ Thu Sep 15 02:39:56 2022 ] Eval epoch: 107
|
796 |
+
[ Thu Sep 15 02:41:30 2022 ] Mean test loss of 796 batches: 2.4322874546051025.
|
797 |
+
[ Thu Sep 15 02:41:31 2022 ] Top1: 53.90%
|
798 |
+
[ Thu Sep 15 02:41:31 2022 ] Top5: 83.52%
|
799 |
+
[ Thu Sep 15 02:41:31 2022 ] Training epoch: 108
|
800 |
+
[ Thu Sep 15 02:42:46 2022 ] Batch(98/243) done. Loss: 0.0044 lr:0.000100 network_time: 0.0276
|
801 |
+
[ Thu Sep 15 02:43:58 2022 ] Batch(198/243) done. Loss: 0.0058 lr:0.000100 network_time: 0.0274
|
802 |
+
[ Thu Sep 15 02:44:30 2022 ] Eval epoch: 108
|
803 |
+
[ Thu Sep 15 02:46:04 2022 ] Mean test loss of 796 batches: 2.3948800563812256.
|
804 |
+
[ Thu Sep 15 02:46:04 2022 ] Top1: 54.13%
|
805 |
+
[ Thu Sep 15 02:46:05 2022 ] Top5: 83.52%
|
806 |
+
[ Thu Sep 15 02:46:05 2022 ] Training epoch: 109
|
807 |
+
[ Thu Sep 15 02:46:49 2022 ] Batch(55/243) done. Loss: 0.0107 lr:0.000100 network_time: 0.0332
|
808 |
+
[ Thu Sep 15 02:48:01 2022 ] Batch(155/243) done. Loss: 0.0194 lr:0.000100 network_time: 0.0330
|
809 |
+
[ Thu Sep 15 02:49:05 2022 ] Eval epoch: 109
|
810 |
+
[ Thu Sep 15 02:50:38 2022 ] Mean test loss of 796 batches: 2.4319751262664795.
|
811 |
+
[ Thu Sep 15 02:50:39 2022 ] Top1: 53.66%
|
812 |
+
[ Thu Sep 15 02:50:40 2022 ] Top5: 83.33%
|
813 |
+
[ Thu Sep 15 02:50:40 2022 ] Training epoch: 110
|
814 |
+
[ Thu Sep 15 02:50:52 2022 ] Batch(12/243) done. Loss: 0.0097 lr:0.000100 network_time: 0.0330
|
815 |
+
[ Thu Sep 15 02:52:05 2022 ] Batch(112/243) done. Loss: 0.0098 lr:0.000100 network_time: 0.0284
|
816 |
+
[ Thu Sep 15 02:53:17 2022 ] Batch(212/243) done. Loss: 0.0089 lr:0.000100 network_time: 0.0325
|
817 |
+
[ Thu Sep 15 02:53:39 2022 ] Eval epoch: 110
|
818 |
+
[ Thu Sep 15 02:55:14 2022 ] Mean test loss of 796 batches: 2.4360392093658447.
|
819 |
+
[ Thu Sep 15 02:55:14 2022 ] Top1: 53.55%
|
820 |
+
[ Thu Sep 15 02:55:14 2022 ] Top5: 83.17%
|
821 |
+
[ Thu Sep 15 02:55:15 2022 ] Training epoch: 111
|
822 |
+
[ Thu Sep 15 02:56:08 2022 ] Batch(69/243) done. Loss: 0.0112 lr:0.000100 network_time: 0.0260
|
823 |
+
[ Thu Sep 15 02:57:21 2022 ] Batch(169/243) done. Loss: 0.0484 lr:0.000100 network_time: 0.0275
|
824 |
+
[ Thu Sep 15 02:58:14 2022 ] Eval epoch: 111
|
825 |
+
[ Thu Sep 15 02:59:48 2022 ] Mean test loss of 796 batches: 2.4042062759399414.
|
826 |
+
[ Thu Sep 15 02:59:48 2022 ] Top1: 53.91%
|
827 |
+
[ Thu Sep 15 02:59:48 2022 ] Top5: 83.49%
|
828 |
+
[ Thu Sep 15 02:59:49 2022 ] Training epoch: 112
|
829 |
+
[ Thu Sep 15 03:00:11 2022 ] Batch(26/243) done. Loss: 0.0138 lr:0.000100 network_time: 0.0270
|
830 |
+
[ Thu Sep 15 03:01:23 2022 ] Batch(126/243) done. Loss: 0.0057 lr:0.000100 network_time: 0.0274
|
831 |
+
[ Thu Sep 15 03:02:36 2022 ] Batch(226/243) done. Loss: 0.0137 lr:0.000100 network_time: 0.0321
|
832 |
+
[ Thu Sep 15 03:02:48 2022 ] Eval epoch: 112
|
833 |
+
[ Thu Sep 15 03:04:22 2022 ] Mean test loss of 796 batches: 2.4613728523254395.
|
834 |
+
[ Thu Sep 15 03:04:23 2022 ] Top1: 53.36%
|
835 |
+
[ Thu Sep 15 03:04:23 2022 ] Top5: 82.97%
|
836 |
+
[ Thu Sep 15 03:04:23 2022 ] Training epoch: 113
|
837 |
+
[ Thu Sep 15 03:05:27 2022 ] Batch(83/243) done. Loss: 0.0049 lr:0.000100 network_time: 0.0269
|
838 |
+
[ Thu Sep 15 03:06:40 2022 ] Batch(183/243) done. Loss: 0.0038 lr:0.000100 network_time: 0.0254
|
839 |
+
[ Thu Sep 15 03:07:23 2022 ] Eval epoch: 113
|
840 |
+
[ Thu Sep 15 03:08:56 2022 ] Mean test loss of 796 batches: 2.4727606773376465.
|
841 |
+
[ Thu Sep 15 03:08:56 2022 ] Top1: 53.37%
|
842 |
+
[ Thu Sep 15 03:08:57 2022 ] Top5: 83.12%
|
843 |
+
[ Thu Sep 15 03:08:57 2022 ] Training epoch: 114
|
844 |
+
[ Thu Sep 15 03:09:29 2022 ] Batch(40/243) done. Loss: 0.0036 lr:0.000100 network_time: 0.0271
|
845 |
+
[ Thu Sep 15 03:10:42 2022 ] Batch(140/243) done. Loss: 0.0052 lr:0.000100 network_time: 0.0302
|
846 |
+
[ Thu Sep 15 03:11:54 2022 ] Batch(240/243) done. Loss: 0.0067 lr:0.000100 network_time: 0.0295
|
847 |
+
[ Thu Sep 15 03:11:56 2022 ] Eval epoch: 114
|
848 |
+
[ Thu Sep 15 03:13:29 2022 ] Mean test loss of 796 batches: 2.4121384620666504.
|
849 |
+
[ Thu Sep 15 03:13:30 2022 ] Top1: 53.94%
|
850 |
+
[ Thu Sep 15 03:13:30 2022 ] Top5: 83.51%
|
851 |
+
[ Thu Sep 15 03:13:30 2022 ] Training epoch: 115
|
852 |
+
[ Thu Sep 15 03:14:44 2022 ] Batch(97/243) done. Loss: 0.0103 lr:0.000100 network_time: 0.0335
|
853 |
+
[ Thu Sep 15 03:15:57 2022 ] Batch(197/243) done. Loss: 0.0115 lr:0.000100 network_time: 0.0317
|
854 |
+
[ Thu Sep 15 03:16:30 2022 ] Eval epoch: 115
|
855 |
+
[ Thu Sep 15 03:18:04 2022 ] Mean test loss of 796 batches: 2.38508939743042.
|
856 |
+
[ Thu Sep 15 03:18:04 2022 ] Top1: 54.29%
|
857 |
+
[ Thu Sep 15 03:18:04 2022 ] Top5: 83.57%
|
858 |
+
[ Thu Sep 15 03:18:05 2022 ] Training epoch: 116
|
859 |
+
[ Thu Sep 15 03:18:47 2022 ] Batch(54/243) done. Loss: 0.0095 lr:0.000100 network_time: 0.0289
|
860 |
+
[ Thu Sep 15 03:20:00 2022 ] Batch(154/243) done. Loss: 0.0051 lr:0.000100 network_time: 0.0321
|
861 |
+
[ Thu Sep 15 03:21:04 2022 ] Eval epoch: 116
|
862 |
+
[ Thu Sep 15 03:22:38 2022 ] Mean test loss of 796 batches: 2.406360387802124.
|
863 |
+
[ Thu Sep 15 03:22:38 2022 ] Top1: 54.08%
|
864 |
+
[ Thu Sep 15 03:22:39 2022 ] Top5: 83.59%
|
865 |
+
[ Thu Sep 15 03:22:39 2022 ] Training epoch: 117
|
866 |
+
[ Thu Sep 15 03:22:50 2022 ] Batch(11/243) done. Loss: 0.0072 lr:0.000100 network_time: 0.0277
|
867 |
+
[ Thu Sep 15 03:24:03 2022 ] Batch(111/243) done. Loss: 0.0053 lr:0.000100 network_time: 0.0322
|
868 |
+
[ Thu Sep 15 03:25:16 2022 ] Batch(211/243) done. Loss: 0.0159 lr:0.000100 network_time: 0.0300
|
869 |
+
[ Thu Sep 15 03:25:38 2022 ] Eval epoch: 117
|
870 |
+
[ Thu Sep 15 03:27:12 2022 ] Mean test loss of 796 batches: 2.4006166458129883.
|
871 |
+
[ Thu Sep 15 03:27:12 2022 ] Top1: 54.11%
|
872 |
+
[ Thu Sep 15 03:27:13 2022 ] Top5: 83.51%
|
873 |
+
[ Thu Sep 15 03:27:13 2022 ] Training epoch: 118
|
874 |
+
[ Thu Sep 15 03:28:06 2022 ] Batch(68/243) done. Loss: 0.0068 lr:0.000100 network_time: 0.0282
|
875 |
+
[ Thu Sep 15 03:29:18 2022 ] Batch(168/243) done. Loss: 0.0164 lr:0.000100 network_time: 0.0269
|
876 |
+
[ Thu Sep 15 03:30:12 2022 ] Eval epoch: 118
|
877 |
+
[ Thu Sep 15 03:31:46 2022 ] Mean test loss of 796 batches: 2.438443183898926.
|
878 |
+
[ Thu Sep 15 03:31:47 2022 ] Top1: 53.62%
|
879 |
+
[ Thu Sep 15 03:31:47 2022 ] Top5: 83.11%
|
880 |
+
[ Thu Sep 15 03:31:47 2022 ] Training epoch: 119
|
881 |
+
[ Thu Sep 15 03:32:09 2022 ] Batch(25/243) done. Loss: 0.0219 lr:0.000100 network_time: 0.0284
|
882 |
+
[ Thu Sep 15 03:33:21 2022 ] Batch(125/243) done. Loss: 0.0118 lr:0.000100 network_time: 0.0332
|
883 |
+
[ Thu Sep 15 03:34:34 2022 ] Batch(225/243) done. Loss: 0.0198 lr:0.000100 network_time: 0.0322
|
884 |
+
[ Thu Sep 15 03:34:47 2022 ] Eval epoch: 119
|
885 |
+
[ Thu Sep 15 03:36:21 2022 ] Mean test loss of 796 batches: 2.43454909324646.
|
886 |
+
[ Thu Sep 15 03:36:21 2022 ] Top1: 53.57%
|
887 |
+
[ Thu Sep 15 03:36:22 2022 ] Top5: 83.23%
|
888 |
+
[ Thu Sep 15 03:36:22 2022 ] Training epoch: 120
|
889 |
+
[ Thu Sep 15 03:37:25 2022 ] Batch(82/243) done. Loss: 0.0118 lr:0.000100 network_time: 0.0273
|
890 |
+
[ Thu Sep 15 03:38:37 2022 ] Batch(182/243) done. Loss: 0.0137 lr:0.000100 network_time: 0.0315
|
891 |
+
[ Thu Sep 15 03:39:21 2022 ] Eval epoch: 120
|
892 |
+
[ Thu Sep 15 03:40:55 2022 ] Mean test loss of 796 batches: 2.455756902694702.
|
893 |
+
[ Thu Sep 15 03:40:56 2022 ] Top1: 53.77%
|
894 |
+
[ Thu Sep 15 03:40:56 2022 ] Top5: 83.27%
|
895 |
+
[ Thu Sep 15 03:40:57 2022 ] Training epoch: 121
|
896 |
+
[ Thu Sep 15 03:41:28 2022 ] Batch(39/243) done. Loss: 0.0172 lr:0.000100 network_time: 0.0269
|
897 |
+
[ Thu Sep 15 03:42:41 2022 ] Batch(139/243) done. Loss: 0.0125 lr:0.000100 network_time: 0.0266
|
898 |
+
[ Thu Sep 15 03:43:53 2022 ] Batch(239/243) done. Loss: 0.0273 lr:0.000100 network_time: 0.0302
|
899 |
+
[ Thu Sep 15 03:43:56 2022 ] Eval epoch: 121
|
900 |
+
[ Thu Sep 15 03:45:30 2022 ] Mean test loss of 796 batches: 2.4042556285858154.
|
901 |
+
[ Thu Sep 15 03:45:30 2022 ] Top1: 54.06%
|
902 |
+
[ Thu Sep 15 03:45:30 2022 ] Top5: 83.58%
|
903 |
+
[ Thu Sep 15 03:45:31 2022 ] Training epoch: 122
|
904 |
+
[ Thu Sep 15 03:46:44 2022 ] Batch(96/243) done. Loss: 0.0129 lr:0.000100 network_time: 0.0270
|
905 |
+
[ Thu Sep 15 03:47:56 2022 ] Batch(196/243) done. Loss: 0.0073 lr:0.000100 network_time: 0.0320
|
906 |
+
[ Thu Sep 15 03:48:30 2022 ] Eval epoch: 122
|
907 |
+
[ Thu Sep 15 03:50:04 2022 ] Mean test loss of 796 batches: 2.415961980819702.
|
908 |
+
[ Thu Sep 15 03:50:04 2022 ] Top1: 54.06%
|
909 |
+
[ Thu Sep 15 03:50:05 2022 ] Top5: 83.58%
|
910 |
+
[ Thu Sep 15 03:50:05 2022 ] Training epoch: 123
|
911 |
+
[ Thu Sep 15 03:50:47 2022 ] Batch(53/243) done. Loss: 0.0038 lr:0.000100 network_time: 0.0278
|
912 |
+
[ Thu Sep 15 03:51:59 2022 ] Batch(153/243) done. Loss: 0.0056 lr:0.000100 network_time: 0.0275
|
913 |
+
[ Thu Sep 15 03:53:04 2022 ] Eval epoch: 123
|
914 |
+
[ Thu Sep 15 03:54:38 2022 ] Mean test loss of 796 batches: 2.43465518951416.
|
915 |
+
[ Thu Sep 15 03:54:39 2022 ] Top1: 53.76%
|
916 |
+
[ Thu Sep 15 03:54:39 2022 ] Top5: 83.39%
|
917 |
+
[ Thu Sep 15 03:54:39 2022 ] Training epoch: 124
|
918 |
+
[ Thu Sep 15 03:54:50 2022 ] Batch(10/243) done. Loss: 0.0133 lr:0.000100 network_time: 0.0273
|
919 |
+
[ Thu Sep 15 03:56:02 2022 ] Batch(110/243) done. Loss: 0.0074 lr:0.000100 network_time: 0.0279
|
920 |
+
[ Thu Sep 15 03:57:15 2022 ] Batch(210/243) done. Loss: 0.0071 lr:0.000100 network_time: 0.0278
|
921 |
+
[ Thu Sep 15 03:57:39 2022 ] Eval epoch: 124
|
922 |
+
[ Thu Sep 15 03:59:13 2022 ] Mean test loss of 796 batches: 2.3815648555755615.
|
923 |
+
[ Thu Sep 15 03:59:13 2022 ] Top1: 54.19%
|
924 |
+
[ Thu Sep 15 03:59:13 2022 ] Top5: 83.69%
|
925 |
+
[ Thu Sep 15 03:59:14 2022 ] Training epoch: 125
|
926 |
+
[ Thu Sep 15 04:00:06 2022 ] Batch(67/243) done. Loss: 0.0084 lr:0.000100 network_time: 0.0275
|
927 |
+
[ Thu Sep 15 04:01:18 2022 ] Batch(167/243) done. Loss: 0.0476 lr:0.000100 network_time: 0.0261
|
928 |
+
[ Thu Sep 15 04:02:13 2022 ] Eval epoch: 125
|
929 |
+
[ Thu Sep 15 04:03:47 2022 ] Mean test loss of 796 batches: 2.405188798904419.
|
930 |
+
[ Thu Sep 15 04:03:47 2022 ] Top1: 53.87%
|
931 |
+
[ Thu Sep 15 04:03:48 2022 ] Top5: 83.34%
|
932 |
+
[ Thu Sep 15 04:03:48 2022 ] Training epoch: 126
|
933 |
+
[ Thu Sep 15 04:04:08 2022 ] Batch(24/243) done. Loss: 0.0119 lr:0.000100 network_time: 0.0279
|
934 |
+
[ Thu Sep 15 04:05:21 2022 ] Batch(124/243) done. Loss: 0.0069 lr:0.000100 network_time: 0.0319
|
935 |
+
[ Thu Sep 15 04:06:34 2022 ] Batch(224/243) done. Loss: 0.0133 lr:0.000100 network_time: 0.0270
|
936 |
+
[ Thu Sep 15 04:06:47 2022 ] Eval epoch: 126
|
937 |
+
[ Thu Sep 15 04:08:21 2022 ] Mean test loss of 796 batches: 2.470874309539795.
|
938 |
+
[ Thu Sep 15 04:08:21 2022 ] Top1: 53.76%
|
939 |
+
[ Thu Sep 15 04:08:22 2022 ] Top5: 83.41%
|
940 |
+
[ Thu Sep 15 04:08:22 2022 ] Training epoch: 127
|
941 |
+
[ Thu Sep 15 04:09:24 2022 ] Batch(81/243) done. Loss: 0.0116 lr:0.000100 network_time: 0.0272
|
942 |
+
[ Thu Sep 15 04:10:37 2022 ] Batch(181/243) done. Loss: 0.0150 lr:0.000100 network_time: 0.0280
|
943 |
+
[ Thu Sep 15 04:11:21 2022 ] Eval epoch: 127
|
944 |
+
[ Thu Sep 15 04:12:54 2022 ] Mean test loss of 796 batches: 2.4488444328308105.
|
945 |
+
[ Thu Sep 15 04:12:55 2022 ] Top1: 53.71%
|
946 |
+
[ Thu Sep 15 04:12:56 2022 ] Top5: 83.29%
|
947 |
+
[ Thu Sep 15 04:12:56 2022 ] Training epoch: 128
|
948 |
+
[ Thu Sep 15 04:13:27 2022 ] Batch(38/243) done. Loss: 0.0214 lr:0.000100 network_time: 0.0290
|
949 |
+
[ Thu Sep 15 04:14:40 2022 ] Batch(138/243) done. Loss: 0.0040 lr:0.000100 network_time: 0.0275
|
950 |
+
[ Thu Sep 15 04:15:52 2022 ] Batch(238/243) done. Loss: 0.0129 lr:0.000100 network_time: 0.0233
|
951 |
+
[ Thu Sep 15 04:15:55 2022 ] Eval epoch: 128
|
952 |
+
[ Thu Sep 15 04:17:30 2022 ] Mean test loss of 796 batches: 2.4242472648620605.
|
953 |
+
[ Thu Sep 15 04:17:30 2022 ] Top1: 53.89%
|
954 |
+
[ Thu Sep 15 04:17:31 2022 ] Top5: 83.42%
|
955 |
+
[ Thu Sep 15 04:17:31 2022 ] Training epoch: 129
|
956 |
+
[ Thu Sep 15 04:18:43 2022 ] Batch(95/243) done. Loss: 0.0464 lr:0.000100 network_time: 0.0281
|
957 |
+
[ Thu Sep 15 04:19:56 2022 ] Batch(195/243) done. Loss: 0.0134 lr:0.000100 network_time: 0.0312
|
958 |
+
[ Thu Sep 15 04:20:30 2022 ] Eval epoch: 129
|
959 |
+
[ Thu Sep 15 04:22:05 2022 ] Mean test loss of 796 batches: 2.4200432300567627.
|
960 |
+
[ Thu Sep 15 04:22:05 2022 ] Top1: 53.90%
|
961 |
+
[ Thu Sep 15 04:22:06 2022 ] Top5: 83.39%
|
962 |
+
[ Thu Sep 15 04:22:06 2022 ] Training epoch: 130
|
963 |
+
[ Thu Sep 15 04:22:47 2022 ] Batch(52/243) done. Loss: 0.0061 lr:0.000100 network_time: 0.0272
|
964 |
+
[ Thu Sep 15 04:24:00 2022 ] Batch(152/243) done. Loss: 0.0041 lr:0.000100 network_time: 0.0273
|
965 |
+
[ Thu Sep 15 04:25:05 2022 ] Eval epoch: 130
|
966 |
+
[ Thu Sep 15 04:26:39 2022 ] Mean test loss of 796 batches: 2.39705491065979.
|
967 |
+
[ Thu Sep 15 04:26:39 2022 ] Top1: 54.33%
|
968 |
+
[ Thu Sep 15 04:26:40 2022 ] Top5: 83.68%
|
969 |
+
[ Thu Sep 15 04:26:40 2022 ] Training epoch: 131
|
970 |
+
[ Thu Sep 15 04:26:50 2022 ] Batch(9/243) done. Loss: 0.0103 lr:0.000100 network_time: 0.0366
|
971 |
+
[ Thu Sep 15 04:28:03 2022 ] Batch(109/243) done. Loss: 0.0039 lr:0.000100 network_time: 0.0299
|
972 |
+
[ Thu Sep 15 04:29:15 2022 ] Batch(209/243) done. Loss: 0.0089 lr:0.000100 network_time: 0.0311
|
973 |
+
[ Thu Sep 15 04:29:39 2022 ] Eval epoch: 131
|
974 |
+
[ Thu Sep 15 04:31:13 2022 ] Mean test loss of 796 batches: 2.4424407482147217.
|
975 |
+
[ Thu Sep 15 04:31:13 2022 ] Top1: 53.93%
|
976 |
+
[ Thu Sep 15 04:31:14 2022 ] Top5: 83.32%
|
977 |
+
[ Thu Sep 15 04:31:14 2022 ] Training epoch: 132
|
978 |
+
[ Thu Sep 15 04:32:05 2022 ] Batch(66/243) done. Loss: 0.0062 lr:0.000100 network_time: 0.0279
|
979 |
+
[ Thu Sep 15 04:33:18 2022 ] Batch(166/243) done. Loss: 0.0148 lr:0.000100 network_time: 0.0305
|
980 |
+
[ Thu Sep 15 04:34:13 2022 ] Eval epoch: 132
|
981 |
+
[ Thu Sep 15 04:35:47 2022 ] Mean test loss of 796 batches: 2.369658946990967.
|
982 |
+
[ Thu Sep 15 04:35:47 2022 ] Top1: 54.38%
|
983 |
+
[ Thu Sep 15 04:35:48 2022 ] Top5: 83.72%
|
984 |
+
[ Thu Sep 15 04:35:48 2022 ] Training epoch: 133
|
985 |
+
[ Thu Sep 15 04:36:08 2022 ] Batch(23/243) done. Loss: 0.0091 lr:0.000100 network_time: 0.0276
|
986 |
+
[ Thu Sep 15 04:37:20 2022 ] Batch(123/243) done. Loss: 0.0055 lr:0.000100 network_time: 0.0268
|
987 |
+
[ Thu Sep 15 04:38:33 2022 ] Batch(223/243) done. Loss: 0.0116 lr:0.000100 network_time: 0.0262
|
988 |
+
[ Thu Sep 15 04:38:47 2022 ] Eval epoch: 133
|
989 |
+
[ Thu Sep 15 04:40:21 2022 ] Mean test loss of 796 batches: 2.389495611190796.
|
990 |
+
[ Thu Sep 15 04:40:22 2022 ] Top1: 53.83%
|
991 |
+
[ Thu Sep 15 04:40:22 2022 ] Top5: 83.35%
|
992 |
+
[ Thu Sep 15 04:40:23 2022 ] Training epoch: 134
|
993 |
+
[ Thu Sep 15 04:41:24 2022 ] Batch(80/243) done. Loss: 0.0105 lr:0.000100 network_time: 0.0282
|
994 |
+
[ Thu Sep 15 04:42:37 2022 ] Batch(180/243) done. Loss: 0.0188 lr:0.000100 network_time: 0.0320
|
995 |
+
[ Thu Sep 15 04:43:22 2022 ] Eval epoch: 134
|
996 |
+
[ Thu Sep 15 04:44:56 2022 ] Mean test loss of 796 batches: 2.4094290733337402.
|
997 |
+
[ Thu Sep 15 04:44:57 2022 ] Top1: 54.14%
|
998 |
+
[ Thu Sep 15 04:44:58 2022 ] Top5: 83.63%
|
999 |
+
[ Thu Sep 15 04:44:58 2022 ] Training epoch: 135
|
1000 |
+
[ Thu Sep 15 04:45:28 2022 ] Batch(37/243) done. Loss: 0.0060 lr:0.000100 network_time: 0.0298
|
1001 |
+
[ Thu Sep 15 04:46:40 2022 ] Batch(137/243) done. Loss: 0.0224 lr:0.000100 network_time: 0.0307
|
1002 |
+
[ Thu Sep 15 04:47:53 2022 ] Batch(237/243) done. Loss: 0.0060 lr:0.000100 network_time: 0.0272
|
1003 |
+
[ Thu Sep 15 04:47:57 2022 ] Eval epoch: 135
|
1004 |
+
[ Thu Sep 15 04:49:32 2022 ] Mean test loss of 796 batches: 2.4336893558502197.
|
1005 |
+
[ Thu Sep 15 04:49:32 2022 ] Top1: 53.72%
|
1006 |
+
[ Thu Sep 15 04:49:33 2022 ] Top5: 83.31%
|
1007 |
+
[ Thu Sep 15 04:49:33 2022 ] Training epoch: 136
|
1008 |
+
[ Thu Sep 15 04:50:45 2022 ] Batch(94/243) done. Loss: 0.0068 lr:0.000100 network_time: 0.0270
|
1009 |
+
[ Thu Sep 15 04:51:57 2022 ] Batch(194/243) done. Loss: 0.0108 lr:0.000100 network_time: 0.0319
|
1010 |
+
[ Thu Sep 15 04:52:33 2022 ] Eval epoch: 136
|
1011 |
+
[ Thu Sep 15 04:54:07 2022 ] Mean test loss of 796 batches: 2.4274051189422607.
|
1012 |
+
[ Thu Sep 15 04:54:07 2022 ] Top1: 53.80%
|
1013 |
+
[ Thu Sep 15 04:54:07 2022 ] Top5: 83.48%
|
1014 |
+
[ Thu Sep 15 04:54:08 2022 ] Training epoch: 137
|
1015 |
+
[ Thu Sep 15 04:54:48 2022 ] Batch(51/243) done. Loss: 0.0082 lr:0.000100 network_time: 0.0320
|
1016 |
+
[ Thu Sep 15 04:56:01 2022 ] Batch(151/243) done. Loss: 0.0078 lr:0.000100 network_time: 0.0274
|
1017 |
+
[ Thu Sep 15 04:57:07 2022 ] Eval epoch: 137
|
1018 |
+
[ Thu Sep 15 04:58:41 2022 ] Mean test loss of 796 batches: 2.395327091217041.
|
1019 |
+
[ Thu Sep 15 04:58:41 2022 ] Top1: 54.43%
|
1020 |
+
[ Thu Sep 15 04:58:42 2022 ] Top5: 83.79%
|
1021 |
+
[ Thu Sep 15 04:58:42 2022 ] Training epoch: 138
|
1022 |
+
[ Thu Sep 15 04:58:51 2022 ] Batch(8/243) done. Loss: 0.0090 lr:0.000100 network_time: 0.0316
|
1023 |
+
[ Thu Sep 15 05:00:04 2022 ] Batch(108/243) done. Loss: 0.0243 lr:0.000100 network_time: 0.0277
|
1024 |
+
[ Thu Sep 15 05:01:17 2022 ] Batch(208/243) done. Loss: 0.0360 lr:0.000100 network_time: 0.0318
|
1025 |
+
[ Thu Sep 15 05:01:42 2022 ] Eval epoch: 138
|
1026 |
+
[ Thu Sep 15 05:03:16 2022 ] Mean test loss of 796 batches: 2.4107162952423096.
|
1027 |
+
[ Thu Sep 15 05:03:16 2022 ] Top1: 53.67%
|
1028 |
+
[ Thu Sep 15 05:03:17 2022 ] Top5: 83.25%
|
1029 |
+
[ Thu Sep 15 05:03:17 2022 ] Training epoch: 139
|
1030 |
+
[ Thu Sep 15 05:04:07 2022 ] Batch(65/243) done. Loss: 0.0301 lr:0.000100 network_time: 0.0274
|
1031 |
+
[ Thu Sep 15 05:05:20 2022 ] Batch(165/243) done. Loss: 0.0074 lr:0.000100 network_time: 0.0282
|
1032 |
+
[ Thu Sep 15 05:06:16 2022 ] Eval epoch: 139
|
1033 |
+
[ Thu Sep 15 05:07:50 2022 ] Mean test loss of 796 batches: 2.4515626430511475.
|
1034 |
+
[ Thu Sep 15 05:07:50 2022 ] Top1: 53.41%
|
1035 |
+
[ Thu Sep 15 05:07:51 2022 ] Top5: 83.25%
|
1036 |
+
[ Thu Sep 15 05:07:51 2022 ] Training epoch: 140
|
1037 |
+
[ Thu Sep 15 05:08:11 2022 ] Batch(22/243) done. Loss: 0.0049 lr:0.000100 network_time: 0.0266
|
1038 |
+
[ Thu Sep 15 05:09:23 2022 ] Batch(122/243) done. Loss: 0.0135 lr:0.000100 network_time: 0.0280
|
1039 |
+
[ Thu Sep 15 05:10:36 2022 ] Batch(222/243) done. Loss: 0.0049 lr:0.000100 network_time: 0.0306
|
1040 |
+
[ Thu Sep 15 05:10:51 2022 ] Eval epoch: 140
|
1041 |
+
[ Thu Sep 15 05:12:25 2022 ] Mean test loss of 796 batches: 2.40610671043396.
|
1042 |
+
[ Thu Sep 15 05:12:26 2022 ] Top1: 54.18%
|
1043 |
+
[ Thu Sep 15 05:12:26 2022 ] Top5: 83.66%
|
ckpt/Others/Shift-GCN/ntu120_xsub/ntu120_bone_xsub/shift_gcn.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torch.autograd import Variable
|
5 |
+
import numpy as np
|
6 |
+
import math
|
7 |
+
|
8 |
+
import sys
|
9 |
+
sys.path.append("./model/Temporal_shift/")
|
10 |
+
|
11 |
+
from cuda.shift import Shift
|
12 |
+
|
13 |
+
|
14 |
+
def import_class(name):
|
15 |
+
components = name.split('.')
|
16 |
+
mod = __import__(components[0])
|
17 |
+
for comp in components[1:]:
|
18 |
+
mod = getattr(mod, comp)
|
19 |
+
return mod
|
20 |
+
|
21 |
+
def conv_init(conv):
|
22 |
+
nn.init.kaiming_normal(conv.weight, mode='fan_out')
|
23 |
+
nn.init.constant(conv.bias, 0)
|
24 |
+
|
25 |
+
|
26 |
+
def bn_init(bn, scale):
|
27 |
+
nn.init.constant(bn.weight, scale)
|
28 |
+
nn.init.constant(bn.bias, 0)
|
29 |
+
|
30 |
+
|
31 |
+
class tcn(nn.Module):
|
32 |
+
def __init__(self, in_channels, out_channels, kernel_size=9, stride=1):
|
33 |
+
super(tcn, self).__init__()
|
34 |
+
pad = int((kernel_size - 1) / 2)
|
35 |
+
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=(kernel_size, 1), padding=(pad, 0),
|
36 |
+
stride=(stride, 1))
|
37 |
+
|
38 |
+
self.bn = nn.BatchNorm2d(out_channels)
|
39 |
+
self.relu = nn.ReLU()
|
40 |
+
conv_init(self.conv)
|
41 |
+
bn_init(self.bn, 1)
|
42 |
+
|
43 |
+
def forward(self, x):
|
44 |
+
x = self.bn(self.conv(x))
|
45 |
+
return x
|
46 |
+
|
47 |
+
|
48 |
+
class Shift_tcn(nn.Module):
|
49 |
+
def __init__(self, in_channels, out_channels, kernel_size=9, stride=1):
|
50 |
+
super(Shift_tcn, self).__init__()
|
51 |
+
|
52 |
+
self.in_channels = in_channels
|
53 |
+
self.out_channels = out_channels
|
54 |
+
|
55 |
+
self.bn = nn.BatchNorm2d(in_channels)
|
56 |
+
self.bn2 = nn.BatchNorm2d(in_channels)
|
57 |
+
bn_init(self.bn2, 1)
|
58 |
+
self.relu = nn.ReLU(inplace=True)
|
59 |
+
self.shift_in = Shift(channel=in_channels, stride=1, init_scale=1)
|
60 |
+
self.shift_out = Shift(channel=out_channels, stride=stride, init_scale=1)
|
61 |
+
|
62 |
+
self.temporal_linear = nn.Conv2d(in_channels, out_channels, 1)
|
63 |
+
nn.init.kaiming_normal(self.temporal_linear.weight, mode='fan_out')
|
64 |
+
|
65 |
+
def forward(self, x):
|
66 |
+
x = self.bn(x)
|
67 |
+
# shift1
|
68 |
+
x = self.shift_in(x)
|
69 |
+
x = self.temporal_linear(x)
|
70 |
+
x = self.relu(x)
|
71 |
+
# shift2
|
72 |
+
x = self.shift_out(x)
|
73 |
+
x = self.bn2(x)
|
74 |
+
return x
|
75 |
+
|
76 |
+
|
77 |
+
class Shift_gcn(nn.Module):
|
78 |
+
def __init__(self, in_channels, out_channels, A, coff_embedding=4, num_subset=3):
|
79 |
+
super(Shift_gcn, self).__init__()
|
80 |
+
self.in_channels = in_channels
|
81 |
+
self.out_channels = out_channels
|
82 |
+
if in_channels != out_channels:
|
83 |
+
self.down = nn.Sequential(
|
84 |
+
nn.Conv2d(in_channels, out_channels, 1),
|
85 |
+
nn.BatchNorm2d(out_channels)
|
86 |
+
)
|
87 |
+
else:
|
88 |
+
self.down = lambda x: x
|
89 |
+
|
90 |
+
self.Linear_weight = nn.Parameter(torch.zeros(in_channels, out_channels, requires_grad=True, device='cuda'), requires_grad=True)
|
91 |
+
nn.init.normal_(self.Linear_weight, 0,math.sqrt(1.0/out_channels))
|
92 |
+
|
93 |
+
self.Linear_bias = nn.Parameter(torch.zeros(1,1,out_channels,requires_grad=True,device='cuda'),requires_grad=True)
|
94 |
+
nn.init.constant(self.Linear_bias, 0)
|
95 |
+
|
96 |
+
self.Feature_Mask = nn.Parameter(torch.ones(1,25,in_channels, requires_grad=True,device='cuda'),requires_grad=True)
|
97 |
+
nn.init.constant(self.Feature_Mask, 0)
|
98 |
+
|
99 |
+
self.bn = nn.BatchNorm1d(25*out_channels)
|
100 |
+
self.relu = nn.ReLU()
|
101 |
+
|
102 |
+
for m in self.modules():
|
103 |
+
if isinstance(m, nn.Conv2d):
|
104 |
+
conv_init(m)
|
105 |
+
elif isinstance(m, nn.BatchNorm2d):
|
106 |
+
bn_init(m, 1)
|
107 |
+
|
108 |
+
index_array = np.empty(25*in_channels).astype(np.int)
|
109 |
+
for i in range(25):
|
110 |
+
for j in range(in_channels):
|
111 |
+
index_array[i*in_channels + j] = (i*in_channels + j + j*in_channels)%(in_channels*25)
|
112 |
+
self.shift_in = nn.Parameter(torch.from_numpy(index_array),requires_grad=False)
|
113 |
+
|
114 |
+
index_array = np.empty(25*out_channels).astype(np.int)
|
115 |
+
for i in range(25):
|
116 |
+
for j in range(out_channels):
|
117 |
+
index_array[i*out_channels + j] = (i*out_channels + j - j*out_channels)%(out_channels*25)
|
118 |
+
self.shift_out = nn.Parameter(torch.from_numpy(index_array),requires_grad=False)
|
119 |
+
|
120 |
+
|
121 |
+
def forward(self, x0):
|
122 |
+
n, c, t, v = x0.size()
|
123 |
+
x = x0.permute(0,2,3,1).contiguous()
|
124 |
+
|
125 |
+
# shift1
|
126 |
+
x = x.view(n*t,v*c)
|
127 |
+
x = torch.index_select(x, 1, self.shift_in)
|
128 |
+
x = x.view(n*t,v,c)
|
129 |
+
x = x * (torch.tanh(self.Feature_Mask)+1)
|
130 |
+
|
131 |
+
x = torch.einsum('nwc,cd->nwd', (x, self.Linear_weight)).contiguous() # nt,v,c
|
132 |
+
x = x + self.Linear_bias
|
133 |
+
|
134 |
+
# shift2
|
135 |
+
x = x.view(n*t,-1)
|
136 |
+
x = torch.index_select(x, 1, self.shift_out)
|
137 |
+
x = self.bn(x)
|
138 |
+
x = x.view(n,t,v,self.out_channels).permute(0,3,1,2) # n,c,t,v
|
139 |
+
|
140 |
+
x = x + self.down(x0)
|
141 |
+
x = self.relu(x)
|
142 |
+
return x
|
143 |
+
|
144 |
+
|
145 |
+
class TCN_GCN_unit(nn.Module):
|
146 |
+
def __init__(self, in_channels, out_channels, A, stride=1, residual=True):
|
147 |
+
super(TCN_GCN_unit, self).__init__()
|
148 |
+
self.gcn1 = Shift_gcn(in_channels, out_channels, A)
|
149 |
+
self.tcn1 = Shift_tcn(out_channels, out_channels, stride=stride)
|
150 |
+
self.relu = nn.ReLU()
|
151 |
+
|
152 |
+
if not residual:
|
153 |
+
self.residual = lambda x: 0
|
154 |
+
|
155 |
+
elif (in_channels == out_channels) and (stride == 1):
|
156 |
+
self.residual = lambda x: x
|
157 |
+
else:
|
158 |
+
self.residual = tcn(in_channels, out_channels, kernel_size=1, stride=stride)
|
159 |
+
|
160 |
+
def forward(self, x):
|
161 |
+
x = self.tcn1(self.gcn1(x)) + self.residual(x)
|
162 |
+
return self.relu(x)
|
163 |
+
|
164 |
+
|
165 |
+
class Model(nn.Module):
|
166 |
+
def __init__(self, num_class=60, num_point=25, num_person=2, graph=None, graph_args=dict(), in_channels=3):
|
167 |
+
super(Model, self).__init__()
|
168 |
+
|
169 |
+
if graph is None:
|
170 |
+
raise ValueError()
|
171 |
+
else:
|
172 |
+
Graph = import_class(graph)
|
173 |
+
self.graph = Graph(**graph_args)
|
174 |
+
|
175 |
+
A = self.graph.A
|
176 |
+
self.data_bn = nn.BatchNorm1d(num_person * in_channels * num_point)
|
177 |
+
|
178 |
+
self.l1 = TCN_GCN_unit(3, 64, A, residual=False)
|
179 |
+
self.l2 = TCN_GCN_unit(64, 64, A)
|
180 |
+
self.l3 = TCN_GCN_unit(64, 64, A)
|
181 |
+
self.l4 = TCN_GCN_unit(64, 64, A)
|
182 |
+
self.l5 = TCN_GCN_unit(64, 128, A, stride=2)
|
183 |
+
self.l6 = TCN_GCN_unit(128, 128, A)
|
184 |
+
self.l7 = TCN_GCN_unit(128, 128, A)
|
185 |
+
self.l8 = TCN_GCN_unit(128, 256, A, stride=2)
|
186 |
+
self.l9 = TCN_GCN_unit(256, 256, A)
|
187 |
+
self.l10 = TCN_GCN_unit(256, 256, A)
|
188 |
+
|
189 |
+
self.fc = nn.Linear(256, num_class)
|
190 |
+
nn.init.normal(self.fc.weight, 0, math.sqrt(2. / num_class))
|
191 |
+
bn_init(self.data_bn, 1)
|
192 |
+
|
193 |
+
def forward(self, x):
|
194 |
+
N, C, T, V, M = x.size()
|
195 |
+
|
196 |
+
x = x.permute(0, 4, 3, 1, 2).contiguous().view(N, M * V * C, T)
|
197 |
+
x = self.data_bn(x)
|
198 |
+
x = x.view(N, M, V, C, T).permute(0, 1, 3, 4, 2).contiguous().view(N * M, C, T, V)
|
199 |
+
|
200 |
+
x = self.l1(x)
|
201 |
+
x = self.l2(x)
|
202 |
+
x = self.l3(x)
|
203 |
+
x = self.l4(x)
|
204 |
+
x = self.l5(x)
|
205 |
+
x = self.l6(x)
|
206 |
+
x = self.l7(x)
|
207 |
+
x = self.l8(x)
|
208 |
+
x = self.l9(x)
|
209 |
+
x = self.l10(x)
|
210 |
+
|
211 |
+
# N*M,C,T,V
|
212 |
+
c_new = x.size(1)
|
213 |
+
x = x.view(N, M, c_new, -1)
|
214 |
+
x = x.mean(3).mean(1)
|
215 |
+
|
216 |
+
return self.fc(x)
|
ckpt/Others/Shift-GCN/ntu120_xsub/ntu120_joint_motion_xsub/config.yaml
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Experiment_name: ntu120_joint_motion_xsub
|
2 |
+
base_lr: 0.1
|
3 |
+
batch_size: 64
|
4 |
+
config: ./config/ntu120_xsub/train_joint_motion.yaml
|
5 |
+
device:
|
6 |
+
- 6
|
7 |
+
- 7
|
8 |
+
eval_interval: 5
|
9 |
+
feeder: feeders.feeder.Feeder
|
10 |
+
ignore_weights: []
|
11 |
+
log_interval: 100
|
12 |
+
model: model.shift_gcn.Model
|
13 |
+
model_args:
|
14 |
+
graph: graph.ntu_rgb_d.Graph
|
15 |
+
graph_args:
|
16 |
+
labeling_mode: spatial
|
17 |
+
num_class: 120
|
18 |
+
num_person: 2
|
19 |
+
num_point: 25
|
20 |
+
model_saved_name: ./save_models/ntu120_joint_motion_xsub
|
21 |
+
nesterov: true
|
22 |
+
num_epoch: 140
|
23 |
+
num_worker: 32
|
24 |
+
only_train_epoch: 1
|
25 |
+
only_train_part: true
|
26 |
+
optimizer: SGD
|
27 |
+
phase: train
|
28 |
+
print_log: true
|
29 |
+
save_interval: 2
|
30 |
+
save_score: false
|
31 |
+
seed: 1
|
32 |
+
show_topk:
|
33 |
+
- 1
|
34 |
+
- 5
|
35 |
+
start_epoch: 0
|
36 |
+
step:
|
37 |
+
- 60
|
38 |
+
- 80
|
39 |
+
- 100
|
40 |
+
test_batch_size: 64
|
41 |
+
test_feeder_args:
|
42 |
+
data_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/val_data_joint_motion.npy
|
43 |
+
label_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/val_label.pkl
|
44 |
+
train_feeder_args:
|
45 |
+
data_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/train_data_joint_motion.npy
|
46 |
+
debug: false
|
47 |
+
label_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/train_label.pkl
|
48 |
+
normalization: false
|
49 |
+
random_choose: false
|
50 |
+
random_move: false
|
51 |
+
random_shift: false
|
52 |
+
window_size: -1
|
53 |
+
warm_up_epoch: 0
|
54 |
+
weight_decay: 0.0001
|
55 |
+
weights: null
|
56 |
+
work_dir: ./work_dir/ntu120_joint_motion_xsub
|
ckpt/Others/Shift-GCN/ntu120_xsub/ntu120_joint_motion_xsub/eval_results/best_acc.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:de10912eab25311307f44b8b05e3e3d54ffcf6211fc9bef161e5f600473a2510
|
3 |
+
size 29946137
|
ckpt/Others/Shift-GCN/ntu120_xsub/ntu120_joint_motion_xsub/log.txt
ADDED
@@ -0,0 +1,1043 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[ Wed Sep 14 18:31:51 2022 ] Parameters:
|
2 |
+
{'work_dir': './work_dir/ntu120_joint_motion_xsub', 'model_saved_name': './save_models/ntu120_joint_motion_xsub', 'Experiment_name': 'ntu120_joint_motion_xsub', 'config': './config/ntu120_xsub/train_joint_motion.yaml', 'phase': 'train', 'save_score': False, 'seed': 1, 'log_interval': 100, 'save_interval': 2, 'eval_interval': 5, 'print_log': True, 'show_topk': [1, 5], 'feeder': 'feeders.feeder.Feeder', 'num_worker': 32, 'train_feeder_args': {'data_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/train_data_joint_motion.npy', 'label_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/train_label.pkl', 'debug': False, 'random_choose': False, 'random_shift': False, 'random_move': False, 'window_size': -1, 'normalization': False}, 'test_feeder_args': {'data_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/val_data_joint_motion.npy', 'label_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/val_label.pkl'}, 'model': 'model.shift_gcn.Model', 'model_args': {'num_class': 120, 'num_point': 25, 'num_person': 2, 'graph': 'graph.ntu_rgb_d.Graph', 'graph_args': {'labeling_mode': 'spatial'}}, 'weights': None, 'ignore_weights': [], 'base_lr': 0.1, 'step': [60, 80, 100], 'device': [6, 7], 'optimizer': 'SGD', 'nesterov': True, 'batch_size': 64, 'test_batch_size': 64, 'start_epoch': 0, 'num_epoch': 140, 'weight_decay': 0.0001, 'only_train_part': True, 'only_train_epoch': 1, 'warm_up_epoch': 0}
|
3 |
+
|
4 |
+
[ Wed Sep 14 18:31:51 2022 ] Training epoch: 1
|
5 |
+
[ Wed Sep 14 18:33:10 2022 ] Batch(99/243) done. Loss: 4.0202 lr:0.100000 network_time: 0.0268
|
6 |
+
[ Wed Sep 14 18:34:23 2022 ] Batch(199/243) done. Loss: 3.0476 lr:0.100000 network_time: 0.0268
|
7 |
+
[ Wed Sep 14 18:34:55 2022 ] Eval epoch: 1
|
8 |
+
[ Wed Sep 14 18:36:30 2022 ] Mean test loss of 796 batches: 5.69941520690918.
|
9 |
+
[ Wed Sep 14 18:36:30 2022 ] Top1: 8.02%
|
10 |
+
[ Wed Sep 14 18:36:31 2022 ] Top5: 20.03%
|
11 |
+
[ Wed Sep 14 18:36:31 2022 ] Training epoch: 2
|
12 |
+
[ Wed Sep 14 18:37:15 2022 ] Batch(56/243) done. Loss: 2.7135 lr:0.100000 network_time: 0.0278
|
13 |
+
[ Wed Sep 14 18:38:28 2022 ] Batch(156/243) done. Loss: 2.2763 lr:0.100000 network_time: 0.0318
|
14 |
+
[ Wed Sep 14 18:39:31 2022 ] Eval epoch: 2
|
15 |
+
[ Wed Sep 14 18:41:06 2022 ] Mean test loss of 796 batches: 4.1878180503845215.
|
16 |
+
[ Wed Sep 14 18:41:06 2022 ] Top1: 16.12%
|
17 |
+
[ Wed Sep 14 18:41:06 2022 ] Top5: 36.34%
|
18 |
+
[ Wed Sep 14 18:41:07 2022 ] Training epoch: 3
|
19 |
+
[ Wed Sep 14 18:41:20 2022 ] Batch(13/243) done. Loss: 1.7547 lr:0.100000 network_time: 0.0262
|
20 |
+
[ Wed Sep 14 18:42:33 2022 ] Batch(113/243) done. Loss: 1.4097 lr:0.100000 network_time: 0.0317
|
21 |
+
[ Wed Sep 14 18:43:45 2022 ] Batch(213/243) done. Loss: 1.7054 lr:0.100000 network_time: 0.0262
|
22 |
+
[ Wed Sep 14 18:44:07 2022 ] Eval epoch: 3
|
23 |
+
[ Wed Sep 14 18:45:41 2022 ] Mean test loss of 796 batches: 4.271505355834961.
|
24 |
+
[ Wed Sep 14 18:45:41 2022 ] Top1: 18.78%
|
25 |
+
[ Wed Sep 14 18:45:42 2022 ] Top5: 44.19%
|
26 |
+
[ Wed Sep 14 18:45:42 2022 ] Training epoch: 4
|
27 |
+
[ Wed Sep 14 18:46:37 2022 ] Batch(70/243) done. Loss: 1.4182 lr:0.100000 network_time: 0.0281
|
28 |
+
[ Wed Sep 14 18:47:49 2022 ] Batch(170/243) done. Loss: 1.4677 lr:0.100000 network_time: 0.0263
|
29 |
+
[ Wed Sep 14 18:48:42 2022 ] Eval epoch: 4
|
30 |
+
[ Wed Sep 14 18:50:17 2022 ] Mean test loss of 796 batches: 3.8030338287353516.
|
31 |
+
[ Wed Sep 14 18:50:17 2022 ] Top1: 23.18%
|
32 |
+
[ Wed Sep 14 18:50:17 2022 ] Top5: 49.43%
|
33 |
+
[ Wed Sep 14 18:50:18 2022 ] Training epoch: 5
|
34 |
+
[ Wed Sep 14 18:50:41 2022 ] Batch(27/243) done. Loss: 1.4289 lr:0.100000 network_time: 0.0280
|
35 |
+
[ Wed Sep 14 18:51:54 2022 ] Batch(127/243) done. Loss: 1.2314 lr:0.100000 network_time: 0.0284
|
36 |
+
[ Wed Sep 14 18:53:07 2022 ] Batch(227/243) done. Loss: 1.4400 lr:0.100000 network_time: 0.0274
|
37 |
+
[ Wed Sep 14 18:53:18 2022 ] Eval epoch: 5
|
38 |
+
[ Wed Sep 14 18:54:52 2022 ] Mean test loss of 796 batches: 3.845407247543335.
|
39 |
+
[ Wed Sep 14 18:54:53 2022 ] Top1: 21.89%
|
40 |
+
[ Wed Sep 14 18:54:53 2022 ] Top5: 49.36%
|
41 |
+
[ Wed Sep 14 18:54:53 2022 ] Training epoch: 6
|
42 |
+
[ Wed Sep 14 18:55:58 2022 ] Batch(84/243) done. Loss: 1.2397 lr:0.100000 network_time: 0.0279
|
43 |
+
[ Wed Sep 14 18:57:11 2022 ] Batch(184/243) done. Loss: 1.0354 lr:0.100000 network_time: 0.0275
|
44 |
+
[ Wed Sep 14 18:57:53 2022 ] Eval epoch: 6
|
45 |
+
[ Wed Sep 14 18:59:28 2022 ] Mean test loss of 796 batches: 3.845848560333252.
|
46 |
+
[ Wed Sep 14 18:59:28 2022 ] Top1: 26.16%
|
47 |
+
[ Wed Sep 14 18:59:29 2022 ] Top5: 56.40%
|
48 |
+
[ Wed Sep 14 18:59:29 2022 ] Training epoch: 7
|
49 |
+
[ Wed Sep 14 19:00:02 2022 ] Batch(41/243) done. Loss: 1.1685 lr:0.100000 network_time: 0.0262
|
50 |
+
[ Wed Sep 14 19:01:15 2022 ] Batch(141/243) done. Loss: 0.8339 lr:0.100000 network_time: 0.0276
|
51 |
+
[ Wed Sep 14 19:02:28 2022 ] Batch(241/243) done. Loss: 0.9553 lr:0.100000 network_time: 0.0281
|
52 |
+
[ Wed Sep 14 19:02:29 2022 ] Eval epoch: 7
|
53 |
+
[ Wed Sep 14 19:04:04 2022 ] Mean test loss of 796 batches: 3.6132612228393555.
|
54 |
+
[ Wed Sep 14 19:04:04 2022 ] Top1: 26.16%
|
55 |
+
[ Wed Sep 14 19:04:05 2022 ] Top5: 57.86%
|
56 |
+
[ Wed Sep 14 19:04:05 2022 ] Training epoch: 8
|
57 |
+
[ Wed Sep 14 19:05:20 2022 ] Batch(98/243) done. Loss: 0.7015 lr:0.100000 network_time: 0.0276
|
58 |
+
[ Wed Sep 14 19:06:33 2022 ] Batch(198/243) done. Loss: 0.8786 lr:0.100000 network_time: 0.0285
|
59 |
+
[ Wed Sep 14 19:07:05 2022 ] Eval epoch: 8
|
60 |
+
[ Wed Sep 14 19:08:40 2022 ] Mean test loss of 796 batches: 3.2343382835388184.
|
61 |
+
[ Wed Sep 14 19:08:40 2022 ] Top1: 29.52%
|
62 |
+
[ Wed Sep 14 19:08:41 2022 ] Top5: 62.62%
|
63 |
+
[ Wed Sep 14 19:08:41 2022 ] Training epoch: 9
|
64 |
+
[ Wed Sep 14 19:09:24 2022 ] Batch(55/243) done. Loss: 1.0992 lr:0.100000 network_time: 0.0314
|
65 |
+
[ Wed Sep 14 19:10:37 2022 ] Batch(155/243) done. Loss: 0.8874 lr:0.100000 network_time: 0.0276
|
66 |
+
[ Wed Sep 14 19:11:41 2022 ] Eval epoch: 9
|
67 |
+
[ Wed Sep 14 19:13:16 2022 ] Mean test loss of 796 batches: 3.12418270111084.
|
68 |
+
[ Wed Sep 14 19:13:16 2022 ] Top1: 34.95%
|
69 |
+
[ Wed Sep 14 19:13:16 2022 ] Top5: 66.12%
|
70 |
+
[ Wed Sep 14 19:13:17 2022 ] Training epoch: 10
|
71 |
+
[ Wed Sep 14 19:13:29 2022 ] Batch(12/243) done. Loss: 1.0292 lr:0.100000 network_time: 0.0220
|
72 |
+
[ Wed Sep 14 19:14:42 2022 ] Batch(112/243) done. Loss: 0.8647 lr:0.100000 network_time: 0.0256
|
73 |
+
[ Wed Sep 14 19:15:55 2022 ] Batch(212/243) done. Loss: 1.3004 lr:0.100000 network_time: 0.0311
|
74 |
+
[ Wed Sep 14 19:16:17 2022 ] Eval epoch: 10
|
75 |
+
[ Wed Sep 14 19:17:51 2022 ] Mean test loss of 796 batches: 3.8285813331604004.
|
76 |
+
[ Wed Sep 14 19:17:51 2022 ] Top1: 30.90%
|
77 |
+
[ Wed Sep 14 19:17:52 2022 ] Top5: 63.59%
|
78 |
+
[ Wed Sep 14 19:17:52 2022 ] Training epoch: 11
|
79 |
+
[ Wed Sep 14 19:18:46 2022 ] Batch(69/243) done. Loss: 0.8339 lr:0.100000 network_time: 0.0323
|
80 |
+
[ Wed Sep 14 19:19:59 2022 ] Batch(169/243) done. Loss: 0.7797 lr:0.100000 network_time: 0.0273
|
81 |
+
[ Wed Sep 14 19:20:52 2022 ] Eval epoch: 11
|
82 |
+
[ Wed Sep 14 19:22:26 2022 ] Mean test loss of 796 batches: 3.172834634780884.
|
83 |
+
[ Wed Sep 14 19:22:27 2022 ] Top1: 36.06%
|
84 |
+
[ Wed Sep 14 19:22:27 2022 ] Top5: 70.82%
|
85 |
+
[ Wed Sep 14 19:22:27 2022 ] Training epoch: 12
|
86 |
+
[ Wed Sep 14 19:22:50 2022 ] Batch(26/243) done. Loss: 0.3926 lr:0.100000 network_time: 0.0273
|
87 |
+
[ Wed Sep 14 19:24:03 2022 ] Batch(126/243) done. Loss: 0.9194 lr:0.100000 network_time: 0.0269
|
88 |
+
[ Wed Sep 14 19:25:16 2022 ] Batch(226/243) done. Loss: 0.9495 lr:0.100000 network_time: 0.0307
|
89 |
+
[ Wed Sep 14 19:25:27 2022 ] Eval epoch: 12
|
90 |
+
[ Wed Sep 14 19:27:02 2022 ] Mean test loss of 796 batches: 3.429459810256958.
|
91 |
+
[ Wed Sep 14 19:27:02 2022 ] Top1: 33.83%
|
92 |
+
[ Wed Sep 14 19:27:02 2022 ] Top5: 67.91%
|
93 |
+
[ Wed Sep 14 19:27:03 2022 ] Training epoch: 13
|
94 |
+
[ Wed Sep 14 19:28:07 2022 ] Batch(83/243) done. Loss: 0.5501 lr:0.100000 network_time: 0.0260
|
95 |
+
[ Wed Sep 14 19:29:20 2022 ] Batch(183/243) done. Loss: 0.8154 lr:0.100000 network_time: 0.0303
|
96 |
+
[ Wed Sep 14 19:30:03 2022 ] Eval epoch: 13
|
97 |
+
[ Wed Sep 14 19:31:37 2022 ] Mean test loss of 796 batches: 3.606862783432007.
|
98 |
+
[ Wed Sep 14 19:31:37 2022 ] Top1: 27.25%
|
99 |
+
[ Wed Sep 14 19:31:38 2022 ] Top5: 57.85%
|
100 |
+
[ Wed Sep 14 19:31:38 2022 ] Training epoch: 14
|
101 |
+
[ Wed Sep 14 19:32:11 2022 ] Batch(40/243) done. Loss: 0.4214 lr:0.100000 network_time: 0.0271
|
102 |
+
[ Wed Sep 14 19:33:24 2022 ] Batch(140/243) done. Loss: 0.8487 lr:0.100000 network_time: 0.0275
|
103 |
+
[ Wed Sep 14 19:34:37 2022 ] Batch(240/243) done. Loss: 0.6233 lr:0.100000 network_time: 0.0263
|
104 |
+
[ Wed Sep 14 19:34:38 2022 ] Eval epoch: 14
|
105 |
+
[ Wed Sep 14 19:36:13 2022 ] Mean test loss of 796 batches: 4.171570777893066.
|
106 |
+
[ Wed Sep 14 19:36:13 2022 ] Top1: 29.66%
|
107 |
+
[ Wed Sep 14 19:36:14 2022 ] Top5: 58.28%
|
108 |
+
[ Wed Sep 14 19:36:14 2022 ] Training epoch: 15
|
109 |
+
[ Wed Sep 14 19:37:28 2022 ] Batch(97/243) done. Loss: 0.5808 lr:0.100000 network_time: 0.0312
|
110 |
+
[ Wed Sep 14 19:38:41 2022 ] Batch(197/243) done. Loss: 0.5147 lr:0.100000 network_time: 0.0266
|
111 |
+
[ Wed Sep 14 19:39:14 2022 ] Eval epoch: 15
|
112 |
+
[ Wed Sep 14 19:40:48 2022 ] Mean test loss of 796 batches: 3.827831506729126.
|
113 |
+
[ Wed Sep 14 19:40:49 2022 ] Top1: 33.09%
|
114 |
+
[ Wed Sep 14 19:40:49 2022 ] Top5: 68.44%
|
115 |
+
[ Wed Sep 14 19:40:49 2022 ] Training epoch: 16
|
116 |
+
[ Wed Sep 14 19:41:32 2022 ] Batch(54/243) done. Loss: 0.4489 lr:0.100000 network_time: 0.0278
|
117 |
+
[ Wed Sep 14 19:42:45 2022 ] Batch(154/243) done. Loss: 0.5374 lr:0.100000 network_time: 0.0310
|
118 |
+
[ Wed Sep 14 19:43:50 2022 ] Eval epoch: 16
|
119 |
+
[ Wed Sep 14 19:45:24 2022 ] Mean test loss of 796 batches: 3.337961196899414.
|
120 |
+
[ Wed Sep 14 19:45:25 2022 ] Top1: 36.75%
|
121 |
+
[ Wed Sep 14 19:45:25 2022 ] Top5: 68.71%
|
122 |
+
[ Wed Sep 14 19:45:25 2022 ] Training epoch: 17
|
123 |
+
[ Wed Sep 14 19:45:37 2022 ] Batch(11/243) done. Loss: 0.6355 lr:0.100000 network_time: 0.0260
|
124 |
+
[ Wed Sep 14 19:46:50 2022 ] Batch(111/243) done. Loss: 0.5497 lr:0.100000 network_time: 0.0262
|
125 |
+
[ Wed Sep 14 19:48:02 2022 ] Batch(211/243) done. Loss: 0.9412 lr:0.100000 network_time: 0.0284
|
126 |
+
[ Wed Sep 14 19:48:25 2022 ] Eval epoch: 17
|
127 |
+
[ Wed Sep 14 19:50:00 2022 ] Mean test loss of 796 batches: 3.2908499240875244.
|
128 |
+
[ Wed Sep 14 19:50:00 2022 ] Top1: 37.76%
|
129 |
+
[ Wed Sep 14 19:50:01 2022 ] Top5: 71.83%
|
130 |
+
[ Wed Sep 14 19:50:01 2022 ] Training epoch: 18
|
131 |
+
[ Wed Sep 14 19:50:54 2022 ] Batch(68/243) done. Loss: 0.5626 lr:0.100000 network_time: 0.0268
|
132 |
+
[ Wed Sep 14 19:52:07 2022 ] Batch(168/243) done. Loss: 0.5032 lr:0.100000 network_time: 0.0250
|
133 |
+
[ Wed Sep 14 19:53:01 2022 ] Eval epoch: 18
|
134 |
+
[ Wed Sep 14 19:54:35 2022 ] Mean test loss of 796 batches: 3.725764513015747.
|
135 |
+
[ Wed Sep 14 19:54:36 2022 ] Top1: 38.57%
|
136 |
+
[ Wed Sep 14 19:54:36 2022 ] Top5: 69.67%
|
137 |
+
[ Wed Sep 14 19:54:36 2022 ] Training epoch: 19
|
138 |
+
[ Wed Sep 14 19:54:58 2022 ] Batch(25/243) done. Loss: 0.5624 lr:0.100000 network_time: 0.0273
|
139 |
+
[ Wed Sep 14 19:56:11 2022 ] Batch(125/243) done. Loss: 0.6199 lr:0.100000 network_time: 0.0314
|
140 |
+
[ Wed Sep 14 19:57:24 2022 ] Batch(225/243) done. Loss: 0.6703 lr:0.100000 network_time: 0.0268
|
141 |
+
[ Wed Sep 14 19:57:36 2022 ] Eval epoch: 19
|
142 |
+
[ Wed Sep 14 19:59:11 2022 ] Mean test loss of 796 batches: 3.639695882797241.
|
143 |
+
[ Wed Sep 14 19:59:11 2022 ] Top1: 36.78%
|
144 |
+
[ Wed Sep 14 19:59:12 2022 ] Top5: 71.43%
|
145 |
+
[ Wed Sep 14 19:59:12 2022 ] Training epoch: 20
|
146 |
+
[ Wed Sep 14 20:00:16 2022 ] Batch(82/243) done. Loss: 0.4942 lr:0.100000 network_time: 0.0274
|
147 |
+
[ Wed Sep 14 20:01:29 2022 ] Batch(182/243) done. Loss: 0.4595 lr:0.100000 network_time: 0.0283
|
148 |
+
[ Wed Sep 14 20:02:13 2022 ] Eval epoch: 20
|
149 |
+
[ Wed Sep 14 20:03:47 2022 ] Mean test loss of 796 batches: 3.102022886276245.
|
150 |
+
[ Wed Sep 14 20:03:47 2022 ] Top1: 37.25%
|
151 |
+
[ Wed Sep 14 20:03:48 2022 ] Top5: 69.94%
|
152 |
+
[ Wed Sep 14 20:03:48 2022 ] Training epoch: 21
|
153 |
+
[ Wed Sep 14 20:04:20 2022 ] Batch(39/243) done. Loss: 0.2484 lr:0.100000 network_time: 0.0263
|
154 |
+
[ Wed Sep 14 20:05:33 2022 ] Batch(139/243) done. Loss: 0.5053 lr:0.100000 network_time: 0.0274
|
155 |
+
[ Wed Sep 14 20:06:46 2022 ] Batch(239/243) done. Loss: 0.5454 lr:0.100000 network_time: 0.0266
|
156 |
+
[ Wed Sep 14 20:06:48 2022 ] Eval epoch: 21
|
157 |
+
[ Wed Sep 14 20:08:22 2022 ] Mean test loss of 796 batches: 3.5374462604522705.
|
158 |
+
[ Wed Sep 14 20:08:23 2022 ] Top1: 35.02%
|
159 |
+
[ Wed Sep 14 20:08:23 2022 ] Top5: 69.82%
|
160 |
+
[ Wed Sep 14 20:08:23 2022 ] Training epoch: 22
|
161 |
+
[ Wed Sep 14 20:09:37 2022 ] Batch(96/243) done. Loss: 0.5373 lr:0.100000 network_time: 0.0271
|
162 |
+
[ Wed Sep 14 20:10:50 2022 ] Batch(196/243) done. Loss: 0.4305 lr:0.100000 network_time: 0.0249
|
163 |
+
[ Wed Sep 14 20:11:24 2022 ] Eval epoch: 22
|
164 |
+
[ Wed Sep 14 20:12:58 2022 ] Mean test loss of 796 batches: 3.3867008686065674.
|
165 |
+
[ Wed Sep 14 20:12:58 2022 ] Top1: 42.28%
|
166 |
+
[ Wed Sep 14 20:12:59 2022 ] Top5: 74.57%
|
167 |
+
[ Wed Sep 14 20:12:59 2022 ] Training epoch: 23
|
168 |
+
[ Wed Sep 14 20:13:41 2022 ] Batch(53/243) done. Loss: 0.4115 lr:0.100000 network_time: 0.0342
|
169 |
+
[ Wed Sep 14 20:14:54 2022 ] Batch(153/243) done. Loss: 0.7559 lr:0.100000 network_time: 0.0271
|
170 |
+
[ Wed Sep 14 20:15:59 2022 ] Eval epoch: 23
|
171 |
+
[ Wed Sep 14 20:17:32 2022 ] Mean test loss of 796 batches: 3.638932228088379.
|
172 |
+
[ Wed Sep 14 20:17:33 2022 ] Top1: 38.48%
|
173 |
+
[ Wed Sep 14 20:17:33 2022 ] Top5: 71.98%
|
174 |
+
[ Wed Sep 14 20:17:33 2022 ] Training epoch: 24
|
175 |
+
[ Wed Sep 14 20:17:44 2022 ] Batch(10/243) done. Loss: 0.3779 lr:0.100000 network_time: 0.0281
|
176 |
+
[ Wed Sep 14 20:18:57 2022 ] Batch(110/243) done. Loss: 0.4044 lr:0.100000 network_time: 0.0282
|
177 |
+
[ Wed Sep 14 20:20:10 2022 ] Batch(210/243) done. Loss: 0.4047 lr:0.100000 network_time: 0.0274
|
178 |
+
[ Wed Sep 14 20:20:34 2022 ] Eval epoch: 24
|
179 |
+
[ Wed Sep 14 20:22:07 2022 ] Mean test loss of 796 batches: 3.194326162338257.
|
180 |
+
[ Wed Sep 14 20:22:08 2022 ] Top1: 41.16%
|
181 |
+
[ Wed Sep 14 20:22:08 2022 ] Top5: 73.29%
|
182 |
+
[ Wed Sep 14 20:22:08 2022 ] Training epoch: 25
|
183 |
+
[ Wed Sep 14 20:23:01 2022 ] Batch(67/243) done. Loss: 0.3711 lr:0.100000 network_time: 0.0270
|
184 |
+
[ Wed Sep 14 20:24:13 2022 ] Batch(167/243) done. Loss: 0.4264 lr:0.100000 network_time: 0.0263
|
185 |
+
[ Wed Sep 14 20:25:08 2022 ] Eval epoch: 25
|
186 |
+
[ Wed Sep 14 20:26:42 2022 ] Mean test loss of 796 batches: 3.711545705795288.
|
187 |
+
[ Wed Sep 14 20:26:43 2022 ] Top1: 37.13%
|
188 |
+
[ Wed Sep 14 20:26:43 2022 ] Top5: 68.57%
|
189 |
+
[ Wed Sep 14 20:26:43 2022 ] Training epoch: 26
|
190 |
+
[ Wed Sep 14 20:27:04 2022 ] Batch(24/243) done. Loss: 0.4519 lr:0.100000 network_time: 0.0271
|
191 |
+
[ Wed Sep 14 20:28:17 2022 ] Batch(124/243) done. Loss: 0.3969 lr:0.100000 network_time: 0.0267
|
192 |
+
[ Wed Sep 14 20:29:30 2022 ] Batch(224/243) done. Loss: 0.2840 lr:0.100000 network_time: 0.0270
|
193 |
+
[ Wed Sep 14 20:29:43 2022 ] Eval epoch: 26
|
194 |
+
[ Wed Sep 14 20:31:18 2022 ] Mean test loss of 796 batches: 3.380185127258301.
|
195 |
+
[ Wed Sep 14 20:31:18 2022 ] Top1: 44.60%
|
196 |
+
[ Wed Sep 14 20:31:18 2022 ] Top5: 76.95%
|
197 |
+
[ Wed Sep 14 20:31:18 2022 ] Training epoch: 27
|
198 |
+
[ Wed Sep 14 20:32:21 2022 ] Batch(81/243) done. Loss: 0.4860 lr:0.100000 network_time: 0.0262
|
199 |
+
[ Wed Sep 14 20:33:34 2022 ] Batch(181/243) done. Loss: 0.4455 lr:0.100000 network_time: 0.0433
|
200 |
+
[ Wed Sep 14 20:34:19 2022 ] Eval epoch: 27
|
201 |
+
[ Wed Sep 14 20:35:53 2022 ] Mean test loss of 796 batches: 3.682363748550415.
|
202 |
+
[ Wed Sep 14 20:35:54 2022 ] Top1: 34.85%
|
203 |
+
[ Wed Sep 14 20:35:54 2022 ] Top5: 68.94%
|
204 |
+
[ Wed Sep 14 20:35:55 2022 ] Training epoch: 28
|
205 |
+
[ Wed Sep 14 20:36:26 2022 ] Batch(38/243) done. Loss: 0.2284 lr:0.100000 network_time: 0.0537
|
206 |
+
[ Wed Sep 14 20:37:39 2022 ] Batch(138/243) done. Loss: 0.3881 lr:0.100000 network_time: 0.0270
|
207 |
+
[ Wed Sep 14 20:38:52 2022 ] Batch(238/243) done. Loss: 0.4989 lr:0.100000 network_time: 0.0272
|
208 |
+
[ Wed Sep 14 20:38:55 2022 ] Eval epoch: 28
|
209 |
+
[ Wed Sep 14 20:40:29 2022 ] Mean test loss of 796 batches: 4.050222873687744.
|
210 |
+
[ Wed Sep 14 20:40:29 2022 ] Top1: 39.72%
|
211 |
+
[ Wed Sep 14 20:40:29 2022 ] Top5: 72.02%
|
212 |
+
[ Wed Sep 14 20:40:30 2022 ] Training epoch: 29
|
213 |
+
[ Wed Sep 14 20:41:42 2022 ] Batch(95/243) done. Loss: 0.2913 lr:0.100000 network_time: 0.0265
|
214 |
+
[ Wed Sep 14 20:42:55 2022 ] Batch(195/243) done. Loss: 0.4301 lr:0.100000 network_time: 0.0261
|
215 |
+
[ Wed Sep 14 20:43:30 2022 ] Eval epoch: 29
|
216 |
+
[ Wed Sep 14 20:45:04 2022 ] Mean test loss of 796 batches: 4.2824883460998535.
|
217 |
+
[ Wed Sep 14 20:45:04 2022 ] Top1: 41.94%
|
218 |
+
[ Wed Sep 14 20:45:04 2022 ] Top5: 74.24%
|
219 |
+
[ Wed Sep 14 20:45:05 2022 ] Training epoch: 30
|
220 |
+
[ Wed Sep 14 20:45:46 2022 ] Batch(52/243) done. Loss: 0.3259 lr:0.100000 network_time: 0.0270
|
221 |
+
[ Wed Sep 14 20:46:59 2022 ] Batch(152/243) done. Loss: 0.3045 lr:0.100000 network_time: 0.0273
|
222 |
+
[ Wed Sep 14 20:48:05 2022 ] Eval epoch: 30
|
223 |
+
[ Wed Sep 14 20:49:39 2022 ] Mean test loss of 796 batches: 3.3407092094421387.
|
224 |
+
[ Wed Sep 14 20:49:40 2022 ] Top1: 40.77%
|
225 |
+
[ Wed Sep 14 20:49:40 2022 ] Top5: 74.75%
|
226 |
+
[ Wed Sep 14 20:49:40 2022 ] Training epoch: 31
|
227 |
+
[ Wed Sep 14 20:49:50 2022 ] Batch(9/243) done. Loss: 0.4007 lr:0.100000 network_time: 0.0268
|
228 |
+
[ Wed Sep 14 20:51:03 2022 ] Batch(109/243) done. Loss: 0.2993 lr:0.100000 network_time: 0.0316
|
229 |
+
[ Wed Sep 14 20:52:16 2022 ] Batch(209/243) done. Loss: 0.3673 lr:0.100000 network_time: 0.0272
|
230 |
+
[ Wed Sep 14 20:52:41 2022 ] Eval epoch: 31
|
231 |
+
[ Wed Sep 14 20:54:15 2022 ] Mean test loss of 796 batches: 3.6521658897399902.
|
232 |
+
[ Wed Sep 14 20:54:15 2022 ] Top1: 38.46%
|
233 |
+
[ Wed Sep 14 20:54:15 2022 ] Top5: 72.08%
|
234 |
+
[ Wed Sep 14 20:54:16 2022 ] Training epoch: 32
|
235 |
+
[ Wed Sep 14 20:55:07 2022 ] Batch(66/243) done. Loss: 0.3483 lr:0.100000 network_time: 0.0256
|
236 |
+
[ Wed Sep 14 20:56:20 2022 ] Batch(166/243) done. Loss: 0.5043 lr:0.100000 network_time: 0.0265
|
237 |
+
[ Wed Sep 14 20:57:16 2022 ] Eval epoch: 32
|
238 |
+
[ Wed Sep 14 20:58:49 2022 ] Mean test loss of 796 batches: 3.2773547172546387.
|
239 |
+
[ Wed Sep 14 20:58:50 2022 ] Top1: 42.23%
|
240 |
+
[ Wed Sep 14 20:58:50 2022 ] Top5: 74.82%
|
241 |
+
[ Wed Sep 14 20:58:50 2022 ] Training epoch: 33
|
242 |
+
[ Wed Sep 14 20:59:11 2022 ] Batch(23/243) done. Loss: 0.2605 lr:0.100000 network_time: 0.0277
|
243 |
+
[ Wed Sep 14 21:00:23 2022 ] Batch(123/243) done. Loss: 0.3847 lr:0.100000 network_time: 0.0264
|
244 |
+
[ Wed Sep 14 21:01:36 2022 ] Batch(223/243) done. Loss: 0.5128 lr:0.100000 network_time: 0.0269
|
245 |
+
[ Wed Sep 14 21:01:50 2022 ] Eval epoch: 33
|
246 |
+
[ Wed Sep 14 21:03:25 2022 ] Mean test loss of 796 batches: 3.2684571743011475.
|
247 |
+
[ Wed Sep 14 21:03:25 2022 ] Top1: 41.48%
|
248 |
+
[ Wed Sep 14 21:03:26 2022 ] Top5: 73.69%
|
249 |
+
[ Wed Sep 14 21:03:26 2022 ] Training epoch: 34
|
250 |
+
[ Wed Sep 14 21:04:28 2022 ] Batch(80/243) done. Loss: 0.2067 lr:0.100000 network_time: 0.0268
|
251 |
+
[ Wed Sep 14 21:05:41 2022 ] Batch(180/243) done. Loss: 0.3515 lr:0.100000 network_time: 0.0311
|
252 |
+
[ Wed Sep 14 21:06:26 2022 ] Eval epoch: 34
|
253 |
+
[ Wed Sep 14 21:08:00 2022 ] Mean test loss of 796 batches: 3.645359754562378.
|
254 |
+
[ Wed Sep 14 21:08:01 2022 ] Top1: 40.37%
|
255 |
+
[ Wed Sep 14 21:08:02 2022 ] Top5: 74.26%
|
256 |
+
[ Wed Sep 14 21:08:02 2022 ] Training epoch: 35
|
257 |
+
[ Wed Sep 14 21:08:32 2022 ] Batch(37/243) done. Loss: 0.2540 lr:0.100000 network_time: 0.0262
|
258 |
+
[ Wed Sep 14 21:09:45 2022 ] Batch(137/243) done. Loss: 0.3441 lr:0.100000 network_time: 0.0319
|
259 |
+
[ Wed Sep 14 21:10:58 2022 ] Batch(237/243) done. Loss: 0.4167 lr:0.100000 network_time: 0.0272
|
260 |
+
[ Wed Sep 14 21:11:02 2022 ] Eval epoch: 35
|
261 |
+
[ Wed Sep 14 21:12:35 2022 ] Mean test loss of 796 batches: 3.4303860664367676.
|
262 |
+
[ Wed Sep 14 21:12:36 2022 ] Top1: 40.54%
|
263 |
+
[ Wed Sep 14 21:12:36 2022 ] Top5: 74.03%
|
264 |
+
[ Wed Sep 14 21:12:36 2022 ] Training epoch: 36
|
265 |
+
[ Wed Sep 14 21:13:48 2022 ] Batch(94/243) done. Loss: 0.3030 lr:0.100000 network_time: 0.0314
|
266 |
+
[ Wed Sep 14 21:15:01 2022 ] Batch(194/243) done. Loss: 0.3031 lr:0.100000 network_time: 0.0274
|
267 |
+
[ Wed Sep 14 21:15:36 2022 ] Eval epoch: 36
|
268 |
+
[ Wed Sep 14 21:17:10 2022 ] Mean test loss of 796 batches: 3.0533454418182373.
|
269 |
+
[ Wed Sep 14 21:17:10 2022 ] Top1: 42.74%
|
270 |
+
[ Wed Sep 14 21:17:11 2022 ] Top5: 74.29%
|
271 |
+
[ Wed Sep 14 21:17:11 2022 ] Training epoch: 37
|
272 |
+
[ Wed Sep 14 21:17:52 2022 ] Batch(51/243) done. Loss: 0.2052 lr:0.100000 network_time: 0.0289
|
273 |
+
[ Wed Sep 14 21:19:05 2022 ] Batch(151/243) done. Loss: 0.3076 lr:0.100000 network_time: 0.0263
|
274 |
+
[ Wed Sep 14 21:20:11 2022 ] Eval epoch: 37
|
275 |
+
[ Wed Sep 14 21:21:45 2022 ] Mean test loss of 796 batches: 3.8635685443878174.
|
276 |
+
[ Wed Sep 14 21:21:46 2022 ] Top1: 38.69%
|
277 |
+
[ Wed Sep 14 21:21:46 2022 ] Top5: 73.05%
|
278 |
+
[ Wed Sep 14 21:21:46 2022 ] Training epoch: 38
|
279 |
+
[ Wed Sep 14 21:21:56 2022 ] Batch(8/243) done. Loss: 0.3111 lr:0.100000 network_time: 0.0273
|
280 |
+
[ Wed Sep 14 21:23:09 2022 ] Batch(108/243) done. Loss: 0.3223 lr:0.100000 network_time: 0.0276
|
281 |
+
[ Wed Sep 14 21:24:22 2022 ] Batch(208/243) done. Loss: 0.3715 lr:0.100000 network_time: 0.0272
|
282 |
+
[ Wed Sep 14 21:24:47 2022 ] Eval epoch: 38
|
283 |
+
[ Wed Sep 14 21:26:20 2022 ] Mean test loss of 796 batches: 3.5092737674713135.
|
284 |
+
[ Wed Sep 14 21:26:21 2022 ] Top1: 40.92%
|
285 |
+
[ Wed Sep 14 21:26:21 2022 ] Top5: 74.36%
|
286 |
+
[ Wed Sep 14 21:26:21 2022 ] Training epoch: 39
|
287 |
+
[ Wed Sep 14 21:27:12 2022 ] Batch(65/243) done. Loss: 0.3190 lr:0.100000 network_time: 0.0271
|
288 |
+
[ Wed Sep 14 21:28:25 2022 ] Batch(165/243) done. Loss: 0.3411 lr:0.100000 network_time: 0.0309
|
289 |
+
[ Wed Sep 14 21:29:22 2022 ] Eval epoch: 39
|
290 |
+
[ Wed Sep 14 21:30:56 2022 ] Mean test loss of 796 batches: 3.9432618618011475.
|
291 |
+
[ Wed Sep 14 21:30:56 2022 ] Top1: 38.59%
|
292 |
+
[ Wed Sep 14 21:30:57 2022 ] Top5: 70.74%
|
293 |
+
[ Wed Sep 14 21:30:57 2022 ] Training epoch: 40
|
294 |
+
[ Wed Sep 14 21:31:17 2022 ] Batch(22/243) done. Loss: 0.2824 lr:0.100000 network_time: 0.0304
|
295 |
+
[ Wed Sep 14 21:32:30 2022 ] Batch(122/243) done. Loss: 0.2105 lr:0.100000 network_time: 0.0327
|
296 |
+
[ Wed Sep 14 21:33:43 2022 ] Batch(222/243) done. Loss: 0.3019 lr:0.100000 network_time: 0.0264
|
297 |
+
[ Wed Sep 14 21:33:57 2022 ] Eval epoch: 40
|
298 |
+
[ Wed Sep 14 21:35:31 2022 ] Mean test loss of 796 batches: 3.499183177947998.
|
299 |
+
[ Wed Sep 14 21:35:32 2022 ] Top1: 40.04%
|
300 |
+
[ Wed Sep 14 21:35:32 2022 ] Top5: 72.85%
|
301 |
+
[ Wed Sep 14 21:35:32 2022 ] Training epoch: 41
|
302 |
+
[ Wed Sep 14 21:36:33 2022 ] Batch(79/243) done. Loss: 0.1238 lr:0.100000 network_time: 0.0262
|
303 |
+
[ Wed Sep 14 21:37:46 2022 ] Batch(179/243) done. Loss: 0.4174 lr:0.100000 network_time: 0.0323
|
304 |
+
[ Wed Sep 14 21:38:32 2022 ] Eval epoch: 41
|
305 |
+
[ Wed Sep 14 21:40:06 2022 ] Mean test loss of 796 batches: 3.4872095584869385.
|
306 |
+
[ Wed Sep 14 21:40:07 2022 ] Top1: 37.58%
|
307 |
+
[ Wed Sep 14 21:40:07 2022 ] Top5: 70.06%
|
308 |
+
[ Wed Sep 14 21:40:07 2022 ] Training epoch: 42
|
309 |
+
[ Wed Sep 14 21:40:37 2022 ] Batch(36/243) done. Loss: 0.2036 lr:0.100000 network_time: 0.0276
|
310 |
+
[ Wed Sep 14 21:41:50 2022 ] Batch(136/243) done. Loss: 0.3632 lr:0.100000 network_time: 0.0331
|
311 |
+
[ Wed Sep 14 21:43:03 2022 ] Batch(236/243) done. Loss: 0.3208 lr:0.100000 network_time: 0.0316
|
312 |
+
[ Wed Sep 14 21:43:08 2022 ] Eval epoch: 42
|
313 |
+
[ Wed Sep 14 21:44:42 2022 ] Mean test loss of 796 batches: 3.3474175930023193.
|
314 |
+
[ Wed Sep 14 21:44:42 2022 ] Top1: 39.01%
|
315 |
+
[ Wed Sep 14 21:44:42 2022 ] Top5: 72.59%
|
316 |
+
[ Wed Sep 14 21:44:43 2022 ] Training epoch: 43
|
317 |
+
[ Wed Sep 14 21:45:54 2022 ] Batch(93/243) done. Loss: 0.2545 lr:0.100000 network_time: 0.0256
|
318 |
+
[ Wed Sep 14 21:47:07 2022 ] Batch(193/243) done. Loss: 0.3229 lr:0.100000 network_time: 0.0299
|
319 |
+
[ Wed Sep 14 21:47:43 2022 ] Eval epoch: 43
|
320 |
+
[ Wed Sep 14 21:49:17 2022 ] Mean test loss of 796 batches: 3.7657318115234375.
|
321 |
+
[ Wed Sep 14 21:49:17 2022 ] Top1: 37.50%
|
322 |
+
[ Wed Sep 14 21:49:17 2022 ] Top5: 69.66%
|
323 |
+
[ Wed Sep 14 21:49:18 2022 ] Training epoch: 44
|
324 |
+
[ Wed Sep 14 21:49:58 2022 ] Batch(50/243) done. Loss: 0.1688 lr:0.100000 network_time: 0.0268
|
325 |
+
[ Wed Sep 14 21:51:11 2022 ] Batch(150/243) done. Loss: 0.2368 lr:0.100000 network_time: 0.0270
|
326 |
+
[ Wed Sep 14 21:52:18 2022 ] Eval epoch: 44
|
327 |
+
[ Wed Sep 14 21:53:52 2022 ] Mean test loss of 796 batches: 3.6248888969421387.
|
328 |
+
[ Wed Sep 14 21:53:52 2022 ] Top1: 38.95%
|
329 |
+
[ Wed Sep 14 21:53:52 2022 ] Top5: 70.46%
|
330 |
+
[ Wed Sep 14 21:53:53 2022 ] Training epoch: 45
|
331 |
+
[ Wed Sep 14 21:54:01 2022 ] Batch(7/243) done. Loss: 0.1919 lr:0.100000 network_time: 0.0266
|
332 |
+
[ Wed Sep 14 21:55:14 2022 ] Batch(107/243) done. Loss: 0.2056 lr:0.100000 network_time: 0.0267
|
333 |
+
[ Wed Sep 14 21:56:27 2022 ] Batch(207/243) done. Loss: 0.2504 lr:0.100000 network_time: 0.0265
|
334 |
+
[ Wed Sep 14 21:56:52 2022 ] Eval epoch: 45
|
335 |
+
[ Wed Sep 14 21:58:27 2022 ] Mean test loss of 796 batches: 3.2078866958618164.
|
336 |
+
[ Wed Sep 14 21:58:27 2022 ] Top1: 39.89%
|
337 |
+
[ Wed Sep 14 21:58:27 2022 ] Top5: 71.88%
|
338 |
+
[ Wed Sep 14 21:58:27 2022 ] Training epoch: 46
|
339 |
+
[ Wed Sep 14 21:59:18 2022 ] Batch(64/243) done. Loss: 0.3002 lr:0.100000 network_time: 0.0321
|
340 |
+
[ Wed Sep 14 22:00:31 2022 ] Batch(164/243) done. Loss: 0.2156 lr:0.100000 network_time: 0.0267
|
341 |
+
[ Wed Sep 14 22:01:28 2022 ] Eval epoch: 46
|
342 |
+
[ Wed Sep 14 22:03:01 2022 ] Mean test loss of 796 batches: 3.4447925090789795.
|
343 |
+
[ Wed Sep 14 22:03:01 2022 ] Top1: 43.89%
|
344 |
+
[ Wed Sep 14 22:03:02 2022 ] Top5: 75.43%
|
345 |
+
[ Wed Sep 14 22:03:02 2022 ] Training epoch: 47
|
346 |
+
[ Wed Sep 14 22:03:21 2022 ] Batch(21/243) done. Loss: 0.1526 lr:0.100000 network_time: 0.0279
|
347 |
+
[ Wed Sep 14 22:04:34 2022 ] Batch(121/243) done. Loss: 0.3723 lr:0.100000 network_time: 0.0273
|
348 |
+
[ Wed Sep 14 22:05:47 2022 ] Batch(221/243) done. Loss: 0.2064 lr:0.100000 network_time: 0.0259
|
349 |
+
[ Wed Sep 14 22:06:02 2022 ] Eval epoch: 47
|
350 |
+
[ Wed Sep 14 22:07:36 2022 ] Mean test loss of 796 batches: 4.070017337799072.
|
351 |
+
[ Wed Sep 14 22:07:37 2022 ] Top1: 43.00%
|
352 |
+
[ Wed Sep 14 22:07:37 2022 ] Top5: 74.75%
|
353 |
+
[ Wed Sep 14 22:07:38 2022 ] Training epoch: 48
|
354 |
+
[ Wed Sep 14 22:08:38 2022 ] Batch(78/243) done. Loss: 0.1903 lr:0.100000 network_time: 0.0329
|
355 |
+
[ Wed Sep 14 22:09:51 2022 ] Batch(178/243) done. Loss: 0.3535 lr:0.100000 network_time: 0.0267
|
356 |
+
[ Wed Sep 14 22:10:38 2022 ] Eval epoch: 48
|
357 |
+
[ Wed Sep 14 22:12:12 2022 ] Mean test loss of 796 batches: 3.5496559143066406.
|
358 |
+
[ Wed Sep 14 22:12:12 2022 ] Top1: 39.57%
|
359 |
+
[ Wed Sep 14 22:12:12 2022 ] Top5: 71.81%
|
360 |
+
[ Wed Sep 14 22:12:13 2022 ] Training epoch: 49
|
361 |
+
[ Wed Sep 14 22:12:42 2022 ] Batch(35/243) done. Loss: 0.3369 lr:0.100000 network_time: 0.0299
|
362 |
+
[ Wed Sep 14 22:13:54 2022 ] Batch(135/243) done. Loss: 0.2675 lr:0.100000 network_time: 0.0278
|
363 |
+
[ Wed Sep 14 22:15:07 2022 ] Batch(235/243) done. Loss: 0.2864 lr:0.100000 network_time: 0.0274
|
364 |
+
[ Wed Sep 14 22:15:13 2022 ] Eval epoch: 49
|
365 |
+
[ Wed Sep 14 22:16:46 2022 ] Mean test loss of 796 batches: 3.7140417098999023.
|
366 |
+
[ Wed Sep 14 22:16:47 2022 ] Top1: 38.81%
|
367 |
+
[ Wed Sep 14 22:16:47 2022 ] Top5: 71.16%
|
368 |
+
[ Wed Sep 14 22:16:47 2022 ] Training epoch: 50
|
369 |
+
[ Wed Sep 14 22:17:58 2022 ] Batch(92/243) done. Loss: 0.2630 lr:0.100000 network_time: 0.0267
|
370 |
+
[ Wed Sep 14 22:19:11 2022 ] Batch(192/243) done. Loss: 0.2089 lr:0.100000 network_time: 0.0326
|
371 |
+
[ Wed Sep 14 22:19:47 2022 ] Eval epoch: 50
|
372 |
+
[ Wed Sep 14 22:21:21 2022 ] Mean test loss of 796 batches: 3.919886350631714.
|
373 |
+
[ Wed Sep 14 22:21:21 2022 ] Top1: 40.21%
|
374 |
+
[ Wed Sep 14 22:21:22 2022 ] Top5: 73.40%
|
375 |
+
[ Wed Sep 14 22:21:22 2022 ] Training epoch: 51
|
376 |
+
[ Wed Sep 14 22:22:01 2022 ] Batch(49/243) done. Loss: 0.2332 lr:0.100000 network_time: 0.0306
|
377 |
+
[ Wed Sep 14 22:23:14 2022 ] Batch(149/243) done. Loss: 0.4120 lr:0.100000 network_time: 0.0270
|
378 |
+
[ Wed Sep 14 22:24:22 2022 ] Eval epoch: 51
|
379 |
+
[ Wed Sep 14 22:25:56 2022 ] Mean test loss of 796 batches: 3.310202121734619.
|
380 |
+
[ Wed Sep 14 22:25:56 2022 ] Top1: 45.68%
|
381 |
+
[ Wed Sep 14 22:25:57 2022 ] Top5: 76.46%
|
382 |
+
[ Wed Sep 14 22:25:57 2022 ] Training epoch: 52
|
383 |
+
[ Wed Sep 14 22:26:05 2022 ] Batch(6/243) done. Loss: 0.1790 lr:0.100000 network_time: 0.0275
|
384 |
+
[ Wed Sep 14 22:27:18 2022 ] Batch(106/243) done. Loss: 0.1615 lr:0.100000 network_time: 0.0282
|
385 |
+
[ Wed Sep 14 22:28:31 2022 ] Batch(206/243) done. Loss: 0.2678 lr:0.100000 network_time: 0.0269
|
386 |
+
[ Wed Sep 14 22:28:57 2022 ] Eval epoch: 52
|
387 |
+
[ Wed Sep 14 22:30:31 2022 ] Mean test loss of 796 batches: 3.7315006256103516.
|
388 |
+
[ Wed Sep 14 22:30:32 2022 ] Top1: 38.94%
|
389 |
+
[ Wed Sep 14 22:30:32 2022 ] Top5: 71.32%
|
390 |
+
[ Wed Sep 14 22:30:32 2022 ] Training epoch: 53
|
391 |
+
[ Wed Sep 14 22:31:22 2022 ] Batch(63/243) done. Loss: 0.1572 lr:0.100000 network_time: 0.0271
|
392 |
+
[ Wed Sep 14 22:32:35 2022 ] Batch(163/243) done. Loss: 0.2304 lr:0.100000 network_time: 0.0270
|
393 |
+
[ Wed Sep 14 22:33:32 2022 ] Eval epoch: 53
|
394 |
+
[ Wed Sep 14 22:35:06 2022 ] Mean test loss of 796 batches: 3.6942200660705566.
|
395 |
+
[ Wed Sep 14 22:35:07 2022 ] Top1: 42.98%
|
396 |
+
[ Wed Sep 14 22:35:07 2022 ] Top5: 74.85%
|
397 |
+
[ Wed Sep 14 22:35:08 2022 ] Training epoch: 54
|
398 |
+
[ Wed Sep 14 22:35:26 2022 ] Batch(20/243) done. Loss: 0.1527 lr:0.100000 network_time: 0.0262
|
399 |
+
[ Wed Sep 14 22:36:39 2022 ] Batch(120/243) done. Loss: 0.1793 lr:0.100000 network_time: 0.0264
|
400 |
+
[ Wed Sep 14 22:37:52 2022 ] Batch(220/243) done. Loss: 0.2885 lr:0.100000 network_time: 0.0277
|
401 |
+
[ Wed Sep 14 22:38:08 2022 ] Eval epoch: 54
|
402 |
+
[ Wed Sep 14 22:39:42 2022 ] Mean test loss of 796 batches: 3.254549026489258.
|
403 |
+
[ Wed Sep 14 22:39:42 2022 ] Top1: 41.90%
|
404 |
+
[ Wed Sep 14 22:39:43 2022 ] Top5: 72.66%
|
405 |
+
[ Wed Sep 14 22:39:43 2022 ] Training epoch: 55
|
406 |
+
[ Wed Sep 14 22:40:43 2022 ] Batch(77/243) done. Loss: 0.1745 lr:0.100000 network_time: 0.0272
|
407 |
+
[ Wed Sep 14 22:41:56 2022 ] Batch(177/243) done. Loss: 0.2407 lr:0.100000 network_time: 0.0273
|
408 |
+
[ Wed Sep 14 22:42:43 2022 ] Eval epoch: 55
|
409 |
+
[ Wed Sep 14 22:44:18 2022 ] Mean test loss of 796 batches: 3.397036075592041.
|
410 |
+
[ Wed Sep 14 22:44:19 2022 ] Top1: 46.16%
|
411 |
+
[ Wed Sep 14 22:44:19 2022 ] Top5: 77.40%
|
412 |
+
[ Wed Sep 14 22:44:19 2022 ] Training epoch: 56
|
413 |
+
[ Wed Sep 14 22:44:48 2022 ] Batch(34/243) done. Loss: 0.1203 lr:0.100000 network_time: 0.0263
|
414 |
+
[ Wed Sep 14 22:46:00 2022 ] Batch(134/243) done. Loss: 0.1849 lr:0.100000 network_time: 0.0397
|
415 |
+
[ Wed Sep 14 22:47:13 2022 ] Batch(234/243) done. Loss: 0.1408 lr:0.100000 network_time: 0.0278
|
416 |
+
[ Wed Sep 14 22:47:19 2022 ] Eval epoch: 56
|
417 |
+
[ Wed Sep 14 22:48:53 2022 ] Mean test loss of 796 batches: 3.7120611667633057.
|
418 |
+
[ Wed Sep 14 22:48:54 2022 ] Top1: 39.24%
|
419 |
+
[ Wed Sep 14 22:48:54 2022 ] Top5: 71.20%
|
420 |
+
[ Wed Sep 14 22:48:54 2022 ] Training epoch: 57
|
421 |
+
[ Wed Sep 14 22:50:04 2022 ] Batch(91/243) done. Loss: 0.2682 lr:0.100000 network_time: 0.0271
|
422 |
+
[ Wed Sep 14 22:51:17 2022 ] Batch(191/243) done. Loss: 0.4857 lr:0.100000 network_time: 0.0313
|
423 |
+
[ Wed Sep 14 22:51:54 2022 ] Eval epoch: 57
|
424 |
+
[ Wed Sep 14 22:53:28 2022 ] Mean test loss of 796 batches: 4.152618408203125.
|
425 |
+
[ Wed Sep 14 22:53:28 2022 ] Top1: 40.22%
|
426 |
+
[ Wed Sep 14 22:53:29 2022 ] Top5: 73.39%
|
427 |
+
[ Wed Sep 14 22:53:29 2022 ] Training epoch: 58
|
428 |
+
[ Wed Sep 14 22:54:08 2022 ] Batch(48/243) done. Loss: 0.2004 lr:0.100000 network_time: 0.0270
|
429 |
+
[ Wed Sep 14 22:55:20 2022 ] Batch(148/243) done. Loss: 0.1205 lr:0.100000 network_time: 0.0265
|
430 |
+
[ Wed Sep 14 22:56:29 2022 ] Eval epoch: 58
|
431 |
+
[ Wed Sep 14 22:58:03 2022 ] Mean test loss of 796 batches: 3.781721353530884.
|
432 |
+
[ Wed Sep 14 22:58:04 2022 ] Top1: 36.52%
|
433 |
+
[ Wed Sep 14 22:58:04 2022 ] Top5: 69.00%
|
434 |
+
[ Wed Sep 14 22:58:04 2022 ] Training epoch: 59
|
435 |
+
[ Wed Sep 14 22:58:12 2022 ] Batch(5/243) done. Loss: 0.3946 lr:0.100000 network_time: 0.0266
|
436 |
+
[ Wed Sep 14 22:59:25 2022 ] Batch(105/243) done. Loss: 0.2194 lr:0.100000 network_time: 0.0314
|
437 |
+
[ Wed Sep 14 23:00:38 2022 ] Batch(205/243) done. Loss: 0.2770 lr:0.100000 network_time: 0.0280
|
438 |
+
[ Wed Sep 14 23:01:05 2022 ] Eval epoch: 59
|
439 |
+
[ Wed Sep 14 23:02:39 2022 ] Mean test loss of 796 batches: 3.6728172302246094.
|
440 |
+
[ Wed Sep 14 23:02:40 2022 ] Top1: 42.16%
|
441 |
+
[ Wed Sep 14 23:02:40 2022 ] Top5: 75.15%
|
442 |
+
[ Wed Sep 14 23:02:40 2022 ] Training epoch: 60
|
443 |
+
[ Wed Sep 14 23:03:29 2022 ] Batch(62/243) done. Loss: 0.2575 lr:0.100000 network_time: 0.0267
|
444 |
+
[ Wed Sep 14 23:04:42 2022 ] Batch(162/243) done. Loss: 0.2812 lr:0.100000 network_time: 0.0264
|
445 |
+
[ Wed Sep 14 23:05:40 2022 ] Eval epoch: 60
|
446 |
+
[ Wed Sep 14 23:07:15 2022 ] Mean test loss of 796 batches: 3.4849016666412354.
|
447 |
+
[ Wed Sep 14 23:07:15 2022 ] Top1: 42.90%
|
448 |
+
[ Wed Sep 14 23:07:16 2022 ] Top5: 75.80%
|
449 |
+
[ Wed Sep 14 23:07:16 2022 ] Training epoch: 61
|
450 |
+
[ Wed Sep 14 23:07:33 2022 ] Batch(19/243) done. Loss: 0.2216 lr:0.010000 network_time: 0.0273
|
451 |
+
[ Wed Sep 14 23:08:46 2022 ] Batch(119/243) done. Loss: 0.0335 lr:0.010000 network_time: 0.0273
|
452 |
+
[ Wed Sep 14 23:09:59 2022 ] Batch(219/243) done. Loss: 0.0458 lr:0.010000 network_time: 0.0300
|
453 |
+
[ Wed Sep 14 23:10:16 2022 ] Eval epoch: 61
|
454 |
+
[ Wed Sep 14 23:11:50 2022 ] Mean test loss of 796 batches: 3.100501537322998.
|
455 |
+
[ Wed Sep 14 23:11:50 2022 ] Top1: 49.91%
|
456 |
+
[ Wed Sep 14 23:11:51 2022 ] Top5: 81.10%
|
457 |
+
[ Wed Sep 14 23:11:51 2022 ] Training epoch: 62
|
458 |
+
[ Wed Sep 14 23:12:50 2022 ] Batch(76/243) done. Loss: 0.0528 lr:0.010000 network_time: 0.0337
|
459 |
+
[ Wed Sep 14 23:14:03 2022 ] Batch(176/243) done. Loss: 0.0395 lr:0.010000 network_time: 0.0262
|
460 |
+
[ Wed Sep 14 23:14:51 2022 ] Eval epoch: 62
|
461 |
+
[ Wed Sep 14 23:16:25 2022 ] Mean test loss of 796 batches: 2.988133430480957.
|
462 |
+
[ Wed Sep 14 23:16:26 2022 ] Top1: 50.26%
|
463 |
+
[ Wed Sep 14 23:16:26 2022 ] Top5: 81.17%
|
464 |
+
[ Wed Sep 14 23:16:26 2022 ] Training epoch: 63
|
465 |
+
[ Wed Sep 14 23:16:54 2022 ] Batch(33/243) done. Loss: 0.0427 lr:0.010000 network_time: 0.0270
|
466 |
+
[ Wed Sep 14 23:18:07 2022 ] Batch(133/243) done. Loss: 0.0722 lr:0.010000 network_time: 0.0273
|
467 |
+
[ Wed Sep 14 23:19:20 2022 ] Batch(233/243) done. Loss: 0.0502 lr:0.010000 network_time: 0.0274
|
468 |
+
[ Wed Sep 14 23:19:27 2022 ] Eval epoch: 63
|
469 |
+
[ Wed Sep 14 23:21:01 2022 ] Mean test loss of 796 batches: 2.960383653640747.
|
470 |
+
[ Wed Sep 14 23:21:01 2022 ] Top1: 50.49%
|
471 |
+
[ Wed Sep 14 23:21:02 2022 ] Top5: 81.23%
|
472 |
+
[ Wed Sep 14 23:21:02 2022 ] Training epoch: 64
|
473 |
+
[ Wed Sep 14 23:22:11 2022 ] Batch(90/243) done. Loss: 0.0194 lr:0.010000 network_time: 0.0266
|
474 |
+
[ Wed Sep 14 23:23:24 2022 ] Batch(190/243) done. Loss: 0.0085 lr:0.010000 network_time: 0.0267
|
475 |
+
[ Wed Sep 14 23:24:02 2022 ] Eval epoch: 64
|
476 |
+
[ Wed Sep 14 23:25:37 2022 ] Mean test loss of 796 batches: 2.9251861572265625.
|
477 |
+
[ Wed Sep 14 23:25:37 2022 ] Top1: 49.86%
|
478 |
+
[ Wed Sep 14 23:25:38 2022 ] Top5: 80.80%
|
479 |
+
[ Wed Sep 14 23:25:38 2022 ] Training epoch: 65
|
480 |
+
[ Wed Sep 14 23:26:16 2022 ] Batch(47/243) done. Loss: 0.0262 lr:0.010000 network_time: 0.0267
|
481 |
+
[ Wed Sep 14 23:27:29 2022 ] Batch(147/243) done. Loss: 0.0334 lr:0.010000 network_time: 0.0302
|
482 |
+
[ Wed Sep 14 23:28:38 2022 ] Eval epoch: 65
|
483 |
+
[ Wed Sep 14 23:30:13 2022 ] Mean test loss of 796 batches: 3.311321973800659.
|
484 |
+
[ Wed Sep 14 23:30:13 2022 ] Top1: 50.82%
|
485 |
+
[ Wed Sep 14 23:30:13 2022 ] Top5: 81.65%
|
486 |
+
[ Wed Sep 14 23:30:14 2022 ] Training epoch: 66
|
487 |
+
[ Wed Sep 14 23:30:20 2022 ] Batch(4/243) done. Loss: 0.0525 lr:0.010000 network_time: 0.0270
|
488 |
+
[ Wed Sep 14 23:31:33 2022 ] Batch(104/243) done. Loss: 0.0223 lr:0.010000 network_time: 0.0279
|
489 |
+
[ Wed Sep 14 23:32:46 2022 ] Batch(204/243) done. Loss: 0.0726 lr:0.010000 network_time: 0.0264
|
490 |
+
[ Wed Sep 14 23:33:14 2022 ] Eval epoch: 66
|
491 |
+
[ Wed Sep 14 23:34:48 2022 ] Mean test loss of 796 batches: 3.099126100540161.
|
492 |
+
[ Wed Sep 14 23:34:48 2022 ] Top1: 50.70%
|
493 |
+
[ Wed Sep 14 23:34:49 2022 ] Top5: 81.42%
|
494 |
+
[ Wed Sep 14 23:34:49 2022 ] Training epoch: 67
|
495 |
+
[ Wed Sep 14 23:35:37 2022 ] Batch(61/243) done. Loss: 0.0213 lr:0.010000 network_time: 0.0261
|
496 |
+
[ Wed Sep 14 23:36:50 2022 ] Batch(161/243) done. Loss: 0.0166 lr:0.010000 network_time: 0.0277
|
497 |
+
[ Wed Sep 14 23:37:49 2022 ] Eval epoch: 67
|
498 |
+
[ Wed Sep 14 23:39:23 2022 ] Mean test loss of 796 batches: 2.9924604892730713.
|
499 |
+
[ Wed Sep 14 23:39:23 2022 ] Top1: 50.13%
|
500 |
+
[ Wed Sep 14 23:39:24 2022 ] Top5: 81.19%
|
501 |
+
[ Wed Sep 14 23:39:24 2022 ] Training epoch: 68
|
502 |
+
[ Wed Sep 14 23:39:40 2022 ] Batch(18/243) done. Loss: 0.0176 lr:0.010000 network_time: 0.0314
|
503 |
+
[ Wed Sep 14 23:40:53 2022 ] Batch(118/243) done. Loss: 0.0206 lr:0.010000 network_time: 0.0297
|
504 |
+
[ Wed Sep 14 23:42:06 2022 ] Batch(218/243) done. Loss: 0.0430 lr:0.010000 network_time: 0.0269
|
505 |
+
[ Wed Sep 14 23:42:24 2022 ] Eval epoch: 68
|
506 |
+
[ Wed Sep 14 23:43:58 2022 ] Mean test loss of 796 batches: 3.0478153228759766.
|
507 |
+
[ Wed Sep 14 23:43:58 2022 ] Top1: 49.25%
|
508 |
+
[ Wed Sep 14 23:43:58 2022 ] Top5: 80.62%
|
509 |
+
[ Wed Sep 14 23:43:58 2022 ] Training epoch: 69
|
510 |
+
[ Wed Sep 14 23:44:57 2022 ] Batch(75/243) done. Loss: 0.0174 lr:0.010000 network_time: 0.0304
|
511 |
+
[ Wed Sep 14 23:46:10 2022 ] Batch(175/243) done. Loss: 0.0297 lr:0.010000 network_time: 0.0259
|
512 |
+
[ Wed Sep 14 23:46:59 2022 ] Eval epoch: 69
|
513 |
+
[ Wed Sep 14 23:48:33 2022 ] Mean test loss of 796 batches: 2.941301107406616.
|
514 |
+
[ Wed Sep 14 23:48:33 2022 ] Top1: 50.33%
|
515 |
+
[ Wed Sep 14 23:48:33 2022 ] Top5: 81.09%
|
516 |
+
[ Wed Sep 14 23:48:34 2022 ] Training epoch: 70
|
517 |
+
[ Wed Sep 14 23:49:00 2022 ] Batch(32/243) done. Loss: 0.0141 lr:0.010000 network_time: 0.0259
|
518 |
+
[ Wed Sep 14 23:50:13 2022 ] Batch(132/243) done. Loss: 0.0178 lr:0.010000 network_time: 0.0269
|
519 |
+
[ Wed Sep 14 23:51:26 2022 ] Batch(232/243) done. Loss: 0.0090 lr:0.010000 network_time: 0.0488
|
520 |
+
[ Wed Sep 14 23:51:34 2022 ] Eval epoch: 70
|
521 |
+
[ Wed Sep 14 23:53:08 2022 ] Mean test loss of 796 batches: 3.021989107131958.
|
522 |
+
[ Wed Sep 14 23:53:08 2022 ] Top1: 50.85%
|
523 |
+
[ Wed Sep 14 23:53:09 2022 ] Top5: 81.28%
|
524 |
+
[ Wed Sep 14 23:53:09 2022 ] Training epoch: 71
|
525 |
+
[ Wed Sep 14 23:54:17 2022 ] Batch(89/243) done. Loss: 0.0106 lr:0.010000 network_time: 0.0276
|
526 |
+
[ Wed Sep 14 23:55:30 2022 ] Batch(189/243) done. Loss: 0.0188 lr:0.010000 network_time: 0.0271
|
527 |
+
[ Wed Sep 14 23:56:09 2022 ] Eval epoch: 71
|
528 |
+
[ Wed Sep 14 23:57:43 2022 ] Mean test loss of 796 batches: 3.085793972015381.
|
529 |
+
[ Wed Sep 14 23:57:43 2022 ] Top1: 47.16%
|
530 |
+
[ Wed Sep 14 23:57:43 2022 ] Top5: 79.04%
|
531 |
+
[ Wed Sep 14 23:57:44 2022 ] Training epoch: 72
|
532 |
+
[ Wed Sep 14 23:58:21 2022 ] Batch(46/243) done. Loss: 0.0133 lr:0.010000 network_time: 0.0310
|
533 |
+
[ Wed Sep 14 23:59:34 2022 ] Batch(146/243) done. Loss: 0.0632 lr:0.010000 network_time: 0.0265
|
534 |
+
[ Thu Sep 15 00:00:44 2022 ] Eval epoch: 72
|
535 |
+
[ Thu Sep 15 00:02:17 2022 ] Mean test loss of 796 batches: 2.990631580352783.
|
536 |
+
[ Thu Sep 15 00:02:18 2022 ] Top1: 50.22%
|
537 |
+
[ Thu Sep 15 00:02:18 2022 ] Top5: 81.02%
|
538 |
+
[ Thu Sep 15 00:02:18 2022 ] Training epoch: 73
|
539 |
+
[ Thu Sep 15 00:02:24 2022 ] Batch(3/243) done. Loss: 0.0106 lr:0.010000 network_time: 0.0264
|
540 |
+
[ Thu Sep 15 00:03:37 2022 ] Batch(103/243) done. Loss: 0.0126 lr:0.010000 network_time: 0.0268
|
541 |
+
[ Thu Sep 15 00:04:50 2022 ] Batch(203/243) done. Loss: 0.0205 lr:0.010000 network_time: 0.0325
|
542 |
+
[ Thu Sep 15 00:05:19 2022 ] Eval epoch: 73
|
543 |
+
[ Thu Sep 15 00:06:52 2022 ] Mean test loss of 796 batches: 3.108754873275757.
|
544 |
+
[ Thu Sep 15 00:06:53 2022 ] Top1: 50.36%
|
545 |
+
[ Thu Sep 15 00:06:53 2022 ] Top5: 81.13%
|
546 |
+
[ Thu Sep 15 00:06:54 2022 ] Training epoch: 74
|
547 |
+
[ Thu Sep 15 00:07:41 2022 ] Batch(60/243) done. Loss: 0.0145 lr:0.010000 network_time: 0.0267
|
548 |
+
[ Thu Sep 15 00:08:54 2022 ] Batch(160/243) done. Loss: 0.0107 lr:0.010000 network_time: 0.0300
|
549 |
+
[ Thu Sep 15 00:09:54 2022 ] Eval epoch: 74
|
550 |
+
[ Thu Sep 15 00:11:28 2022 ] Mean test loss of 796 batches: 3.3555028438568115.
|
551 |
+
[ Thu Sep 15 00:11:28 2022 ] Top1: 51.40%
|
552 |
+
[ Thu Sep 15 00:11:29 2022 ] Top5: 81.48%
|
553 |
+
[ Thu Sep 15 00:11:29 2022 ] Training epoch: 75
|
554 |
+
[ Thu Sep 15 00:11:45 2022 ] Batch(17/243) done. Loss: 0.0042 lr:0.010000 network_time: 0.0271
|
555 |
+
[ Thu Sep 15 00:12:58 2022 ] Batch(117/243) done. Loss: 0.0155 lr:0.010000 network_time: 0.0277
|
556 |
+
[ Thu Sep 15 00:14:10 2022 ] Batch(217/243) done. Loss: 0.0068 lr:0.010000 network_time: 0.0319
|
557 |
+
[ Thu Sep 15 00:14:29 2022 ] Eval epoch: 75
|
558 |
+
[ Thu Sep 15 00:16:03 2022 ] Mean test loss of 796 batches: 3.2424283027648926.
|
559 |
+
[ Thu Sep 15 00:16:03 2022 ] Top1: 50.99%
|
560 |
+
[ Thu Sep 15 00:16:03 2022 ] Top5: 81.46%
|
561 |
+
[ Thu Sep 15 00:16:04 2022 ] Training epoch: 76
|
562 |
+
[ Thu Sep 15 00:17:01 2022 ] Batch(74/243) done. Loss: 0.0112 lr:0.010000 network_time: 0.0265
|
563 |
+
[ Thu Sep 15 00:18:14 2022 ] Batch(174/243) done. Loss: 0.0177 lr:0.010000 network_time: 0.0265
|
564 |
+
[ Thu Sep 15 00:19:04 2022 ] Eval epoch: 76
|
565 |
+
[ Thu Sep 15 00:20:38 2022 ] Mean test loss of 796 batches: 2.9780657291412354.
|
566 |
+
[ Thu Sep 15 00:20:38 2022 ] Top1: 50.22%
|
567 |
+
[ Thu Sep 15 00:20:39 2022 ] Top5: 80.99%
|
568 |
+
[ Thu Sep 15 00:20:39 2022 ] Training epoch: 77
|
569 |
+
[ Thu Sep 15 00:21:05 2022 ] Batch(31/243) done. Loss: 0.0079 lr:0.010000 network_time: 0.0268
|
570 |
+
[ Thu Sep 15 00:22:18 2022 ] Batch(131/243) done. Loss: 0.0068 lr:0.010000 network_time: 0.0275
|
571 |
+
[ Thu Sep 15 00:23:31 2022 ] Batch(231/243) done. Loss: 0.0154 lr:0.010000 network_time: 0.0319
|
572 |
+
[ Thu Sep 15 00:23:39 2022 ] Eval epoch: 77
|
573 |
+
[ Thu Sep 15 00:25:13 2022 ] Mean test loss of 796 batches: 3.0957376956939697.
|
574 |
+
[ Thu Sep 15 00:25:13 2022 ] Top1: 49.45%
|
575 |
+
[ Thu Sep 15 00:25:14 2022 ] Top5: 80.83%
|
576 |
+
[ Thu Sep 15 00:25:14 2022 ] Training epoch: 78
|
577 |
+
[ Thu Sep 15 00:26:22 2022 ] Batch(88/243) done. Loss: 0.0191 lr:0.010000 network_time: 0.0254
|
578 |
+
[ Thu Sep 15 00:27:34 2022 ] Batch(188/243) done. Loss: 0.0111 lr:0.010000 network_time: 0.0311
|
579 |
+
[ Thu Sep 15 00:28:14 2022 ] Eval epoch: 78
|
580 |
+
[ Thu Sep 15 00:29:48 2022 ] Mean test loss of 796 batches: 3.047116994857788.
|
581 |
+
[ Thu Sep 15 00:29:49 2022 ] Top1: 50.42%
|
582 |
+
[ Thu Sep 15 00:29:49 2022 ] Top5: 81.01%
|
583 |
+
[ Thu Sep 15 00:29:49 2022 ] Training epoch: 79
|
584 |
+
[ Thu Sep 15 00:30:26 2022 ] Batch(45/243) done. Loss: 0.0089 lr:0.010000 network_time: 0.0276
|
585 |
+
[ Thu Sep 15 00:31:39 2022 ] Batch(145/243) done. Loss: 0.0070 lr:0.010000 network_time: 0.0274
|
586 |
+
[ Thu Sep 15 00:32:49 2022 ] Eval epoch: 79
|
587 |
+
[ Thu Sep 15 00:34:23 2022 ] Mean test loss of 796 batches: 3.4280073642730713.
|
588 |
+
[ Thu Sep 15 00:34:24 2022 ] Top1: 50.84%
|
589 |
+
[ Thu Sep 15 00:34:24 2022 ] Top5: 81.25%
|
590 |
+
[ Thu Sep 15 00:34:24 2022 ] Training epoch: 80
|
591 |
+
[ Thu Sep 15 00:34:29 2022 ] Batch(2/243) done. Loss: 0.0102 lr:0.010000 network_time: 0.0335
|
592 |
+
[ Thu Sep 15 00:35:42 2022 ] Batch(102/243) done. Loss: 0.0069 lr:0.010000 network_time: 0.0271
|
593 |
+
[ Thu Sep 15 00:36:55 2022 ] Batch(202/243) done. Loss: 0.0106 lr:0.010000 network_time: 0.0268
|
594 |
+
[ Thu Sep 15 00:37:25 2022 ] Eval epoch: 80
|
595 |
+
[ Thu Sep 15 00:38:59 2022 ] Mean test loss of 796 batches: 3.1443278789520264.
|
596 |
+
[ Thu Sep 15 00:38:59 2022 ] Top1: 50.66%
|
597 |
+
[ Thu Sep 15 00:38:59 2022 ] Top5: 81.21%
|
598 |
+
[ Thu Sep 15 00:39:00 2022 ] Training epoch: 81
|
599 |
+
[ Thu Sep 15 00:39:46 2022 ] Batch(59/243) done. Loss: 0.0107 lr:0.001000 network_time: 0.0325
|
600 |
+
[ Thu Sep 15 00:40:59 2022 ] Batch(159/243) done. Loss: 0.0050 lr:0.001000 network_time: 0.0312
|
601 |
+
[ Thu Sep 15 00:42:00 2022 ] Eval epoch: 81
|
602 |
+
[ Thu Sep 15 00:43:33 2022 ] Mean test loss of 796 batches: 3.0960147380828857.
|
603 |
+
[ Thu Sep 15 00:43:34 2022 ] Top1: 50.55%
|
604 |
+
[ Thu Sep 15 00:43:34 2022 ] Top5: 81.34%
|
605 |
+
[ Thu Sep 15 00:43:34 2022 ] Training epoch: 82
|
606 |
+
[ Thu Sep 15 00:43:49 2022 ] Batch(16/243) done. Loss: 0.0087 lr:0.001000 network_time: 0.0273
|
607 |
+
[ Thu Sep 15 00:45:02 2022 ] Batch(116/243) done. Loss: 0.0053 lr:0.001000 network_time: 0.0307
|
608 |
+
[ Thu Sep 15 00:46:15 2022 ] Batch(216/243) done. Loss: 0.0135 lr:0.001000 network_time: 0.0360
|
609 |
+
[ Thu Sep 15 00:46:34 2022 ] Eval epoch: 82
|
610 |
+
[ Thu Sep 15 00:48:08 2022 ] Mean test loss of 796 batches: 3.263976812362671.
|
611 |
+
[ Thu Sep 15 00:48:08 2022 ] Top1: 50.82%
|
612 |
+
[ Thu Sep 15 00:48:09 2022 ] Top5: 81.38%
|
613 |
+
[ Thu Sep 15 00:48:09 2022 ] Training epoch: 83
|
614 |
+
[ Thu Sep 15 00:49:06 2022 ] Batch(73/243) done. Loss: 0.0114 lr:0.001000 network_time: 0.0270
|
615 |
+
[ Thu Sep 15 00:50:19 2022 ] Batch(173/243) done. Loss: 0.0032 lr:0.001000 network_time: 0.0356
|
616 |
+
[ Thu Sep 15 00:51:09 2022 ] Eval epoch: 83
|
617 |
+
[ Thu Sep 15 00:52:43 2022 ] Mean test loss of 796 batches: 3.1671903133392334.
|
618 |
+
[ Thu Sep 15 00:52:44 2022 ] Top1: 51.15%
|
619 |
+
[ Thu Sep 15 00:52:44 2022 ] Top5: 81.39%
|
620 |
+
[ Thu Sep 15 00:52:44 2022 ] Training epoch: 84
|
621 |
+
[ Thu Sep 15 00:53:10 2022 ] Batch(30/243) done. Loss: 0.0066 lr:0.001000 network_time: 0.0278
|
622 |
+
[ Thu Sep 15 00:54:22 2022 ] Batch(130/243) done. Loss: 0.0092 lr:0.001000 network_time: 0.0322
|
623 |
+
[ Thu Sep 15 00:55:35 2022 ] Batch(230/243) done. Loss: 0.0094 lr:0.001000 network_time: 0.0291
|
624 |
+
[ Thu Sep 15 00:55:44 2022 ] Eval epoch: 84
|
625 |
+
[ Thu Sep 15 00:57:18 2022 ] Mean test loss of 796 batches: 3.1958792209625244.
|
626 |
+
[ Thu Sep 15 00:57:19 2022 ] Top1: 51.77%
|
627 |
+
[ Thu Sep 15 00:57:19 2022 ] Top5: 81.87%
|
628 |
+
[ Thu Sep 15 00:57:19 2022 ] Training epoch: 85
|
629 |
+
[ Thu Sep 15 00:58:26 2022 ] Batch(87/243) done. Loss: 0.0129 lr:0.001000 network_time: 0.0319
|
630 |
+
[ Thu Sep 15 00:59:39 2022 ] Batch(187/243) done. Loss: 0.0328 lr:0.001000 network_time: 0.0282
|
631 |
+
[ Thu Sep 15 01:00:19 2022 ] Eval epoch: 85
|
632 |
+
[ Thu Sep 15 01:01:53 2022 ] Mean test loss of 796 batches: 3.0967118740081787.
|
633 |
+
[ Thu Sep 15 01:01:53 2022 ] Top1: 51.37%
|
634 |
+
[ Thu Sep 15 01:01:53 2022 ] Top5: 81.54%
|
635 |
+
[ Thu Sep 15 01:01:54 2022 ] Training epoch: 86
|
636 |
+
[ Thu Sep 15 01:02:29 2022 ] Batch(44/243) done. Loss: 0.0091 lr:0.001000 network_time: 0.0277
|
637 |
+
[ Thu Sep 15 01:03:42 2022 ] Batch(144/243) done. Loss: 0.0084 lr:0.001000 network_time: 0.0271
|
638 |
+
[ Thu Sep 15 01:04:54 2022 ] Eval epoch: 86
|
639 |
+
[ Thu Sep 15 01:06:28 2022 ] Mean test loss of 796 batches: 3.108445644378662.
|
640 |
+
[ Thu Sep 15 01:06:28 2022 ] Top1: 51.18%
|
641 |
+
[ Thu Sep 15 01:06:28 2022 ] Top5: 81.47%
|
642 |
+
[ Thu Sep 15 01:06:29 2022 ] Training epoch: 87
|
643 |
+
[ Thu Sep 15 01:06:33 2022 ] Batch(1/243) done. Loss: 0.0121 lr:0.001000 network_time: 0.0312
|
644 |
+
[ Thu Sep 15 01:07:46 2022 ] Batch(101/243) done. Loss: 0.0061 lr:0.001000 network_time: 0.0274
|
645 |
+
[ Thu Sep 15 01:08:59 2022 ] Batch(201/243) done. Loss: 0.0068 lr:0.001000 network_time: 0.0262
|
646 |
+
[ Thu Sep 15 01:09:29 2022 ] Eval epoch: 87
|
647 |
+
[ Thu Sep 15 01:11:03 2022 ] Mean test loss of 796 batches: 3.0967729091644287.
|
648 |
+
[ Thu Sep 15 01:11:03 2022 ] Top1: 48.86%
|
649 |
+
[ Thu Sep 15 01:11:04 2022 ] Top5: 79.71%
|
650 |
+
[ Thu Sep 15 01:11:04 2022 ] Training epoch: 88
|
651 |
+
[ Thu Sep 15 01:11:50 2022 ] Batch(58/243) done. Loss: 0.0042 lr:0.001000 network_time: 0.0277
|
652 |
+
[ Thu Sep 15 01:13:03 2022 ] Batch(158/243) done. Loss: 0.0111 lr:0.001000 network_time: 0.0269
|
653 |
+
[ Thu Sep 15 01:14:04 2022 ] Eval epoch: 88
|
654 |
+
[ Thu Sep 15 01:15:38 2022 ] Mean test loss of 796 batches: 3.0789506435394287.
|
655 |
+
[ Thu Sep 15 01:15:38 2022 ] Top1: 50.65%
|
656 |
+
[ Thu Sep 15 01:15:39 2022 ] Top5: 81.25%
|
657 |
+
[ Thu Sep 15 01:15:39 2022 ] Training epoch: 89
|
658 |
+
[ Thu Sep 15 01:15:53 2022 ] Batch(15/243) done. Loss: 0.0034 lr:0.001000 network_time: 0.0330
|
659 |
+
[ Thu Sep 15 01:17:06 2022 ] Batch(115/243) done. Loss: 0.0077 lr:0.001000 network_time: 0.0273
|
660 |
+
[ Thu Sep 15 01:18:19 2022 ] Batch(215/243) done. Loss: 0.0049 lr:0.001000 network_time: 0.0344
|
661 |
+
[ Thu Sep 15 01:18:39 2022 ] Eval epoch: 89
|
662 |
+
[ Thu Sep 15 01:20:12 2022 ] Mean test loss of 796 batches: 3.1689484119415283.
|
663 |
+
[ Thu Sep 15 01:20:13 2022 ] Top1: 50.95%
|
664 |
+
[ Thu Sep 15 01:20:13 2022 ] Top5: 81.37%
|
665 |
+
[ Thu Sep 15 01:20:13 2022 ] Training epoch: 90
|
666 |
+
[ Thu Sep 15 01:21:09 2022 ] Batch(72/243) done. Loss: 0.0071 lr:0.001000 network_time: 0.0312
|
667 |
+
[ Thu Sep 15 01:22:22 2022 ] Batch(172/243) done. Loss: 0.0092 lr:0.001000 network_time: 0.0312
|
668 |
+
[ Thu Sep 15 01:23:14 2022 ] Eval epoch: 90
|
669 |
+
[ Thu Sep 15 01:24:47 2022 ] Mean test loss of 796 batches: 3.1945176124572754.
|
670 |
+
[ Thu Sep 15 01:24:48 2022 ] Top1: 50.79%
|
671 |
+
[ Thu Sep 15 01:24:48 2022 ] Top5: 81.26%
|
672 |
+
[ Thu Sep 15 01:24:48 2022 ] Training epoch: 91
|
673 |
+
[ Thu Sep 15 01:25:13 2022 ] Batch(29/243) done. Loss: 0.0064 lr:0.001000 network_time: 0.0272
|
674 |
+
[ Thu Sep 15 01:26:26 2022 ] Batch(129/243) done. Loss: 0.0096 lr:0.001000 network_time: 0.0309
|
675 |
+
[ Thu Sep 15 01:27:39 2022 ] Batch(229/243) done. Loss: 0.0052 lr:0.001000 network_time: 0.0268
|
676 |
+
[ Thu Sep 15 01:27:48 2022 ] Eval epoch: 91
|
677 |
+
[ Thu Sep 15 01:29:22 2022 ] Mean test loss of 796 batches: 3.0675299167633057.
|
678 |
+
[ Thu Sep 15 01:29:22 2022 ] Top1: 50.65%
|
679 |
+
[ Thu Sep 15 01:29:23 2022 ] Top5: 81.31%
|
680 |
+
[ Thu Sep 15 01:29:23 2022 ] Training epoch: 92
|
681 |
+
[ Thu Sep 15 01:30:29 2022 ] Batch(86/243) done. Loss: 0.0084 lr:0.001000 network_time: 0.0284
|
682 |
+
[ Thu Sep 15 01:31:42 2022 ] Batch(186/243) done. Loss: 0.0071 lr:0.001000 network_time: 0.0306
|
683 |
+
[ Thu Sep 15 01:32:23 2022 ] Eval epoch: 92
|
684 |
+
[ Thu Sep 15 01:33:57 2022 ] Mean test loss of 796 batches: 3.313861846923828.
|
685 |
+
[ Thu Sep 15 01:33:57 2022 ] Top1: 51.27%
|
686 |
+
[ Thu Sep 15 01:33:58 2022 ] Top5: 81.65%
|
687 |
+
[ Thu Sep 15 01:33:58 2022 ] Training epoch: 93
|
688 |
+
[ Thu Sep 15 01:34:32 2022 ] Batch(43/243) done. Loss: 0.0032 lr:0.001000 network_time: 0.0267
|
689 |
+
[ Thu Sep 15 01:35:45 2022 ] Batch(143/243) done. Loss: 0.0093 lr:0.001000 network_time: 0.0270
|
690 |
+
[ Thu Sep 15 01:36:58 2022 ] Eval epoch: 93
|
691 |
+
[ Thu Sep 15 01:38:31 2022 ] Mean test loss of 796 batches: 3.305858612060547.
|
692 |
+
[ Thu Sep 15 01:38:32 2022 ] Top1: 51.20%
|
693 |
+
[ Thu Sep 15 01:38:32 2022 ] Top5: 81.47%
|
694 |
+
[ Thu Sep 15 01:38:32 2022 ] Training epoch: 94
|
695 |
+
[ Thu Sep 15 01:38:36 2022 ] Batch(0/243) done. Loss: 0.0093 lr:0.001000 network_time: 0.0681
|
696 |
+
[ Thu Sep 15 01:39:49 2022 ] Batch(100/243) done. Loss: 0.0072 lr:0.001000 network_time: 0.0266
|
697 |
+
[ Thu Sep 15 01:41:02 2022 ] Batch(200/243) done. Loss: 0.0085 lr:0.001000 network_time: 0.0262
|
698 |
+
[ Thu Sep 15 01:41:33 2022 ] Eval epoch: 94
|
699 |
+
[ Thu Sep 15 01:43:06 2022 ] Mean test loss of 796 batches: 3.0634562969207764.
|
700 |
+
[ Thu Sep 15 01:43:06 2022 ] Top1: 46.61%
|
701 |
+
[ Thu Sep 15 01:43:07 2022 ] Top5: 78.71%
|
702 |
+
[ Thu Sep 15 01:43:07 2022 ] Training epoch: 95
|
703 |
+
[ Thu Sep 15 01:43:52 2022 ] Batch(57/243) done. Loss: 0.0061 lr:0.001000 network_time: 0.0297
|
704 |
+
[ Thu Sep 15 01:45:05 2022 ] Batch(157/243) done. Loss: 0.0087 lr:0.001000 network_time: 0.0282
|
705 |
+
[ Thu Sep 15 01:46:07 2022 ] Eval epoch: 95
|
706 |
+
[ Thu Sep 15 01:47:41 2022 ] Mean test loss of 796 batches: 3.1093084812164307.
|
707 |
+
[ Thu Sep 15 01:47:41 2022 ] Top1: 51.30%
|
708 |
+
[ Thu Sep 15 01:47:41 2022 ] Top5: 81.50%
|
709 |
+
[ Thu Sep 15 01:47:41 2022 ] Training epoch: 96
|
710 |
+
[ Thu Sep 15 01:47:55 2022 ] Batch(14/243) done. Loss: 0.0107 lr:0.001000 network_time: 0.0275
|
711 |
+
[ Thu Sep 15 01:49:08 2022 ] Batch(114/243) done. Loss: 0.0090 lr:0.001000 network_time: 0.0309
|
712 |
+
[ Thu Sep 15 01:50:21 2022 ] Batch(214/243) done. Loss: 0.0100 lr:0.001000 network_time: 0.0271
|
713 |
+
[ Thu Sep 15 01:50:41 2022 ] Eval epoch: 96
|
714 |
+
[ Thu Sep 15 01:52:15 2022 ] Mean test loss of 796 batches: 3.2472262382507324.
|
715 |
+
[ Thu Sep 15 01:52:15 2022 ] Top1: 50.70%
|
716 |
+
[ Thu Sep 15 01:52:15 2022 ] Top5: 81.35%
|
717 |
+
[ Thu Sep 15 01:52:16 2022 ] Training epoch: 97
|
718 |
+
[ Thu Sep 15 01:53:11 2022 ] Batch(71/243) done. Loss: 0.0099 lr:0.001000 network_time: 0.0254
|
719 |
+
[ Thu Sep 15 01:54:24 2022 ] Batch(171/243) done. Loss: 0.0050 lr:0.001000 network_time: 0.0284
|
720 |
+
[ Thu Sep 15 01:55:16 2022 ] Eval epoch: 97
|
721 |
+
[ Thu Sep 15 01:56:49 2022 ] Mean test loss of 796 batches: 3.1731739044189453.
|
722 |
+
[ Thu Sep 15 01:56:50 2022 ] Top1: 50.67%
|
723 |
+
[ Thu Sep 15 01:56:50 2022 ] Top5: 81.30%
|
724 |
+
[ Thu Sep 15 01:56:50 2022 ] Training epoch: 98
|
725 |
+
[ Thu Sep 15 01:57:14 2022 ] Batch(28/243) done. Loss: 0.0051 lr:0.001000 network_time: 0.0312
|
726 |
+
[ Thu Sep 15 01:58:27 2022 ] Batch(128/243) done. Loss: 0.0056 lr:0.001000 network_time: 0.0336
|
727 |
+
[ Thu Sep 15 01:59:40 2022 ] Batch(228/243) done. Loss: 0.0081 lr:0.001000 network_time: 0.0267
|
728 |
+
[ Thu Sep 15 01:59:50 2022 ] Eval epoch: 98
|
729 |
+
[ Thu Sep 15 02:01:24 2022 ] Mean test loss of 796 batches: 3.215578556060791.
|
730 |
+
[ Thu Sep 15 02:01:25 2022 ] Top1: 51.38%
|
731 |
+
[ Thu Sep 15 02:01:25 2022 ] Top5: 81.51%
|
732 |
+
[ Thu Sep 15 02:01:26 2022 ] Training epoch: 99
|
733 |
+
[ Thu Sep 15 02:02:31 2022 ] Batch(85/243) done. Loss: 0.0067 lr:0.001000 network_time: 0.0292
|
734 |
+
[ Thu Sep 15 02:03:44 2022 ] Batch(185/243) done. Loss: 0.0486 lr:0.001000 network_time: 0.0273
|
735 |
+
[ Thu Sep 15 02:04:26 2022 ] Eval epoch: 99
|
736 |
+
[ Thu Sep 15 02:05:59 2022 ] Mean test loss of 796 batches: 3.295635223388672.
|
737 |
+
[ Thu Sep 15 02:06:00 2022 ] Top1: 50.86%
|
738 |
+
[ Thu Sep 15 02:06:00 2022 ] Top5: 81.37%
|
739 |
+
[ Thu Sep 15 02:06:00 2022 ] Training epoch: 100
|
740 |
+
[ Thu Sep 15 02:06:35 2022 ] Batch(42/243) done. Loss: 0.0102 lr:0.001000 network_time: 0.0342
|
741 |
+
[ Thu Sep 15 02:07:48 2022 ] Batch(142/243) done. Loss: 0.0025 lr:0.001000 network_time: 0.0255
|
742 |
+
[ Thu Sep 15 02:09:01 2022 ] Batch(242/243) done. Loss: 0.0066 lr:0.001000 network_time: 0.0281
|
743 |
+
[ Thu Sep 15 02:09:01 2022 ] Eval epoch: 100
|
744 |
+
[ Thu Sep 15 02:10:35 2022 ] Mean test loss of 796 batches: 3.2508275508880615.
|
745 |
+
[ Thu Sep 15 02:10:35 2022 ] Top1: 51.27%
|
746 |
+
[ Thu Sep 15 02:10:36 2022 ] Top5: 81.60%
|
747 |
+
[ Thu Sep 15 02:10:36 2022 ] Training epoch: 101
|
748 |
+
[ Thu Sep 15 02:11:52 2022 ] Batch(99/243) done. Loss: 0.0055 lr:0.000100 network_time: 0.0261
|
749 |
+
[ Thu Sep 15 02:13:05 2022 ] Batch(199/243) done. Loss: 0.0052 lr:0.000100 network_time: 0.0303
|
750 |
+
[ Thu Sep 15 02:13:36 2022 ] Eval epoch: 101
|
751 |
+
[ Thu Sep 15 02:15:10 2022 ] Mean test loss of 796 batches: 3.3487186431884766.
|
752 |
+
[ Thu Sep 15 02:15:10 2022 ] Top1: 51.59%
|
753 |
+
[ Thu Sep 15 02:15:10 2022 ] Top5: 81.67%
|
754 |
+
[ Thu Sep 15 02:15:11 2022 ] Training epoch: 102
|
755 |
+
[ Thu Sep 15 02:15:55 2022 ] Batch(56/243) done. Loss: 0.0076 lr:0.000100 network_time: 0.0260
|
756 |
+
[ Thu Sep 15 02:17:08 2022 ] Batch(156/243) done. Loss: 0.0121 lr:0.000100 network_time: 0.0303
|
757 |
+
[ Thu Sep 15 02:18:11 2022 ] Eval epoch: 102
|
758 |
+
[ Thu Sep 15 02:19:44 2022 ] Mean test loss of 796 batches: 3.118297576904297.
|
759 |
+
[ Thu Sep 15 02:19:45 2022 ] Top1: 51.20%
|
760 |
+
[ Thu Sep 15 02:19:45 2022 ] Top5: 81.58%
|
761 |
+
[ Thu Sep 15 02:19:45 2022 ] Training epoch: 103
|
762 |
+
[ Thu Sep 15 02:19:58 2022 ] Batch(13/243) done. Loss: 0.0033 lr:0.000100 network_time: 0.0313
|
763 |
+
[ Thu Sep 15 02:21:11 2022 ] Batch(113/243) done. Loss: 0.0070 lr:0.000100 network_time: 0.0277
|
764 |
+
[ Thu Sep 15 02:22:24 2022 ] Batch(213/243) done. Loss: 0.0042 lr:0.000100 network_time: 0.0308
|
765 |
+
[ Thu Sep 15 02:22:45 2022 ] Eval epoch: 103
|
766 |
+
[ Thu Sep 15 02:24:19 2022 ] Mean test loss of 796 batches: 3.057490825653076.
|
767 |
+
[ Thu Sep 15 02:24:19 2022 ] Top1: 49.14%
|
768 |
+
[ Thu Sep 15 02:24:20 2022 ] Top5: 80.00%
|
769 |
+
[ Thu Sep 15 02:24:20 2022 ] Training epoch: 104
|
770 |
+
[ Thu Sep 15 02:25:15 2022 ] Batch(70/243) done. Loss: 0.0144 lr:0.000100 network_time: 0.0270
|
771 |
+
[ Thu Sep 15 02:26:27 2022 ] Batch(170/243) done. Loss: 0.0054 lr:0.000100 network_time: 0.0302
|
772 |
+
[ Thu Sep 15 02:27:20 2022 ] Eval epoch: 104
|
773 |
+
[ Thu Sep 15 02:28:53 2022 ] Mean test loss of 796 batches: 3.3775713443756104.
|
774 |
+
[ Thu Sep 15 02:28:54 2022 ] Top1: 51.52%
|
775 |
+
[ Thu Sep 15 02:28:54 2022 ] Top5: 81.56%
|
776 |
+
[ Thu Sep 15 02:28:54 2022 ] Training epoch: 105
|
777 |
+
[ Thu Sep 15 02:29:18 2022 ] Batch(27/243) done. Loss: 0.0240 lr:0.000100 network_time: 0.0318
|
778 |
+
[ Thu Sep 15 02:30:30 2022 ] Batch(127/243) done. Loss: 0.0145 lr:0.000100 network_time: 0.0280
|
779 |
+
[ Thu Sep 15 02:31:43 2022 ] Batch(227/243) done. Loss: 0.0197 lr:0.000100 network_time: 0.0282
|
780 |
+
[ Thu Sep 15 02:31:54 2022 ] Eval epoch: 105
|
781 |
+
[ Thu Sep 15 02:33:28 2022 ] Mean test loss of 796 batches: 3.1972925662994385.
|
782 |
+
[ Thu Sep 15 02:33:28 2022 ] Top1: 50.32%
|
783 |
+
[ Thu Sep 15 02:33:29 2022 ] Top5: 81.15%
|
784 |
+
[ Thu Sep 15 02:33:29 2022 ] Training epoch: 106
|
785 |
+
[ Thu Sep 15 02:34:34 2022 ] Batch(84/243) done. Loss: 0.0108 lr:0.000100 network_time: 0.0267
|
786 |
+
[ Thu Sep 15 02:35:47 2022 ] Batch(184/243) done. Loss: 0.0083 lr:0.000100 network_time: 0.0280
|
787 |
+
[ Thu Sep 15 02:36:29 2022 ] Eval epoch: 106
|
788 |
+
[ Thu Sep 15 02:38:02 2022 ] Mean test loss of 796 batches: 3.2501347064971924.
|
789 |
+
[ Thu Sep 15 02:38:03 2022 ] Top1: 51.36%
|
790 |
+
[ Thu Sep 15 02:38:03 2022 ] Top5: 81.57%
|
791 |
+
[ Thu Sep 15 02:38:03 2022 ] Training epoch: 107
|
792 |
+
[ Thu Sep 15 02:38:36 2022 ] Batch(41/243) done. Loss: 0.0084 lr:0.000100 network_time: 0.0275
|
793 |
+
[ Thu Sep 15 02:39:49 2022 ] Batch(141/243) done. Loss: 0.0061 lr:0.000100 network_time: 0.0265
|
794 |
+
[ Thu Sep 15 02:41:02 2022 ] Batch(241/243) done. Loss: 0.0130 lr:0.000100 network_time: 0.0270
|
795 |
+
[ Thu Sep 15 02:41:03 2022 ] Eval epoch: 107
|
796 |
+
[ Thu Sep 15 02:42:37 2022 ] Mean test loss of 796 batches: 2.9681849479675293.
|
797 |
+
[ Thu Sep 15 02:42:37 2022 ] Top1: 50.28%
|
798 |
+
[ Thu Sep 15 02:42:38 2022 ] Top5: 81.15%
|
799 |
+
[ Thu Sep 15 02:42:38 2022 ] Training epoch: 108
|
800 |
+
[ Thu Sep 15 02:43:53 2022 ] Batch(98/243) done. Loss: 0.0038 lr:0.000100 network_time: 0.0279
|
801 |
+
[ Thu Sep 15 02:45:06 2022 ] Batch(198/243) done. Loss: 0.0093 lr:0.000100 network_time: 0.0259
|
802 |
+
[ Thu Sep 15 02:45:38 2022 ] Eval epoch: 108
|
803 |
+
[ Thu Sep 15 02:47:12 2022 ] Mean test loss of 796 batches: 3.1740822792053223.
|
804 |
+
[ Thu Sep 15 02:47:12 2022 ] Top1: 50.97%
|
805 |
+
[ Thu Sep 15 02:47:13 2022 ] Top5: 81.63%
|
806 |
+
[ Thu Sep 15 02:47:13 2022 ] Training epoch: 109
|
807 |
+
[ Thu Sep 15 02:47:56 2022 ] Batch(55/243) done. Loss: 0.0059 lr:0.000100 network_time: 0.0299
|
808 |
+
[ Thu Sep 15 02:49:09 2022 ] Batch(155/243) done. Loss: 0.0042 lr:0.000100 network_time: 0.0309
|
809 |
+
[ Thu Sep 15 02:50:13 2022 ] Eval epoch: 109
|
810 |
+
[ Thu Sep 15 02:51:47 2022 ] Mean test loss of 796 batches: 3.140623092651367.
|
811 |
+
[ Thu Sep 15 02:51:47 2022 ] Top1: 50.99%
|
812 |
+
[ Thu Sep 15 02:51:48 2022 ] Top5: 81.59%
|
813 |
+
[ Thu Sep 15 02:51:48 2022 ] Training epoch: 110
|
814 |
+
[ Thu Sep 15 02:52:00 2022 ] Batch(12/243) done. Loss: 0.0076 lr:0.000100 network_time: 0.0300
|
815 |
+
[ Thu Sep 15 02:53:13 2022 ] Batch(112/243) done. Loss: 0.0082 lr:0.000100 network_time: 0.0272
|
816 |
+
[ Thu Sep 15 02:54:26 2022 ] Batch(212/243) done. Loss: 0.0047 lr:0.000100 network_time: 0.0286
|
817 |
+
[ Thu Sep 15 02:54:48 2022 ] Eval epoch: 110
|
818 |
+
[ Thu Sep 15 02:56:23 2022 ] Mean test loss of 796 batches: 3.0745203495025635.
|
819 |
+
[ Thu Sep 15 02:56:23 2022 ] Top1: 48.30%
|
820 |
+
[ Thu Sep 15 02:56:24 2022 ] Top5: 79.79%
|
821 |
+
[ Thu Sep 15 02:56:24 2022 ] Training epoch: 111
|
822 |
+
[ Thu Sep 15 02:57:18 2022 ] Batch(69/243) done. Loss: 0.0094 lr:0.000100 network_time: 0.0275
|
823 |
+
[ Thu Sep 15 02:58:30 2022 ] Batch(169/243) done. Loss: 0.0085 lr:0.000100 network_time: 0.0260
|
824 |
+
[ Thu Sep 15 02:59:24 2022 ] Eval epoch: 111
|
825 |
+
[ Thu Sep 15 03:00:57 2022 ] Mean test loss of 796 batches: 3.1857941150665283.
|
826 |
+
[ Thu Sep 15 03:00:58 2022 ] Top1: 51.34%
|
827 |
+
[ Thu Sep 15 03:00:58 2022 ] Top5: 81.53%
|
828 |
+
[ Thu Sep 15 03:00:58 2022 ] Training epoch: 112
|
829 |
+
[ Thu Sep 15 03:01:21 2022 ] Batch(26/243) done. Loss: 0.0065 lr:0.000100 network_time: 0.0269
|
830 |
+
[ Thu Sep 15 03:02:33 2022 ] Batch(126/243) done. Loss: 0.0094 lr:0.000100 network_time: 0.0304
|
831 |
+
[ Thu Sep 15 03:03:46 2022 ] Batch(226/243) done. Loss: 0.0069 lr:0.000100 network_time: 0.0303
|
832 |
+
[ Thu Sep 15 03:03:58 2022 ] Eval epoch: 112
|
833 |
+
[ Thu Sep 15 03:05:32 2022 ] Mean test loss of 796 batches: 3.084721088409424.
|
834 |
+
[ Thu Sep 15 03:05:32 2022 ] Top1: 51.01%
|
835 |
+
[ Thu Sep 15 03:05:32 2022 ] Top5: 81.38%
|
836 |
+
[ Thu Sep 15 03:05:33 2022 ] Training epoch: 113
|
837 |
+
[ Thu Sep 15 03:06:37 2022 ] Batch(83/243) done. Loss: 0.0072 lr:0.000100 network_time: 0.0278
|
838 |
+
[ Thu Sep 15 03:07:50 2022 ] Batch(183/243) done. Loss: 0.0037 lr:0.000100 network_time: 0.0289
|
839 |
+
[ Thu Sep 15 03:08:33 2022 ] Eval epoch: 113
|
840 |
+
[ Thu Sep 15 03:10:06 2022 ] Mean test loss of 796 batches: 3.158820867538452.
|
841 |
+
[ Thu Sep 15 03:10:06 2022 ] Top1: 50.64%
|
842 |
+
[ Thu Sep 15 03:10:07 2022 ] Top5: 81.21%
|
843 |
+
[ Thu Sep 15 03:10:07 2022 ] Training epoch: 114
|
844 |
+
[ Thu Sep 15 03:10:40 2022 ] Batch(40/243) done. Loss: 0.0080 lr:0.000100 network_time: 0.0276
|
845 |
+
[ Thu Sep 15 03:11:53 2022 ] Batch(140/243) done. Loss: 0.0049 lr:0.000100 network_time: 0.0271
|
846 |
+
[ Thu Sep 15 03:13:06 2022 ] Batch(240/243) done. Loss: 0.0060 lr:0.000100 network_time: 0.0269
|
847 |
+
[ Thu Sep 15 03:13:07 2022 ] Eval epoch: 114
|
848 |
+
[ Thu Sep 15 03:14:41 2022 ] Mean test loss of 796 batches: 3.095377206802368.
|
849 |
+
[ Thu Sep 15 03:14:41 2022 ] Top1: 51.16%
|
850 |
+
[ Thu Sep 15 03:14:42 2022 ] Top5: 81.58%
|
851 |
+
[ Thu Sep 15 03:14:42 2022 ] Training epoch: 115
|
852 |
+
[ Thu Sep 15 03:15:56 2022 ] Batch(97/243) done. Loss: 0.0078 lr:0.000100 network_time: 0.0262
|
853 |
+
[ Thu Sep 15 03:17:09 2022 ] Batch(197/243) done. Loss: 0.0063 lr:0.000100 network_time: 0.0259
|
854 |
+
[ Thu Sep 15 03:17:42 2022 ] Eval epoch: 115
|
855 |
+
[ Thu Sep 15 03:19:16 2022 ] Mean test loss of 796 batches: 3.1977145671844482.
|
856 |
+
[ Thu Sep 15 03:19:17 2022 ] Top1: 51.42%
|
857 |
+
[ Thu Sep 15 03:19:17 2022 ] Top5: 81.56%
|
858 |
+
[ Thu Sep 15 03:19:17 2022 ] Training epoch: 116
|
859 |
+
[ Thu Sep 15 03:20:00 2022 ] Batch(54/243) done. Loss: 0.0090 lr:0.000100 network_time: 0.0260
|
860 |
+
[ Thu Sep 15 03:21:13 2022 ] Batch(154/243) done. Loss: 0.0051 lr:0.000100 network_time: 0.0450
|
861 |
+
[ Thu Sep 15 03:22:17 2022 ] Eval epoch: 116
|
862 |
+
[ Thu Sep 15 03:23:51 2022 ] Mean test loss of 796 batches: 2.949658155441284.
|
863 |
+
[ Thu Sep 15 03:23:51 2022 ] Top1: 51.18%
|
864 |
+
[ Thu Sep 15 03:23:51 2022 ] Top5: 81.60%
|
865 |
+
[ Thu Sep 15 03:23:52 2022 ] Training epoch: 117
|
866 |
+
[ Thu Sep 15 03:24:03 2022 ] Batch(11/243) done. Loss: 0.0100 lr:0.000100 network_time: 0.0270
|
867 |
+
[ Thu Sep 15 03:25:16 2022 ] Batch(111/243) done. Loss: 0.0060 lr:0.000100 network_time: 0.0269
|
868 |
+
[ Thu Sep 15 03:26:29 2022 ] Batch(211/243) done. Loss: 0.0068 lr:0.000100 network_time: 0.0275
|
869 |
+
[ Thu Sep 15 03:26:52 2022 ] Eval epoch: 117
|
870 |
+
[ Thu Sep 15 03:28:25 2022 ] Mean test loss of 796 batches: 3.296842575073242.
|
871 |
+
[ Thu Sep 15 03:28:26 2022 ] Top1: 51.69%
|
872 |
+
[ Thu Sep 15 03:28:26 2022 ] Top5: 81.48%
|
873 |
+
[ Thu Sep 15 03:28:27 2022 ] Training epoch: 118
|
874 |
+
[ Thu Sep 15 03:29:20 2022 ] Batch(68/243) done. Loss: 0.0049 lr:0.000100 network_time: 0.0272
|
875 |
+
[ Thu Sep 15 03:30:33 2022 ] Batch(168/243) done. Loss: 0.0060 lr:0.000100 network_time: 0.0320
|
876 |
+
[ Thu Sep 15 03:31:27 2022 ] Eval epoch: 118
|
877 |
+
[ Thu Sep 15 03:33:00 2022 ] Mean test loss of 796 batches: 3.214509963989258.
|
878 |
+
[ Thu Sep 15 03:33:01 2022 ] Top1: 49.90%
|
879 |
+
[ Thu Sep 15 03:33:01 2022 ] Top5: 80.65%
|
880 |
+
[ Thu Sep 15 03:33:01 2022 ] Training epoch: 119
|
881 |
+
[ Thu Sep 15 03:33:23 2022 ] Batch(25/243) done. Loss: 0.0057 lr:0.000100 network_time: 0.0270
|
882 |
+
[ Thu Sep 15 03:34:36 2022 ] Batch(125/243) done. Loss: 0.0098 lr:0.000100 network_time: 0.0308
|
883 |
+
[ Thu Sep 15 03:35:49 2022 ] Batch(225/243) done. Loss: 0.0066 lr:0.000100 network_time: 0.0346
|
884 |
+
[ Thu Sep 15 03:36:02 2022 ] Eval epoch: 119
|
885 |
+
[ Thu Sep 15 03:37:36 2022 ] Mean test loss of 796 batches: 3.0812954902648926.
|
886 |
+
[ Thu Sep 15 03:37:36 2022 ] Top1: 50.24%
|
887 |
+
[ Thu Sep 15 03:37:36 2022 ] Top5: 81.20%
|
888 |
+
[ Thu Sep 15 03:37:37 2022 ] Training epoch: 120
|
889 |
+
[ Thu Sep 15 03:38:40 2022 ] Batch(82/243) done. Loss: 0.0040 lr:0.000100 network_time: 0.0282
|
890 |
+
[ Thu Sep 15 03:39:53 2022 ] Batch(182/243) done. Loss: 0.0082 lr:0.000100 network_time: 0.0272
|
891 |
+
[ Thu Sep 15 03:40:37 2022 ] Eval epoch: 120
|
892 |
+
[ Thu Sep 15 03:42:10 2022 ] Mean test loss of 796 batches: 3.254603624343872.
|
893 |
+
[ Thu Sep 15 03:42:10 2022 ] Top1: 51.25%
|
894 |
+
[ Thu Sep 15 03:42:11 2022 ] Top5: 81.58%
|
895 |
+
[ Thu Sep 15 03:42:11 2022 ] Training epoch: 121
|
896 |
+
[ Thu Sep 15 03:42:43 2022 ] Batch(39/243) done. Loss: 0.0165 lr:0.000100 network_time: 0.0294
|
897 |
+
[ Thu Sep 15 03:43:56 2022 ] Batch(139/243) done. Loss: 0.0096 lr:0.000100 network_time: 0.0262
|
898 |
+
[ Thu Sep 15 03:45:09 2022 ] Batch(239/243) done. Loss: 0.0031 lr:0.000100 network_time: 0.0307
|
899 |
+
[ Thu Sep 15 03:45:11 2022 ] Eval epoch: 121
|
900 |
+
[ Thu Sep 15 03:46:44 2022 ] Mean test loss of 796 batches: 3.079324245452881.
|
901 |
+
[ Thu Sep 15 03:46:45 2022 ] Top1: 51.25%
|
902 |
+
[ Thu Sep 15 03:46:45 2022 ] Top5: 81.72%
|
903 |
+
[ Thu Sep 15 03:46:45 2022 ] Training epoch: 122
|
904 |
+
[ Thu Sep 15 03:47:59 2022 ] Batch(96/243) done. Loss: 0.0052 lr:0.000100 network_time: 0.0274
|
905 |
+
[ Thu Sep 15 03:49:12 2022 ] Batch(196/243) done. Loss: 0.0104 lr:0.000100 network_time: 0.0276
|
906 |
+
[ Thu Sep 15 03:49:45 2022 ] Eval epoch: 122
|
907 |
+
[ Thu Sep 15 03:51:19 2022 ] Mean test loss of 796 batches: 3.0649008750915527.
|
908 |
+
[ Thu Sep 15 03:51:19 2022 ] Top1: 50.67%
|
909 |
+
[ Thu Sep 15 03:51:20 2022 ] Top5: 81.14%
|
910 |
+
[ Thu Sep 15 03:51:20 2022 ] Training epoch: 123
|
911 |
+
[ Thu Sep 15 03:52:02 2022 ] Batch(53/243) done. Loss: 0.0048 lr:0.000100 network_time: 0.0263
|
912 |
+
[ Thu Sep 15 03:53:15 2022 ] Batch(153/243) done. Loss: 0.0069 lr:0.000100 network_time: 0.0296
|
913 |
+
[ Thu Sep 15 03:54:20 2022 ] Eval epoch: 123
|
914 |
+
[ Thu Sep 15 03:55:54 2022 ] Mean test loss of 796 batches: 3.03798508644104.
|
915 |
+
[ Thu Sep 15 03:55:54 2022 ] Top1: 50.79%
|
916 |
+
[ Thu Sep 15 03:55:55 2022 ] Top5: 81.41%
|
917 |
+
[ Thu Sep 15 03:55:55 2022 ] Training epoch: 124
|
918 |
+
[ Thu Sep 15 03:56:06 2022 ] Batch(10/243) done. Loss: 0.0064 lr:0.000100 network_time: 0.0280
|
919 |
+
[ Thu Sep 15 03:57:18 2022 ] Batch(110/243) done. Loss: 0.0061 lr:0.000100 network_time: 0.0284
|
920 |
+
[ Thu Sep 15 03:58:31 2022 ] Batch(210/243) done. Loss: 0.0060 lr:0.000100 network_time: 0.0274
|
921 |
+
[ Thu Sep 15 03:58:55 2022 ] Eval epoch: 124
|
922 |
+
[ Thu Sep 15 04:00:29 2022 ] Mean test loss of 796 batches: 3.2211194038391113.
|
923 |
+
[ Thu Sep 15 04:00:29 2022 ] Top1: 51.45%
|
924 |
+
[ Thu Sep 15 04:00:30 2022 ] Top5: 81.65%
|
925 |
+
[ Thu Sep 15 04:00:30 2022 ] Training epoch: 125
|
926 |
+
[ Thu Sep 15 04:01:22 2022 ] Batch(67/243) done. Loss: 0.0040 lr:0.000100 network_time: 0.0279
|
927 |
+
[ Thu Sep 15 04:02:35 2022 ] Batch(167/243) done. Loss: 0.0201 lr:0.000100 network_time: 0.0277
|
928 |
+
[ Thu Sep 15 04:03:30 2022 ] Eval epoch: 125
|
929 |
+
[ Thu Sep 15 04:05:03 2022 ] Mean test loss of 796 batches: 3.167156219482422.
|
930 |
+
[ Thu Sep 15 04:05:04 2022 ] Top1: 48.77%
|
931 |
+
[ Thu Sep 15 04:05:04 2022 ] Top5: 79.97%
|
932 |
+
[ Thu Sep 15 04:05:04 2022 ] Training epoch: 126
|
933 |
+
[ Thu Sep 15 04:05:26 2022 ] Batch(24/243) done. Loss: 0.0096 lr:0.000100 network_time: 0.0275
|
934 |
+
[ Thu Sep 15 04:06:38 2022 ] Batch(124/243) done. Loss: 0.0086 lr:0.000100 network_time: 0.0274
|
935 |
+
[ Thu Sep 15 04:07:51 2022 ] Batch(224/243) done. Loss: 0.0037 lr:0.000100 network_time: 0.0263
|
936 |
+
[ Thu Sep 15 04:08:05 2022 ] Eval epoch: 126
|
937 |
+
[ Thu Sep 15 04:09:38 2022 ] Mean test loss of 796 batches: 3.327735424041748.
|
938 |
+
[ Thu Sep 15 04:09:39 2022 ] Top1: 50.98%
|
939 |
+
[ Thu Sep 15 04:09:39 2022 ] Top5: 81.23%
|
940 |
+
[ Thu Sep 15 04:09:39 2022 ] Training epoch: 127
|
941 |
+
[ Thu Sep 15 04:10:42 2022 ] Batch(81/243) done. Loss: 0.0064 lr:0.000100 network_time: 0.0268
|
942 |
+
[ Thu Sep 15 04:11:55 2022 ] Batch(181/243) done. Loss: 0.0091 lr:0.000100 network_time: 0.0277
|
943 |
+
[ Thu Sep 15 04:12:40 2022 ] Eval epoch: 127
|
944 |
+
[ Thu Sep 15 04:14:13 2022 ] Mean test loss of 796 batches: 3.1817829608917236.
|
945 |
+
[ Thu Sep 15 04:14:14 2022 ] Top1: 50.90%
|
946 |
+
[ Thu Sep 15 04:14:14 2022 ] Top5: 81.36%
|
947 |
+
[ Thu Sep 15 04:14:14 2022 ] Training epoch: 128
|
948 |
+
[ Thu Sep 15 04:14:46 2022 ] Batch(38/243) done. Loss: 0.0044 lr:0.000100 network_time: 0.0259
|
949 |
+
[ Thu Sep 15 04:15:59 2022 ] Batch(138/243) done. Loss: 0.0055 lr:0.000100 network_time: 0.0424
|
950 |
+
[ Thu Sep 15 04:17:12 2022 ] Batch(238/243) done. Loss: 0.0065 lr:0.000100 network_time: 0.0269
|
951 |
+
[ Thu Sep 15 04:17:15 2022 ] Eval epoch: 128
|
952 |
+
[ Thu Sep 15 04:18:49 2022 ] Mean test loss of 796 batches: 3.022956609725952.
|
953 |
+
[ Thu Sep 15 04:18:49 2022 ] Top1: 51.15%
|
954 |
+
[ Thu Sep 15 04:18:49 2022 ] Top5: 81.64%
|
955 |
+
[ Thu Sep 15 04:18:50 2022 ] Training epoch: 129
|
956 |
+
[ Thu Sep 15 04:20:02 2022 ] Batch(95/243) done. Loss: 0.0065 lr:0.000100 network_time: 0.0269
|
957 |
+
[ Thu Sep 15 04:21:15 2022 ] Batch(195/243) done. Loss: 0.0073 lr:0.000100 network_time: 0.0268
|
958 |
+
[ Thu Sep 15 04:21:50 2022 ] Eval epoch: 129
|
959 |
+
[ Thu Sep 15 04:23:23 2022 ] Mean test loss of 796 batches: 3.0225670337677.
|
960 |
+
[ Thu Sep 15 04:23:24 2022 ] Top1: 49.34%
|
961 |
+
[ Thu Sep 15 04:23:24 2022 ] Top5: 80.52%
|
962 |
+
[ Thu Sep 15 04:23:24 2022 ] Training epoch: 130
|
963 |
+
[ Thu Sep 15 04:24:06 2022 ] Batch(52/243) done. Loss: 0.0038 lr:0.000100 network_time: 0.0269
|
964 |
+
[ Thu Sep 15 04:25:19 2022 ] Batch(152/243) done. Loss: 0.0050 lr:0.000100 network_time: 0.0273
|
965 |
+
[ Thu Sep 15 04:26:25 2022 ] Eval epoch: 130
|
966 |
+
[ Thu Sep 15 04:27:59 2022 ] Mean test loss of 796 batches: 3.0677361488342285.
|
967 |
+
[ Thu Sep 15 04:27:59 2022 ] Top1: 51.32%
|
968 |
+
[ Thu Sep 15 04:28:00 2022 ] Top5: 81.61%
|
969 |
+
[ Thu Sep 15 04:28:00 2022 ] Training epoch: 131
|
970 |
+
[ Thu Sep 15 04:28:10 2022 ] Batch(9/243) done. Loss: 0.0053 lr:0.000100 network_time: 0.0280
|
971 |
+
[ Thu Sep 15 04:29:23 2022 ] Batch(109/243) done. Loss: 0.0057 lr:0.000100 network_time: 0.0277
|
972 |
+
[ Thu Sep 15 04:30:36 2022 ] Batch(209/243) done. Loss: 0.0192 lr:0.000100 network_time: 0.0273
|
973 |
+
[ Thu Sep 15 04:31:00 2022 ] Eval epoch: 131
|
974 |
+
[ Thu Sep 15 04:32:34 2022 ] Mean test loss of 796 batches: 3.1217525005340576.
|
975 |
+
[ Thu Sep 15 04:32:34 2022 ] Top1: 50.86%
|
976 |
+
[ Thu Sep 15 04:32:35 2022 ] Top5: 81.28%
|
977 |
+
[ Thu Sep 15 04:32:35 2022 ] Training epoch: 132
|
978 |
+
[ Thu Sep 15 04:33:26 2022 ] Batch(66/243) done. Loss: 0.0034 lr:0.000100 network_time: 0.0272
|
979 |
+
[ Thu Sep 15 04:34:39 2022 ] Batch(166/243) done. Loss: 0.0074 lr:0.000100 network_time: 0.0277
|
980 |
+
[ Thu Sep 15 04:35:35 2022 ] Eval epoch: 132
|
981 |
+
[ Thu Sep 15 04:37:09 2022 ] Mean test loss of 796 batches: 2.9388933181762695.
|
982 |
+
[ Thu Sep 15 04:37:09 2022 ] Top1: 51.00%
|
983 |
+
[ Thu Sep 15 04:37:09 2022 ] Top5: 81.54%
|
984 |
+
[ Thu Sep 15 04:37:10 2022 ] Training epoch: 133
|
985 |
+
[ Thu Sep 15 04:37:30 2022 ] Batch(23/243) done. Loss: 0.0048 lr:0.000100 network_time: 0.0279
|
986 |
+
[ Thu Sep 15 04:38:43 2022 ] Batch(123/243) done. Loss: 0.0090 lr:0.000100 network_time: 0.0533
|
987 |
+
[ Thu Sep 15 04:39:56 2022 ] Batch(223/243) done. Loss: 0.0128 lr:0.000100 network_time: 0.0302
|
988 |
+
[ Thu Sep 15 04:40:10 2022 ] Eval epoch: 133
|
989 |
+
[ Thu Sep 15 04:41:44 2022 ] Mean test loss of 796 batches: 3.247342109680176.
|
990 |
+
[ Thu Sep 15 04:41:44 2022 ] Top1: 46.12%
|
991 |
+
[ Thu Sep 15 04:41:45 2022 ] Top5: 78.11%
|
992 |
+
[ Thu Sep 15 04:41:45 2022 ] Training epoch: 134
|
993 |
+
[ Thu Sep 15 04:42:46 2022 ] Batch(80/243) done. Loss: 0.0072 lr:0.000100 network_time: 0.0276
|
994 |
+
[ Thu Sep 15 04:43:59 2022 ] Batch(180/243) done. Loss: 0.0043 lr:0.000100 network_time: 0.0273
|
995 |
+
[ Thu Sep 15 04:44:45 2022 ] Eval epoch: 134
|
996 |
+
[ Thu Sep 15 04:46:19 2022 ] Mean test loss of 796 batches: 3.0710413455963135.
|
997 |
+
[ Thu Sep 15 04:46:19 2022 ] Top1: 51.16%
|
998 |
+
[ Thu Sep 15 04:46:19 2022 ] Top5: 81.39%
|
999 |
+
[ Thu Sep 15 04:46:19 2022 ] Training epoch: 135
|
1000 |
+
[ Thu Sep 15 04:46:50 2022 ] Batch(37/243) done. Loss: 0.0047 lr:0.000100 network_time: 0.0276
|
1001 |
+
[ Thu Sep 15 04:48:03 2022 ] Batch(137/243) done. Loss: 0.0090 lr:0.000100 network_time: 0.0312
|
1002 |
+
[ Thu Sep 15 04:49:16 2022 ] Batch(237/243) done. Loss: 0.0177 lr:0.000100 network_time: 0.0272
|
1003 |
+
[ Thu Sep 15 04:49:20 2022 ] Eval epoch: 135
|
1004 |
+
[ Thu Sep 15 04:50:53 2022 ] Mean test loss of 796 batches: 3.1598618030548096.
|
1005 |
+
[ Thu Sep 15 04:50:53 2022 ] Top1: 51.52%
|
1006 |
+
[ Thu Sep 15 04:50:53 2022 ] Top5: 81.73%
|
1007 |
+
[ Thu Sep 15 04:50:54 2022 ] Training epoch: 136
|
1008 |
+
[ Thu Sep 15 04:52:06 2022 ] Batch(94/243) done. Loss: 0.0199 lr:0.000100 network_time: 0.0277
|
1009 |
+
[ Thu Sep 15 04:53:19 2022 ] Batch(194/243) done. Loss: 0.0069 lr:0.000100 network_time: 0.0288
|
1010 |
+
[ Thu Sep 15 04:53:54 2022 ] Eval epoch: 136
|
1011 |
+
[ Thu Sep 15 04:55:27 2022 ] Mean test loss of 796 batches: 3.3396480083465576.
|
1012 |
+
[ Thu Sep 15 04:55:27 2022 ] Top1: 51.16%
|
1013 |
+
[ Thu Sep 15 04:55:28 2022 ] Top5: 81.43%
|
1014 |
+
[ Thu Sep 15 04:55:28 2022 ] Training epoch: 137
|
1015 |
+
[ Thu Sep 15 04:56:09 2022 ] Batch(51/243) done. Loss: 0.0076 lr:0.000100 network_time: 0.0283
|
1016 |
+
[ Thu Sep 15 04:57:22 2022 ] Batch(151/243) done. Loss: 0.0110 lr:0.000100 network_time: 0.0278
|
1017 |
+
[ Thu Sep 15 04:58:28 2022 ] Eval epoch: 137
|
1018 |
+
[ Thu Sep 15 05:00:03 2022 ] Mean test loss of 796 batches: 3.2537786960601807.
|
1019 |
+
[ Thu Sep 15 05:00:03 2022 ] Top1: 51.74%
|
1020 |
+
[ Thu Sep 15 05:00:03 2022 ] Top5: 81.74%
|
1021 |
+
[ Thu Sep 15 05:00:03 2022 ] Training epoch: 138
|
1022 |
+
[ Thu Sep 15 05:00:13 2022 ] Batch(8/243) done. Loss: 0.0059 lr:0.000100 network_time: 0.0269
|
1023 |
+
[ Thu Sep 15 05:01:26 2022 ] Batch(108/243) done. Loss: 0.0089 lr:0.000100 network_time: 0.0274
|
1024 |
+
[ Thu Sep 15 05:02:39 2022 ] Batch(208/243) done. Loss: 0.0198 lr:0.000100 network_time: 0.0267
|
1025 |
+
[ Thu Sep 15 05:03:04 2022 ] Eval epoch: 138
|
1026 |
+
[ Thu Sep 15 05:04:37 2022 ] Mean test loss of 796 batches: 3.079983711242676.
|
1027 |
+
[ Thu Sep 15 05:04:37 2022 ] Top1: 50.78%
|
1028 |
+
[ Thu Sep 15 05:04:38 2022 ] Top5: 81.26%
|
1029 |
+
[ Thu Sep 15 05:04:38 2022 ] Training epoch: 139
|
1030 |
+
[ Thu Sep 15 05:05:29 2022 ] Batch(65/243) done. Loss: 0.0237 lr:0.000100 network_time: 0.0445
|
1031 |
+
[ Thu Sep 15 05:06:42 2022 ] Batch(165/243) done. Loss: 0.0038 lr:0.000100 network_time: 0.0308
|
1032 |
+
[ Thu Sep 15 05:07:38 2022 ] Eval epoch: 139
|
1033 |
+
[ Thu Sep 15 05:09:12 2022 ] Mean test loss of 796 batches: 3.1228296756744385.
|
1034 |
+
[ Thu Sep 15 05:09:12 2022 ] Top1: 51.04%
|
1035 |
+
[ Thu Sep 15 05:09:13 2022 ] Top5: 81.03%
|
1036 |
+
[ Thu Sep 15 05:09:13 2022 ] Training epoch: 140
|
1037 |
+
[ Thu Sep 15 05:09:32 2022 ] Batch(22/243) done. Loss: 0.0093 lr:0.000100 network_time: 0.0322
|
1038 |
+
[ Thu Sep 15 05:10:45 2022 ] Batch(122/243) done. Loss: 0.0093 lr:0.000100 network_time: 0.0295
|
1039 |
+
[ Thu Sep 15 05:11:58 2022 ] Batch(222/243) done. Loss: 0.0060 lr:0.000100 network_time: 0.0276
|
1040 |
+
[ Thu Sep 15 05:12:13 2022 ] Eval epoch: 140
|
1041 |
+
[ Thu Sep 15 05:13:47 2022 ] Mean test loss of 796 batches: 3.206451892852783.
|
1042 |
+
[ Thu Sep 15 05:13:47 2022 ] Top1: 51.22%
|
1043 |
+
[ Thu Sep 15 05:13:48 2022 ] Top5: 81.53%
|
ckpt/Others/Shift-GCN/ntu120_xsub/ntu120_joint_motion_xsub/shift_gcn.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torch.autograd import Variable
|
5 |
+
import numpy as np
|
6 |
+
import math
|
7 |
+
|
8 |
+
import sys
|
9 |
+
sys.path.append("./model/Temporal_shift/")
|
10 |
+
|
11 |
+
from cuda.shift import Shift
|
12 |
+
|
13 |
+
|
14 |
+
def import_class(name):
|
15 |
+
components = name.split('.')
|
16 |
+
mod = __import__(components[0])
|
17 |
+
for comp in components[1:]:
|
18 |
+
mod = getattr(mod, comp)
|
19 |
+
return mod
|
20 |
+
|
21 |
+
def conv_init(conv):
|
22 |
+
nn.init.kaiming_normal(conv.weight, mode='fan_out')
|
23 |
+
nn.init.constant(conv.bias, 0)
|
24 |
+
|
25 |
+
|
26 |
+
def bn_init(bn, scale):
|
27 |
+
nn.init.constant(bn.weight, scale)
|
28 |
+
nn.init.constant(bn.bias, 0)
|
29 |
+
|
30 |
+
|
31 |
+
class tcn(nn.Module):
|
32 |
+
def __init__(self, in_channels, out_channels, kernel_size=9, stride=1):
|
33 |
+
super(tcn, self).__init__()
|
34 |
+
pad = int((kernel_size - 1) / 2)
|
35 |
+
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=(kernel_size, 1), padding=(pad, 0),
|
36 |
+
stride=(stride, 1))
|
37 |
+
|
38 |
+
self.bn = nn.BatchNorm2d(out_channels)
|
39 |
+
self.relu = nn.ReLU()
|
40 |
+
conv_init(self.conv)
|
41 |
+
bn_init(self.bn, 1)
|
42 |
+
|
43 |
+
def forward(self, x):
|
44 |
+
x = self.bn(self.conv(x))
|
45 |
+
return x
|
46 |
+
|
47 |
+
|
48 |
+
class Shift_tcn(nn.Module):
|
49 |
+
def __init__(self, in_channels, out_channels, kernel_size=9, stride=1):
|
50 |
+
super(Shift_tcn, self).__init__()
|
51 |
+
|
52 |
+
self.in_channels = in_channels
|
53 |
+
self.out_channels = out_channels
|
54 |
+
|
55 |
+
self.bn = nn.BatchNorm2d(in_channels)
|
56 |
+
self.bn2 = nn.BatchNorm2d(in_channels)
|
57 |
+
bn_init(self.bn2, 1)
|
58 |
+
self.relu = nn.ReLU(inplace=True)
|
59 |
+
self.shift_in = Shift(channel=in_channels, stride=1, init_scale=1)
|
60 |
+
self.shift_out = Shift(channel=out_channels, stride=stride, init_scale=1)
|
61 |
+
|
62 |
+
self.temporal_linear = nn.Conv2d(in_channels, out_channels, 1)
|
63 |
+
nn.init.kaiming_normal(self.temporal_linear.weight, mode='fan_out')
|
64 |
+
|
65 |
+
def forward(self, x):
|
66 |
+
x = self.bn(x)
|
67 |
+
# shift1
|
68 |
+
x = self.shift_in(x)
|
69 |
+
x = self.temporal_linear(x)
|
70 |
+
x = self.relu(x)
|
71 |
+
# shift2
|
72 |
+
x = self.shift_out(x)
|
73 |
+
x = self.bn2(x)
|
74 |
+
return x
|
75 |
+
|
76 |
+
|
77 |
+
class Shift_gcn(nn.Module):
|
78 |
+
def __init__(self, in_channels, out_channels, A, coff_embedding=4, num_subset=3):
|
79 |
+
super(Shift_gcn, self).__init__()
|
80 |
+
self.in_channels = in_channels
|
81 |
+
self.out_channels = out_channels
|
82 |
+
if in_channels != out_channels:
|
83 |
+
self.down = nn.Sequential(
|
84 |
+
nn.Conv2d(in_channels, out_channels, 1),
|
85 |
+
nn.BatchNorm2d(out_channels)
|
86 |
+
)
|
87 |
+
else:
|
88 |
+
self.down = lambda x: x
|
89 |
+
|
90 |
+
self.Linear_weight = nn.Parameter(torch.zeros(in_channels, out_channels, requires_grad=True, device='cuda'), requires_grad=True)
|
91 |
+
nn.init.normal_(self.Linear_weight, 0,math.sqrt(1.0/out_channels))
|
92 |
+
|
93 |
+
self.Linear_bias = nn.Parameter(torch.zeros(1,1,out_channels,requires_grad=True,device='cuda'),requires_grad=True)
|
94 |
+
nn.init.constant(self.Linear_bias, 0)
|
95 |
+
|
96 |
+
self.Feature_Mask = nn.Parameter(torch.ones(1,25,in_channels, requires_grad=True,device='cuda'),requires_grad=True)
|
97 |
+
nn.init.constant(self.Feature_Mask, 0)
|
98 |
+
|
99 |
+
self.bn = nn.BatchNorm1d(25*out_channels)
|
100 |
+
self.relu = nn.ReLU()
|
101 |
+
|
102 |
+
for m in self.modules():
|
103 |
+
if isinstance(m, nn.Conv2d):
|
104 |
+
conv_init(m)
|
105 |
+
elif isinstance(m, nn.BatchNorm2d):
|
106 |
+
bn_init(m, 1)
|
107 |
+
|
108 |
+
index_array = np.empty(25*in_channels).astype(np.int)
|
109 |
+
for i in range(25):
|
110 |
+
for j in range(in_channels):
|
111 |
+
index_array[i*in_channels + j] = (i*in_channels + j + j*in_channels)%(in_channels*25)
|
112 |
+
self.shift_in = nn.Parameter(torch.from_numpy(index_array),requires_grad=False)
|
113 |
+
|
114 |
+
index_array = np.empty(25*out_channels).astype(np.int)
|
115 |
+
for i in range(25):
|
116 |
+
for j in range(out_channels):
|
117 |
+
index_array[i*out_channels + j] = (i*out_channels + j - j*out_channels)%(out_channels*25)
|
118 |
+
self.shift_out = nn.Parameter(torch.from_numpy(index_array),requires_grad=False)
|
119 |
+
|
120 |
+
|
121 |
+
def forward(self, x0):
|
122 |
+
n, c, t, v = x0.size()
|
123 |
+
x = x0.permute(0,2,3,1).contiguous()
|
124 |
+
|
125 |
+
# shift1
|
126 |
+
x = x.view(n*t,v*c)
|
127 |
+
x = torch.index_select(x, 1, self.shift_in)
|
128 |
+
x = x.view(n*t,v,c)
|
129 |
+
x = x * (torch.tanh(self.Feature_Mask)+1)
|
130 |
+
|
131 |
+
x = torch.einsum('nwc,cd->nwd', (x, self.Linear_weight)).contiguous() # nt,v,c
|
132 |
+
x = x + self.Linear_bias
|
133 |
+
|
134 |
+
# shift2
|
135 |
+
x = x.view(n*t,-1)
|
136 |
+
x = torch.index_select(x, 1, self.shift_out)
|
137 |
+
x = self.bn(x)
|
138 |
+
x = x.view(n,t,v,self.out_channels).permute(0,3,1,2) # n,c,t,v
|
139 |
+
|
140 |
+
x = x + self.down(x0)
|
141 |
+
x = self.relu(x)
|
142 |
+
return x
|
143 |
+
|
144 |
+
|
145 |
+
class TCN_GCN_unit(nn.Module):
|
146 |
+
def __init__(self, in_channels, out_channels, A, stride=1, residual=True):
|
147 |
+
super(TCN_GCN_unit, self).__init__()
|
148 |
+
self.gcn1 = Shift_gcn(in_channels, out_channels, A)
|
149 |
+
self.tcn1 = Shift_tcn(out_channels, out_channels, stride=stride)
|
150 |
+
self.relu = nn.ReLU()
|
151 |
+
|
152 |
+
if not residual:
|
153 |
+
self.residual = lambda x: 0
|
154 |
+
|
155 |
+
elif (in_channels == out_channels) and (stride == 1):
|
156 |
+
self.residual = lambda x: x
|
157 |
+
else:
|
158 |
+
self.residual = tcn(in_channels, out_channels, kernel_size=1, stride=stride)
|
159 |
+
|
160 |
+
def forward(self, x):
|
161 |
+
x = self.tcn1(self.gcn1(x)) + self.residual(x)
|
162 |
+
return self.relu(x)
|
163 |
+
|
164 |
+
|
165 |
+
class Model(nn.Module):
|
166 |
+
def __init__(self, num_class=60, num_point=25, num_person=2, graph=None, graph_args=dict(), in_channels=3):
|
167 |
+
super(Model, self).__init__()
|
168 |
+
|
169 |
+
if graph is None:
|
170 |
+
raise ValueError()
|
171 |
+
else:
|
172 |
+
Graph = import_class(graph)
|
173 |
+
self.graph = Graph(**graph_args)
|
174 |
+
|
175 |
+
A = self.graph.A
|
176 |
+
self.data_bn = nn.BatchNorm1d(num_person * in_channels * num_point)
|
177 |
+
|
178 |
+
self.l1 = TCN_GCN_unit(3, 64, A, residual=False)
|
179 |
+
self.l2 = TCN_GCN_unit(64, 64, A)
|
180 |
+
self.l3 = TCN_GCN_unit(64, 64, A)
|
181 |
+
self.l4 = TCN_GCN_unit(64, 64, A)
|
182 |
+
self.l5 = TCN_GCN_unit(64, 128, A, stride=2)
|
183 |
+
self.l6 = TCN_GCN_unit(128, 128, A)
|
184 |
+
self.l7 = TCN_GCN_unit(128, 128, A)
|
185 |
+
self.l8 = TCN_GCN_unit(128, 256, A, stride=2)
|
186 |
+
self.l9 = TCN_GCN_unit(256, 256, A)
|
187 |
+
self.l10 = TCN_GCN_unit(256, 256, A)
|
188 |
+
|
189 |
+
self.fc = nn.Linear(256, num_class)
|
190 |
+
nn.init.normal(self.fc.weight, 0, math.sqrt(2. / num_class))
|
191 |
+
bn_init(self.data_bn, 1)
|
192 |
+
|
193 |
+
def forward(self, x):
|
194 |
+
N, C, T, V, M = x.size()
|
195 |
+
|
196 |
+
x = x.permute(0, 4, 3, 1, 2).contiguous().view(N, M * V * C, T)
|
197 |
+
x = self.data_bn(x)
|
198 |
+
x = x.view(N, M, V, C, T).permute(0, 1, 3, 4, 2).contiguous().view(N * M, C, T, V)
|
199 |
+
|
200 |
+
x = self.l1(x)
|
201 |
+
x = self.l2(x)
|
202 |
+
x = self.l3(x)
|
203 |
+
x = self.l4(x)
|
204 |
+
x = self.l5(x)
|
205 |
+
x = self.l6(x)
|
206 |
+
x = self.l7(x)
|
207 |
+
x = self.l8(x)
|
208 |
+
x = self.l9(x)
|
209 |
+
x = self.l10(x)
|
210 |
+
|
211 |
+
# N*M,C,T,V
|
212 |
+
c_new = x.size(1)
|
213 |
+
x = x.view(N, M, c_new, -1)
|
214 |
+
x = x.mean(3).mean(1)
|
215 |
+
|
216 |
+
return self.fc(x)
|
ckpt/Others/Shift-GCN/ntu120_xsub/ntu120_joint_xsub/config.yaml
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Experiment_name: ntu120_joint_xsub
|
2 |
+
base_lr: 0.1
|
3 |
+
batch_size: 64
|
4 |
+
config: ./config/ntu120_xsub/train_joint.yaml
|
5 |
+
device:
|
6 |
+
- 4
|
7 |
+
- 5
|
8 |
+
eval_interval: 5
|
9 |
+
feeder: feeders.feeder.Feeder
|
10 |
+
ignore_weights: []
|
11 |
+
log_interval: 100
|
12 |
+
model: model.shift_gcn.Model
|
13 |
+
model_args:
|
14 |
+
graph: graph.ntu_rgb_d.Graph
|
15 |
+
graph_args:
|
16 |
+
labeling_mode: spatial
|
17 |
+
num_class: 120
|
18 |
+
num_person: 2
|
19 |
+
num_point: 25
|
20 |
+
model_saved_name: ./save_models/ntu120_joint_xsub
|
21 |
+
nesterov: true
|
22 |
+
num_epoch: 140
|
23 |
+
num_worker: 32
|
24 |
+
only_train_epoch: 1
|
25 |
+
only_train_part: true
|
26 |
+
optimizer: SGD
|
27 |
+
phase: train
|
28 |
+
print_log: true
|
29 |
+
save_interval: 2
|
30 |
+
save_score: false
|
31 |
+
seed: 1
|
32 |
+
show_topk:
|
33 |
+
- 1
|
34 |
+
- 5
|
35 |
+
start_epoch: 0
|
36 |
+
step:
|
37 |
+
- 60
|
38 |
+
- 80
|
39 |
+
- 100
|
40 |
+
test_batch_size: 64
|
41 |
+
test_feeder_args:
|
42 |
+
data_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/val_data_joint.npy
|
43 |
+
label_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/val_label.pkl
|
44 |
+
train_feeder_args:
|
45 |
+
data_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/train_data_joint.npy
|
46 |
+
debug: false
|
47 |
+
label_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/train_label.pkl
|
48 |
+
normalization: false
|
49 |
+
random_choose: false
|
50 |
+
random_move: false
|
51 |
+
random_shift: false
|
52 |
+
window_size: -1
|
53 |
+
warm_up_epoch: 0
|
54 |
+
weight_decay: 0.0001
|
55 |
+
weights: null
|
56 |
+
work_dir: ./work_dir/ntu120_joint_xsub
|
ckpt/Others/Shift-GCN/ntu120_xsub/ntu120_joint_xsub/eval_results/best_acc.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7032ac5d6594258fa0c42f8bd1e2317d14fdaa2bbd0c22e11038ce33d84f6f1d
|
3 |
+
size 29946137
|
ckpt/Others/Shift-GCN/ntu120_xsub/ntu120_joint_xsub/log.txt
ADDED
@@ -0,0 +1,1043 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[ Wed Sep 14 18:31:42 2022 ] Parameters:
|
2 |
+
{'work_dir': './work_dir/ntu120_joint_xsub', 'model_saved_name': './save_models/ntu120_joint_xsub', 'Experiment_name': 'ntu120_joint_xsub', 'config': './config/ntu120_xsub/train_joint.yaml', 'phase': 'train', 'save_score': False, 'seed': 1, 'log_interval': 100, 'save_interval': 2, 'eval_interval': 5, 'print_log': True, 'show_topk': [1, 5], 'feeder': 'feeders.feeder.Feeder', 'num_worker': 32, 'train_feeder_args': {'data_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/train_data_joint.npy', 'label_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/train_label.pkl', 'debug': False, 'random_choose': False, 'random_shift': False, 'random_move': False, 'window_size': -1, 'normalization': False}, 'test_feeder_args': {'data_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/val_data_joint.npy', 'label_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu120/xsub/val_label.pkl'}, 'model': 'model.shift_gcn.Model', 'model_args': {'num_class': 120, 'num_point': 25, 'num_person': 2, 'graph': 'graph.ntu_rgb_d.Graph', 'graph_args': {'labeling_mode': 'spatial'}}, 'weights': None, 'ignore_weights': [], 'base_lr': 0.1, 'step': [60, 80, 100], 'device': [4, 5], 'optimizer': 'SGD', 'nesterov': True, 'batch_size': 64, 'test_batch_size': 64, 'start_epoch': 0, 'num_epoch': 140, 'weight_decay': 0.0001, 'only_train_part': True, 'only_train_epoch': 1, 'warm_up_epoch': 0}
|
3 |
+
|
4 |
+
[ Wed Sep 14 18:31:42 2022 ] Training epoch: 1
|
5 |
+
[ Wed Sep 14 18:33:02 2022 ] Batch(99/243) done. Loss: 3.7763 lr:0.100000 network_time: 0.0264
|
6 |
+
[ Wed Sep 14 18:34:15 2022 ] Batch(199/243) done. Loss: 2.6228 lr:0.100000 network_time: 0.0266
|
7 |
+
[ Wed Sep 14 18:34:46 2022 ] Eval epoch: 1
|
8 |
+
[ Wed Sep 14 18:36:20 2022 ] Mean test loss of 796 batches: 5.046554088592529.
|
9 |
+
[ Wed Sep 14 18:36:20 2022 ] Top1: 9.24%
|
10 |
+
[ Wed Sep 14 18:36:20 2022 ] Top5: 25.14%
|
11 |
+
[ Wed Sep 14 18:36:21 2022 ] Training epoch: 2
|
12 |
+
[ Wed Sep 14 18:37:05 2022 ] Batch(56/243) done. Loss: 2.6595 lr:0.100000 network_time: 0.0272
|
13 |
+
[ Wed Sep 14 18:38:17 2022 ] Batch(156/243) done. Loss: 2.4710 lr:0.100000 network_time: 0.0266
|
14 |
+
[ Wed Sep 14 18:39:20 2022 ] Eval epoch: 2
|
15 |
+
[ Wed Sep 14 18:40:54 2022 ] Mean test loss of 796 batches: 3.9119958877563477.
|
16 |
+
[ Wed Sep 14 18:40:54 2022 ] Top1: 17.89%
|
17 |
+
[ Wed Sep 14 18:40:54 2022 ] Top5: 36.58%
|
18 |
+
[ Wed Sep 14 18:40:55 2022 ] Training epoch: 3
|
19 |
+
[ Wed Sep 14 18:41:07 2022 ] Batch(13/243) done. Loss: 2.0612 lr:0.100000 network_time: 0.0280
|
20 |
+
[ Wed Sep 14 18:42:20 2022 ] Batch(113/243) done. Loss: 1.8304 lr:0.100000 network_time: 0.0263
|
21 |
+
[ Wed Sep 14 18:43:33 2022 ] Batch(213/243) done. Loss: 2.0863 lr:0.100000 network_time: 0.0261
|
22 |
+
[ Wed Sep 14 18:43:54 2022 ] Eval epoch: 3
|
23 |
+
[ Wed Sep 14 18:45:27 2022 ] Mean test loss of 796 batches: 4.149970531463623.
|
24 |
+
[ Wed Sep 14 18:45:28 2022 ] Top1: 18.78%
|
25 |
+
[ Wed Sep 14 18:45:28 2022 ] Top5: 42.45%
|
26 |
+
[ Wed Sep 14 18:45:28 2022 ] Training epoch: 4
|
27 |
+
[ Wed Sep 14 18:46:23 2022 ] Batch(70/243) done. Loss: 1.4658 lr:0.100000 network_time: 0.0271
|
28 |
+
[ Wed Sep 14 18:47:35 2022 ] Batch(170/243) done. Loss: 1.3747 lr:0.100000 network_time: 0.0272
|
29 |
+
[ Wed Sep 14 18:48:28 2022 ] Eval epoch: 4
|
30 |
+
[ Wed Sep 14 18:50:01 2022 ] Mean test loss of 796 batches: 3.2994141578674316.
|
31 |
+
[ Wed Sep 14 18:50:01 2022 ] Top1: 25.44%
|
32 |
+
[ Wed Sep 14 18:50:02 2022 ] Top5: 53.52%
|
33 |
+
[ Wed Sep 14 18:50:02 2022 ] Training epoch: 5
|
34 |
+
[ Wed Sep 14 18:50:25 2022 ] Batch(27/243) done. Loss: 1.5292 lr:0.100000 network_time: 0.0295
|
35 |
+
[ Wed Sep 14 18:51:38 2022 ] Batch(127/243) done. Loss: 1.5052 lr:0.100000 network_time: 0.0278
|
36 |
+
[ Wed Sep 14 18:52:51 2022 ] Batch(227/243) done. Loss: 1.6211 lr:0.100000 network_time: 0.0309
|
37 |
+
[ Wed Sep 14 18:53:02 2022 ] Eval epoch: 5
|
38 |
+
[ Wed Sep 14 18:54:35 2022 ] Mean test loss of 796 batches: 3.1267082691192627.
|
39 |
+
[ Wed Sep 14 18:54:36 2022 ] Top1: 27.96%
|
40 |
+
[ Wed Sep 14 18:54:36 2022 ] Top5: 56.70%
|
41 |
+
[ Wed Sep 14 18:54:36 2022 ] Training epoch: 6
|
42 |
+
[ Wed Sep 14 18:55:41 2022 ] Batch(84/243) done. Loss: 1.5147 lr:0.100000 network_time: 0.0307
|
43 |
+
[ Wed Sep 14 18:56:53 2022 ] Batch(184/243) done. Loss: 1.0397 lr:0.100000 network_time: 0.0267
|
44 |
+
[ Wed Sep 14 18:57:36 2022 ] Eval epoch: 6
|
45 |
+
[ Wed Sep 14 18:59:09 2022 ] Mean test loss of 796 batches: 2.968212366104126.
|
46 |
+
[ Wed Sep 14 18:59:09 2022 ] Top1: 29.50%
|
47 |
+
[ Wed Sep 14 18:59:10 2022 ] Top5: 62.41%
|
48 |
+
[ Wed Sep 14 18:59:10 2022 ] Training epoch: 7
|
49 |
+
[ Wed Sep 14 18:59:43 2022 ] Batch(41/243) done. Loss: 1.2200 lr:0.100000 network_time: 0.0276
|
50 |
+
[ Wed Sep 14 19:00:56 2022 ] Batch(141/243) done. Loss: 0.8820 lr:0.100000 network_time: 0.0316
|
51 |
+
[ Wed Sep 14 19:02:08 2022 ] Batch(241/243) done. Loss: 1.0603 lr:0.100000 network_time: 0.0315
|
52 |
+
[ Wed Sep 14 19:02:09 2022 ] Eval epoch: 7
|
53 |
+
[ Wed Sep 14 19:03:43 2022 ] Mean test loss of 796 batches: 2.7241861820220947.
|
54 |
+
[ Wed Sep 14 19:03:43 2022 ] Top1: 33.51%
|
55 |
+
[ Wed Sep 14 19:03:44 2022 ] Top5: 67.41%
|
56 |
+
[ Wed Sep 14 19:03:44 2022 ] Training epoch: 8
|
57 |
+
[ Wed Sep 14 19:04:58 2022 ] Batch(98/243) done. Loss: 0.8214 lr:0.100000 network_time: 0.0272
|
58 |
+
[ Wed Sep 14 19:06:11 2022 ] Batch(198/243) done. Loss: 0.8479 lr:0.100000 network_time: 0.0271
|
59 |
+
[ Wed Sep 14 19:06:43 2022 ] Eval epoch: 8
|
60 |
+
[ Wed Sep 14 19:08:17 2022 ] Mean test loss of 796 batches: 2.666290044784546.
|
61 |
+
[ Wed Sep 14 19:08:17 2022 ] Top1: 35.74%
|
62 |
+
[ Wed Sep 14 19:08:17 2022 ] Top5: 67.01%
|
63 |
+
[ Wed Sep 14 19:08:18 2022 ] Training epoch: 9
|
64 |
+
[ Wed Sep 14 19:09:01 2022 ] Batch(55/243) done. Loss: 1.2169 lr:0.100000 network_time: 0.0288
|
65 |
+
[ Wed Sep 14 19:10:14 2022 ] Batch(155/243) done. Loss: 1.0688 lr:0.100000 network_time: 0.0333
|
66 |
+
[ Wed Sep 14 19:11:17 2022 ] Eval epoch: 9
|
67 |
+
[ Wed Sep 14 19:12:51 2022 ] Mean test loss of 796 batches: 2.7376022338867188.
|
68 |
+
[ Wed Sep 14 19:12:51 2022 ] Top1: 35.14%
|
69 |
+
[ Wed Sep 14 19:12:52 2022 ] Top5: 66.76%
|
70 |
+
[ Wed Sep 14 19:12:52 2022 ] Training epoch: 10
|
71 |
+
[ Wed Sep 14 19:13:04 2022 ] Batch(12/243) done. Loss: 0.9615 lr:0.100000 network_time: 0.0263
|
72 |
+
[ Wed Sep 14 19:14:17 2022 ] Batch(112/243) done. Loss: 1.0427 lr:0.100000 network_time: 0.0269
|
73 |
+
[ Wed Sep 14 19:15:30 2022 ] Batch(212/243) done. Loss: 1.2006 lr:0.100000 network_time: 0.0309
|
74 |
+
[ Wed Sep 14 19:15:52 2022 ] Eval epoch: 10
|
75 |
+
[ Wed Sep 14 19:17:26 2022 ] Mean test loss of 796 batches: 2.6587717533111572.
|
76 |
+
[ Wed Sep 14 19:17:26 2022 ] Top1: 36.70%
|
77 |
+
[ Wed Sep 14 19:17:26 2022 ] Top5: 70.12%
|
78 |
+
[ Wed Sep 14 19:17:27 2022 ] Training epoch: 11
|
79 |
+
[ Wed Sep 14 19:18:20 2022 ] Batch(69/243) done. Loss: 0.8898 lr:0.100000 network_time: 0.0301
|
80 |
+
[ Wed Sep 14 19:19:33 2022 ] Batch(169/243) done. Loss: 0.7702 lr:0.100000 network_time: 0.0271
|
81 |
+
[ Wed Sep 14 19:20:26 2022 ] Eval epoch: 11
|
82 |
+
[ Wed Sep 14 19:21:59 2022 ] Mean test loss of 796 batches: 2.6572091579437256.
|
83 |
+
[ Wed Sep 14 19:22:00 2022 ] Top1: 35.17%
|
84 |
+
[ Wed Sep 14 19:22:00 2022 ] Top5: 70.29%
|
85 |
+
[ Wed Sep 14 19:22:00 2022 ] Training epoch: 12
|
86 |
+
[ Wed Sep 14 19:22:23 2022 ] Batch(26/243) done. Loss: 0.5439 lr:0.100000 network_time: 0.0277
|
87 |
+
[ Wed Sep 14 19:23:36 2022 ] Batch(126/243) done. Loss: 0.9749 lr:0.100000 network_time: 0.0269
|
88 |
+
[ Wed Sep 14 19:24:48 2022 ] Batch(226/243) done. Loss: 1.0488 lr:0.100000 network_time: 0.0316
|
89 |
+
[ Wed Sep 14 19:25:00 2022 ] Eval epoch: 12
|
90 |
+
[ Wed Sep 14 19:26:34 2022 ] Mean test loss of 796 batches: 2.824629783630371.
|
91 |
+
[ Wed Sep 14 19:26:34 2022 ] Top1: 35.29%
|
92 |
+
[ Wed Sep 14 19:26:35 2022 ] Top5: 67.09%
|
93 |
+
[ Wed Sep 14 19:26:35 2022 ] Training epoch: 13
|
94 |
+
[ Wed Sep 14 19:27:39 2022 ] Batch(83/243) done. Loss: 0.7571 lr:0.100000 network_time: 0.0294
|
95 |
+
[ Wed Sep 14 19:28:52 2022 ] Batch(183/243) done. Loss: 0.8261 lr:0.100000 network_time: 0.0262
|
96 |
+
[ Wed Sep 14 19:29:35 2022 ] Eval epoch: 13
|
97 |
+
[ Wed Sep 14 19:31:08 2022 ] Mean test loss of 796 batches: 2.3490281105041504.
|
98 |
+
[ Wed Sep 14 19:31:09 2022 ] Top1: 41.19%
|
99 |
+
[ Wed Sep 14 19:31:09 2022 ] Top5: 74.54%
|
100 |
+
[ Wed Sep 14 19:31:10 2022 ] Training epoch: 14
|
101 |
+
[ Wed Sep 14 19:31:42 2022 ] Batch(40/243) done. Loss: 0.4956 lr:0.100000 network_time: 0.0235
|
102 |
+
[ Wed Sep 14 19:32:55 2022 ] Batch(140/243) done. Loss: 0.9356 lr:0.100000 network_time: 0.0266
|
103 |
+
[ Wed Sep 14 19:34:07 2022 ] Batch(240/243) done. Loss: 1.0499 lr:0.100000 network_time: 0.0434
|
104 |
+
[ Wed Sep 14 19:34:09 2022 ] Eval epoch: 14
|
105 |
+
[ Wed Sep 14 19:35:42 2022 ] Mean test loss of 796 batches: 2.4458417892456055.
|
106 |
+
[ Wed Sep 14 19:35:42 2022 ] Top1: 38.41%
|
107 |
+
[ Wed Sep 14 19:35:43 2022 ] Top5: 71.95%
|
108 |
+
[ Wed Sep 14 19:35:43 2022 ] Training epoch: 15
|
109 |
+
[ Wed Sep 14 19:36:57 2022 ] Batch(97/243) done. Loss: 0.9353 lr:0.100000 network_time: 0.0274
|
110 |
+
[ Wed Sep 14 19:38:10 2022 ] Batch(197/243) done. Loss: 0.5173 lr:0.100000 network_time: 0.0406
|
111 |
+
[ Wed Sep 14 19:38:42 2022 ] Eval epoch: 15
|
112 |
+
[ Wed Sep 14 19:40:16 2022 ] Mean test loss of 796 batches: 2.397752523422241.
|
113 |
+
[ Wed Sep 14 19:40:17 2022 ] Top1: 41.95%
|
114 |
+
[ Wed Sep 14 19:40:17 2022 ] Top5: 75.68%
|
115 |
+
[ Wed Sep 14 19:40:17 2022 ] Training epoch: 16
|
116 |
+
[ Wed Sep 14 19:41:00 2022 ] Batch(54/243) done. Loss: 0.5062 lr:0.100000 network_time: 0.0263
|
117 |
+
[ Wed Sep 14 19:42:13 2022 ] Batch(154/243) done. Loss: 0.6092 lr:0.100000 network_time: 0.0276
|
118 |
+
[ Wed Sep 14 19:43:17 2022 ] Eval epoch: 16
|
119 |
+
[ Wed Sep 14 19:44:50 2022 ] Mean test loss of 796 batches: 2.802043914794922.
|
120 |
+
[ Wed Sep 14 19:44:51 2022 ] Top1: 38.52%
|
121 |
+
[ Wed Sep 14 19:44:51 2022 ] Top5: 71.35%
|
122 |
+
[ Wed Sep 14 19:44:51 2022 ] Training epoch: 17
|
123 |
+
[ Wed Sep 14 19:45:03 2022 ] Batch(11/243) done. Loss: 0.8011 lr:0.100000 network_time: 0.0280
|
124 |
+
[ Wed Sep 14 19:46:15 2022 ] Batch(111/243) done. Loss: 0.6675 lr:0.100000 network_time: 0.0254
|
125 |
+
[ Wed Sep 14 19:47:28 2022 ] Batch(211/243) done. Loss: 0.8174 lr:0.100000 network_time: 0.0271
|
126 |
+
[ Wed Sep 14 19:47:51 2022 ] Eval epoch: 17
|
127 |
+
[ Wed Sep 14 19:49:24 2022 ] Mean test loss of 796 batches: 2.7333076000213623.
|
128 |
+
[ Wed Sep 14 19:49:24 2022 ] Top1: 38.83%
|
129 |
+
[ Wed Sep 14 19:49:25 2022 ] Top5: 71.56%
|
130 |
+
[ Wed Sep 14 19:49:25 2022 ] Training epoch: 18
|
131 |
+
[ Wed Sep 14 19:50:18 2022 ] Batch(68/243) done. Loss: 0.7092 lr:0.100000 network_time: 0.0274
|
132 |
+
[ Wed Sep 14 19:51:31 2022 ] Batch(168/243) done. Loss: 0.6670 lr:0.100000 network_time: 0.0264
|
133 |
+
[ Wed Sep 14 19:52:25 2022 ] Eval epoch: 18
|
134 |
+
[ Wed Sep 14 19:53:58 2022 ] Mean test loss of 796 batches: 2.7909624576568604.
|
135 |
+
[ Wed Sep 14 19:53:59 2022 ] Top1: 39.14%
|
136 |
+
[ Wed Sep 14 19:54:00 2022 ] Top5: 72.63%
|
137 |
+
[ Wed Sep 14 19:54:00 2022 ] Training epoch: 19
|
138 |
+
[ Wed Sep 14 19:54:21 2022 ] Batch(25/243) done. Loss: 0.6762 lr:0.100000 network_time: 0.0326
|
139 |
+
[ Wed Sep 14 19:55:34 2022 ] Batch(125/243) done. Loss: 0.5623 lr:0.100000 network_time: 0.0266
|
140 |
+
[ Wed Sep 14 19:56:47 2022 ] Batch(225/243) done. Loss: 0.7143 lr:0.100000 network_time: 0.0264
|
141 |
+
[ Wed Sep 14 19:56:59 2022 ] Eval epoch: 19
|
142 |
+
[ Wed Sep 14 19:58:33 2022 ] Mean test loss of 796 batches: 2.4540889263153076.
|
143 |
+
[ Wed Sep 14 19:58:33 2022 ] Top1: 42.82%
|
144 |
+
[ Wed Sep 14 19:58:34 2022 ] Top5: 75.10%
|
145 |
+
[ Wed Sep 14 19:58:34 2022 ] Training epoch: 20
|
146 |
+
[ Wed Sep 14 19:59:37 2022 ] Batch(82/243) done. Loss: 0.5975 lr:0.100000 network_time: 0.0294
|
147 |
+
[ Wed Sep 14 20:00:50 2022 ] Batch(182/243) done. Loss: 0.5475 lr:0.100000 network_time: 0.0273
|
148 |
+
[ Wed Sep 14 20:01:33 2022 ] Eval epoch: 20
|
149 |
+
[ Wed Sep 14 20:03:07 2022 ] Mean test loss of 796 batches: 2.881371259689331.
|
150 |
+
[ Wed Sep 14 20:03:07 2022 ] Top1: 41.01%
|
151 |
+
[ Wed Sep 14 20:03:07 2022 ] Top5: 71.62%
|
152 |
+
[ Wed Sep 14 20:03:08 2022 ] Training epoch: 21
|
153 |
+
[ Wed Sep 14 20:03:40 2022 ] Batch(39/243) done. Loss: 0.3485 lr:0.100000 network_time: 0.0327
|
154 |
+
[ Wed Sep 14 20:04:52 2022 ] Batch(139/243) done. Loss: 0.5871 lr:0.100000 network_time: 0.0248
|
155 |
+
[ Wed Sep 14 20:06:05 2022 ] Batch(239/243) done. Loss: 0.4812 lr:0.100000 network_time: 0.0274
|
156 |
+
[ Wed Sep 14 20:06:07 2022 ] Eval epoch: 21
|
157 |
+
[ Wed Sep 14 20:07:41 2022 ] Mean test loss of 796 batches: 2.771573543548584.
|
158 |
+
[ Wed Sep 14 20:07:42 2022 ] Top1: 38.53%
|
159 |
+
[ Wed Sep 14 20:07:42 2022 ] Top5: 72.56%
|
160 |
+
[ Wed Sep 14 20:07:42 2022 ] Training epoch: 22
|
161 |
+
[ Wed Sep 14 20:08:56 2022 ] Batch(96/243) done. Loss: 0.6043 lr:0.100000 network_time: 0.0308
|
162 |
+
[ Wed Sep 14 20:10:08 2022 ] Batch(196/243) done. Loss: 0.6230 lr:0.100000 network_time: 0.0328
|
163 |
+
[ Wed Sep 14 20:10:42 2022 ] Eval epoch: 22
|
164 |
+
[ Wed Sep 14 20:12:16 2022 ] Mean test loss of 796 batches: 2.2919068336486816.
|
165 |
+
[ Wed Sep 14 20:12:16 2022 ] Top1: 46.96%
|
166 |
+
[ Wed Sep 14 20:12:17 2022 ] Top5: 78.88%
|
167 |
+
[ Wed Sep 14 20:12:17 2022 ] Training epoch: 23
|
168 |
+
[ Wed Sep 14 20:12:59 2022 ] Batch(53/243) done. Loss: 0.3300 lr:0.100000 network_time: 0.0280
|
169 |
+
[ Wed Sep 14 20:14:11 2022 ] Batch(153/243) done. Loss: 0.7194 lr:0.100000 network_time: 0.0271
|
170 |
+
[ Wed Sep 14 20:15:16 2022 ] Eval epoch: 23
|
171 |
+
[ Wed Sep 14 20:16:50 2022 ] Mean test loss of 796 batches: 2.9069929122924805.
|
172 |
+
[ Wed Sep 14 20:16:50 2022 ] Top1: 38.25%
|
173 |
+
[ Wed Sep 14 20:16:51 2022 ] Top5: 70.40%
|
174 |
+
[ Wed Sep 14 20:16:51 2022 ] Training epoch: 24
|
175 |
+
[ Wed Sep 14 20:17:02 2022 ] Batch(10/243) done. Loss: 0.4030 lr:0.100000 network_time: 0.0263
|
176 |
+
[ Wed Sep 14 20:18:14 2022 ] Batch(110/243) done. Loss: 0.5649 lr:0.100000 network_time: 0.0275
|
177 |
+
[ Wed Sep 14 20:19:27 2022 ] Batch(210/243) done. Loss: 0.4009 lr:0.100000 network_time: 0.0319
|
178 |
+
[ Wed Sep 14 20:19:50 2022 ] Eval epoch: 24
|
179 |
+
[ Wed Sep 14 20:21:24 2022 ] Mean test loss of 796 batches: 2.52933931350708.
|
180 |
+
[ Wed Sep 14 20:21:24 2022 ] Top1: 43.88%
|
181 |
+
[ Wed Sep 14 20:21:25 2022 ] Top5: 75.25%
|
182 |
+
[ Wed Sep 14 20:21:25 2022 ] Training epoch: 25
|
183 |
+
[ Wed Sep 14 20:22:17 2022 ] Batch(67/243) done. Loss: 0.4913 lr:0.100000 network_time: 0.0322
|
184 |
+
[ Wed Sep 14 20:23:29 2022 ] Batch(167/243) done. Loss: 0.4311 lr:0.100000 network_time: 0.0260
|
185 |
+
[ Wed Sep 14 20:24:24 2022 ] Eval epoch: 25
|
186 |
+
[ Wed Sep 14 20:25:58 2022 ] Mean test loss of 796 batches: 2.5313878059387207.
|
187 |
+
[ Wed Sep 14 20:25:58 2022 ] Top1: 45.00%
|
188 |
+
[ Wed Sep 14 20:25:58 2022 ] Top5: 77.09%
|
189 |
+
[ Wed Sep 14 20:25:59 2022 ] Training epoch: 26
|
190 |
+
[ Wed Sep 14 20:26:20 2022 ] Batch(24/243) done. Loss: 0.4224 lr:0.100000 network_time: 0.0263
|
191 |
+
[ Wed Sep 14 20:27:32 2022 ] Batch(124/243) done. Loss: 0.3813 lr:0.100000 network_time: 0.0280
|
192 |
+
[ Wed Sep 14 20:28:45 2022 ] Batch(224/243) done. Loss: 0.4928 lr:0.100000 network_time: 0.0277
|
193 |
+
[ Wed Sep 14 20:28:58 2022 ] Eval epoch: 26
|
194 |
+
[ Wed Sep 14 20:30:32 2022 ] Mean test loss of 796 batches: 2.687304973602295.
|
195 |
+
[ Wed Sep 14 20:30:32 2022 ] Top1: 43.42%
|
196 |
+
[ Wed Sep 14 20:30:33 2022 ] Top5: 75.80%
|
197 |
+
[ Wed Sep 14 20:30:33 2022 ] Training epoch: 27
|
198 |
+
[ Wed Sep 14 20:31:35 2022 ] Batch(81/243) done. Loss: 0.3775 lr:0.100000 network_time: 0.0259
|
199 |
+
[ Wed Sep 14 20:32:48 2022 ] Batch(181/243) done. Loss: 0.4857 lr:0.100000 network_time: 0.0270
|
200 |
+
[ Wed Sep 14 20:33:33 2022 ] Eval epoch: 27
|
201 |
+
[ Wed Sep 14 20:35:06 2022 ] Mean test loss of 796 batches: 2.4036240577697754.
|
202 |
+
[ Wed Sep 14 20:35:06 2022 ] Top1: 44.58%
|
203 |
+
[ Wed Sep 14 20:35:06 2022 ] Top5: 78.53%
|
204 |
+
[ Wed Sep 14 20:35:06 2022 ] Training epoch: 28
|
205 |
+
[ Wed Sep 14 20:35:38 2022 ] Batch(38/243) done. Loss: 0.1812 lr:0.100000 network_time: 0.0274
|
206 |
+
[ Wed Sep 14 20:36:50 2022 ] Batch(138/243) done. Loss: 0.4930 lr:0.100000 network_time: 0.0282
|
207 |
+
[ Wed Sep 14 20:38:03 2022 ] Batch(238/243) done. Loss: 0.5984 lr:0.100000 network_time: 0.0271
|
208 |
+
[ Wed Sep 14 20:38:06 2022 ] Eval epoch: 28
|
209 |
+
[ Wed Sep 14 20:39:39 2022 ] Mean test loss of 796 batches: 2.756429433822632.
|
210 |
+
[ Wed Sep 14 20:39:40 2022 ] Top1: 41.86%
|
211 |
+
[ Wed Sep 14 20:39:40 2022 ] Top5: 74.64%
|
212 |
+
[ Wed Sep 14 20:39:40 2022 ] Training epoch: 29
|
213 |
+
[ Wed Sep 14 20:40:53 2022 ] Batch(95/243) done. Loss: 0.4065 lr:0.100000 network_time: 0.0305
|
214 |
+
[ Wed Sep 14 20:42:06 2022 ] Batch(195/243) done. Loss: 0.6086 lr:0.100000 network_time: 0.0269
|
215 |
+
[ Wed Sep 14 20:42:40 2022 ] Eval epoch: 29
|
216 |
+
[ Wed Sep 14 20:44:13 2022 ] Mean test loss of 796 batches: 2.7290701866149902.
|
217 |
+
[ Wed Sep 14 20:44:13 2022 ] Top1: 42.17%
|
218 |
+
[ Wed Sep 14 20:44:14 2022 ] Top5: 73.98%
|
219 |
+
[ Wed Sep 14 20:44:14 2022 ] Training epoch: 30
|
220 |
+
[ Wed Sep 14 20:44:55 2022 ] Batch(52/243) done. Loss: 0.2625 lr:0.100000 network_time: 0.0307
|
221 |
+
[ Wed Sep 14 20:46:08 2022 ] Batch(152/243) done. Loss: 0.4039 lr:0.100000 network_time: 0.0273
|
222 |
+
[ Wed Sep 14 20:47:13 2022 ] Eval epoch: 30
|
223 |
+
[ Wed Sep 14 20:48:46 2022 ] Mean test loss of 796 batches: 2.819765090942383.
|
224 |
+
[ Wed Sep 14 20:48:47 2022 ] Top1: 41.09%
|
225 |
+
[ Wed Sep 14 20:48:47 2022 ] Top5: 74.95%
|
226 |
+
[ Wed Sep 14 20:48:47 2022 ] Training epoch: 31
|
227 |
+
[ Wed Sep 14 20:48:57 2022 ] Batch(9/243) done. Loss: 0.3648 lr:0.100000 network_time: 0.0270
|
228 |
+
[ Wed Sep 14 20:50:10 2022 ] Batch(109/243) done. Loss: 0.2452 lr:0.100000 network_time: 0.0319
|
229 |
+
[ Wed Sep 14 20:51:23 2022 ] Batch(209/243) done. Loss: 0.4705 lr:0.100000 network_time: 0.0275
|
230 |
+
[ Wed Sep 14 20:51:47 2022 ] Eval epoch: 31
|
231 |
+
[ Wed Sep 14 20:53:20 2022 ] Mean test loss of 796 batches: 2.6726372241973877.
|
232 |
+
[ Wed Sep 14 20:53:21 2022 ] Top1: 43.70%
|
233 |
+
[ Wed Sep 14 20:53:21 2022 ] Top5: 76.80%
|
234 |
+
[ Wed Sep 14 20:53:21 2022 ] Training epoch: 32
|
235 |
+
[ Wed Sep 14 20:54:13 2022 ] Batch(66/243) done. Loss: 0.4521 lr:0.100000 network_time: 0.0319
|
236 |
+
[ Wed Sep 14 20:55:25 2022 ] Batch(166/243) done. Loss: 0.7311 lr:0.100000 network_time: 0.0317
|
237 |
+
[ Wed Sep 14 20:56:21 2022 ] Eval epoch: 32
|
238 |
+
[ Wed Sep 14 20:57:55 2022 ] Mean test loss of 796 batches: 2.6101021766662598.
|
239 |
+
[ Wed Sep 14 20:57:55 2022 ] Top1: 44.74%
|
240 |
+
[ Wed Sep 14 20:57:55 2022 ] Top5: 75.74%
|
241 |
+
[ Wed Sep 14 20:57:56 2022 ] Training epoch: 33
|
242 |
+
[ Wed Sep 14 20:58:16 2022 ] Batch(23/243) done. Loss: 0.4080 lr:0.100000 network_time: 0.0304
|
243 |
+
[ Wed Sep 14 20:59:29 2022 ] Batch(123/243) done. Loss: 0.5928 lr:0.100000 network_time: 0.0263
|
244 |
+
[ Wed Sep 14 21:00:41 2022 ] Batch(223/243) done. Loss: 0.5750 lr:0.100000 network_time: 0.0277
|
245 |
+
[ Wed Sep 14 21:00:55 2022 ] Eval epoch: 33
|
246 |
+
[ Wed Sep 14 21:02:29 2022 ] Mean test loss of 796 batches: 2.4076733589172363.
|
247 |
+
[ Wed Sep 14 21:02:29 2022 ] Top1: 46.05%
|
248 |
+
[ Wed Sep 14 21:02:30 2022 ] Top5: 77.02%
|
249 |
+
[ Wed Sep 14 21:02:30 2022 ] Training epoch: 34
|
250 |
+
[ Wed Sep 14 21:03:32 2022 ] Batch(80/243) done. Loss: 0.3287 lr:0.100000 network_time: 0.0325
|
251 |
+
[ Wed Sep 14 21:04:44 2022 ] Batch(180/243) done. Loss: 0.4008 lr:0.100000 network_time: 0.0434
|
252 |
+
[ Wed Sep 14 21:05:30 2022 ] Eval epoch: 34
|
253 |
+
[ Wed Sep 14 21:07:03 2022 ] Mean test loss of 796 batches: 2.933490037918091.
|
254 |
+
[ Wed Sep 14 21:07:03 2022 ] Top1: 42.85%
|
255 |
+
[ Wed Sep 14 21:07:04 2022 ] Top5: 74.90%
|
256 |
+
[ Wed Sep 14 21:07:04 2022 ] Training epoch: 35
|
257 |
+
[ Wed Sep 14 21:07:34 2022 ] Batch(37/243) done. Loss: 0.1931 lr:0.100000 network_time: 0.0271
|
258 |
+
[ Wed Sep 14 21:08:47 2022 ] Batch(137/243) done. Loss: 0.5033 lr:0.100000 network_time: 0.0258
|
259 |
+
[ Wed Sep 14 21:10:00 2022 ] Batch(237/243) done. Loss: 0.7209 lr:0.100000 network_time: 0.0233
|
260 |
+
[ Wed Sep 14 21:10:04 2022 ] Eval epoch: 35
|
261 |
+
[ Wed Sep 14 21:11:37 2022 ] Mean test loss of 796 batches: 2.4481589794158936.
|
262 |
+
[ Wed Sep 14 21:11:37 2022 ] Top1: 46.19%
|
263 |
+
[ Wed Sep 14 21:11:37 2022 ] Top5: 77.78%
|
264 |
+
[ Wed Sep 14 21:11:38 2022 ] Training epoch: 36
|
265 |
+
[ Wed Sep 14 21:12:49 2022 ] Batch(94/243) done. Loss: 0.3159 lr:0.100000 network_time: 0.0268
|
266 |
+
[ Wed Sep 14 21:14:02 2022 ] Batch(194/243) done. Loss: 0.3204 lr:0.100000 network_time: 0.0275
|
267 |
+
[ Wed Sep 14 21:14:37 2022 ] Eval epoch: 36
|
268 |
+
[ Wed Sep 14 21:16:10 2022 ] Mean test loss of 796 batches: 2.854403495788574.
|
269 |
+
[ Wed Sep 14 21:16:11 2022 ] Top1: 43.88%
|
270 |
+
[ Wed Sep 14 21:16:11 2022 ] Top5: 76.34%
|
271 |
+
[ Wed Sep 14 21:16:11 2022 ] Training epoch: 37
|
272 |
+
[ Wed Sep 14 21:16:52 2022 ] Batch(51/243) done. Loss: 0.3624 lr:0.100000 network_time: 0.0278
|
273 |
+
[ Wed Sep 14 21:18:05 2022 ] Batch(151/243) done. Loss: 0.3338 lr:0.100000 network_time: 0.0279
|
274 |
+
[ Wed Sep 14 21:19:11 2022 ] Eval epoch: 37
|
275 |
+
[ Wed Sep 14 21:20:45 2022 ] Mean test loss of 796 batches: 2.4435677528381348.
|
276 |
+
[ Wed Sep 14 21:20:45 2022 ] Top1: 46.90%
|
277 |
+
[ Wed Sep 14 21:20:46 2022 ] Top5: 79.11%
|
278 |
+
[ Wed Sep 14 21:20:46 2022 ] Training epoch: 38
|
279 |
+
[ Wed Sep 14 21:20:55 2022 ] Batch(8/243) done. Loss: 0.5167 lr:0.100000 network_time: 0.0284
|
280 |
+
[ Wed Sep 14 21:22:08 2022 ] Batch(108/243) done. Loss: 0.4417 lr:0.100000 network_time: 0.0313
|
281 |
+
[ Wed Sep 14 21:23:21 2022 ] Batch(208/243) done. Loss: 0.4753 lr:0.100000 network_time: 0.0275
|
282 |
+
[ Wed Sep 14 21:23:46 2022 ] Eval epoch: 38
|
283 |
+
[ Wed Sep 14 21:25:19 2022 ] Mean test loss of 796 batches: 2.551591396331787.
|
284 |
+
[ Wed Sep 14 21:25:20 2022 ] Top1: 46.89%
|
285 |
+
[ Wed Sep 14 21:25:20 2022 ] Top5: 77.84%
|
286 |
+
[ Wed Sep 14 21:25:20 2022 ] Training epoch: 39
|
287 |
+
[ Wed Sep 14 21:26:11 2022 ] Batch(65/243) done. Loss: 0.3768 lr:0.100000 network_time: 0.0279
|
288 |
+
[ Wed Sep 14 21:27:24 2022 ] Batch(165/243) done. Loss: 0.4046 lr:0.100000 network_time: 0.0275
|
289 |
+
[ Wed Sep 14 21:28:20 2022 ] Eval epoch: 39
|
290 |
+
[ Wed Sep 14 21:29:53 2022 ] Mean test loss of 796 batches: 2.5131995677948.
|
291 |
+
[ Wed Sep 14 21:29:54 2022 ] Top1: 45.77%
|
292 |
+
[ Wed Sep 14 21:29:54 2022 ] Top5: 78.91%
|
293 |
+
[ Wed Sep 14 21:29:54 2022 ] Training epoch: 40
|
294 |
+
[ Wed Sep 14 21:30:14 2022 ] Batch(22/243) done. Loss: 0.3872 lr:0.100000 network_time: 0.0280
|
295 |
+
[ Wed Sep 14 21:31:26 2022 ] Batch(122/243) done. Loss: 0.2603 lr:0.100000 network_time: 0.0273
|
296 |
+
[ Wed Sep 14 21:32:39 2022 ] Batch(222/243) done. Loss: 0.2829 lr:0.100000 network_time: 0.0272
|
297 |
+
[ Wed Sep 14 21:32:54 2022 ] Eval epoch: 40
|
298 |
+
[ Wed Sep 14 21:34:27 2022 ] Mean test loss of 796 batches: 2.946911573410034.
|
299 |
+
[ Wed Sep 14 21:34:28 2022 ] Top1: 42.64%
|
300 |
+
[ Wed Sep 14 21:34:28 2022 ] Top5: 74.96%
|
301 |
+
[ Wed Sep 14 21:34:28 2022 ] Training epoch: 41
|
302 |
+
[ Wed Sep 14 21:35:29 2022 ] Batch(79/243) done. Loss: 0.3274 lr:0.100000 network_time: 0.0298
|
303 |
+
[ Wed Sep 14 21:36:42 2022 ] Batch(179/243) done. Loss: 0.2956 lr:0.100000 network_time: 0.0259
|
304 |
+
[ Wed Sep 14 21:37:28 2022 ] Eval epoch: 41
|
305 |
+
[ Wed Sep 14 21:39:02 2022 ] Mean test loss of 796 batches: 2.6605191230773926.
|
306 |
+
[ Wed Sep 14 21:39:02 2022 ] Top1: 43.38%
|
307 |
+
[ Wed Sep 14 21:39:03 2022 ] Top5: 75.65%
|
308 |
+
[ Wed Sep 14 21:39:03 2022 ] Training epoch: 42
|
309 |
+
[ Wed Sep 14 21:39:33 2022 ] Batch(36/243) done. Loss: 0.2754 lr:0.100000 network_time: 0.0283
|
310 |
+
[ Wed Sep 14 21:40:45 2022 ] Batch(136/243) done. Loss: 0.3378 lr:0.100000 network_time: 0.0277
|
311 |
+
[ Wed Sep 14 21:41:58 2022 ] Batch(236/243) done. Loss: 0.3659 lr:0.100000 network_time: 0.0262
|
312 |
+
[ Wed Sep 14 21:42:03 2022 ] Eval epoch: 42
|
313 |
+
[ Wed Sep 14 21:43:36 2022 ] Mean test loss of 796 batches: 2.729982614517212.
|
314 |
+
[ Wed Sep 14 21:43:36 2022 ] Top1: 44.67%
|
315 |
+
[ Wed Sep 14 21:43:36 2022 ] Top5: 76.83%
|
316 |
+
[ Wed Sep 14 21:43:37 2022 ] Training epoch: 43
|
317 |
+
[ Wed Sep 14 21:44:48 2022 ] Batch(93/243) done. Loss: 0.2193 lr:0.100000 network_time: 0.0273
|
318 |
+
[ Wed Sep 14 21:46:00 2022 ] Batch(193/243) done. Loss: 0.4389 lr:0.100000 network_time: 0.0278
|
319 |
+
[ Wed Sep 14 21:46:36 2022 ] Eval epoch: 43
|
320 |
+
[ Wed Sep 14 21:48:10 2022 ] Mean test loss of 796 batches: 2.8778491020202637.
|
321 |
+
[ Wed Sep 14 21:48:10 2022 ] Top1: 41.51%
|
322 |
+
[ Wed Sep 14 21:48:11 2022 ] Top5: 73.55%
|
323 |
+
[ Wed Sep 14 21:48:11 2022 ] Training epoch: 44
|
324 |
+
[ Wed Sep 14 21:48:51 2022 ] Batch(50/243) done. Loss: 0.3618 lr:0.100000 network_time: 0.0273
|
325 |
+
[ Wed Sep 14 21:50:04 2022 ] Batch(150/243) done. Loss: 0.3614 lr:0.100000 network_time: 0.0284
|
326 |
+
[ Wed Sep 14 21:51:11 2022 ] Eval epoch: 44
|
327 |
+
[ Wed Sep 14 21:52:44 2022 ] Mean test loss of 796 batches: 2.6658835411071777.
|
328 |
+
[ Wed Sep 14 21:52:45 2022 ] Top1: 43.96%
|
329 |
+
[ Wed Sep 14 21:52:45 2022 ] Top5: 76.84%
|
330 |
+
[ Wed Sep 14 21:52:45 2022 ] Training epoch: 45
|
331 |
+
[ Wed Sep 14 21:52:54 2022 ] Batch(7/243) done. Loss: 0.2149 lr:0.100000 network_time: 0.0261
|
332 |
+
[ Wed Sep 14 21:54:07 2022 ] Batch(107/243) done. Loss: 0.4532 lr:0.100000 network_time: 0.0282
|
333 |
+
[ Wed Sep 14 21:55:19 2022 ] Batch(207/243) done. Loss: 0.2903 lr:0.100000 network_time: 0.0274
|
334 |
+
[ Wed Sep 14 21:55:45 2022 ] Eval epoch: 45
|
335 |
+
[ Wed Sep 14 21:57:18 2022 ] Mean test loss of 796 batches: 2.703622579574585.
|
336 |
+
[ Wed Sep 14 21:57:19 2022 ] Top1: 46.68%
|
337 |
+
[ Wed Sep 14 21:57:19 2022 ] Top5: 78.64%
|
338 |
+
[ Wed Sep 14 21:57:19 2022 ] Training epoch: 46
|
339 |
+
[ Wed Sep 14 21:58:09 2022 ] Batch(64/243) done. Loss: 0.1826 lr:0.100000 network_time: 0.0270
|
340 |
+
[ Wed Sep 14 21:59:22 2022 ] Batch(164/243) done. Loss: 0.3657 lr:0.100000 network_time: 0.0279
|
341 |
+
[ Wed Sep 14 22:00:19 2022 ] Eval epoch: 46
|
342 |
+
[ Wed Sep 14 22:01:52 2022 ] Mean test loss of 796 batches: 3.0341153144836426.
|
343 |
+
[ Wed Sep 14 22:01:52 2022 ] Top1: 42.14%
|
344 |
+
[ Wed Sep 14 22:01:53 2022 ] Top5: 72.97%
|
345 |
+
[ Wed Sep 14 22:01:53 2022 ] Training epoch: 47
|
346 |
+
[ Wed Sep 14 22:02:12 2022 ] Batch(21/243) done. Loss: 0.2316 lr:0.100000 network_time: 0.0262
|
347 |
+
[ Wed Sep 14 22:03:25 2022 ] Batch(121/243) done. Loss: 0.3387 lr:0.100000 network_time: 0.0313
|
348 |
+
[ Wed Sep 14 22:04:37 2022 ] Batch(221/243) done. Loss: 0.2902 lr:0.100000 network_time: 0.0281
|
349 |
+
[ Wed Sep 14 22:04:53 2022 ] Eval epoch: 47
|
350 |
+
[ Wed Sep 14 22:06:26 2022 ] Mean test loss of 796 batches: 2.495844602584839.
|
351 |
+
[ Wed Sep 14 22:06:26 2022 ] Top1: 46.27%
|
352 |
+
[ Wed Sep 14 22:06:27 2022 ] Top5: 78.13%
|
353 |
+
[ Wed Sep 14 22:06:27 2022 ] Training epoch: 48
|
354 |
+
[ Wed Sep 14 22:07:27 2022 ] Batch(78/243) done. Loss: 0.2657 lr:0.100000 network_time: 0.0297
|
355 |
+
[ Wed Sep 14 22:08:40 2022 ] Batch(178/243) done. Loss: 0.3470 lr:0.100000 network_time: 0.0312
|
356 |
+
[ Wed Sep 14 22:09:27 2022 ] Eval epoch: 48
|
357 |
+
[ Wed Sep 14 22:11:00 2022 ] Mean test loss of 796 batches: 2.7453110218048096.
|
358 |
+
[ Wed Sep 14 22:11:00 2022 ] Top1: 47.05%
|
359 |
+
[ Wed Sep 14 22:11:00 2022 ] Top5: 78.73%
|
360 |
+
[ Wed Sep 14 22:11:01 2022 ] Training epoch: 49
|
361 |
+
[ Wed Sep 14 22:11:29 2022 ] Batch(35/243) done. Loss: 0.3071 lr:0.100000 network_time: 0.0309
|
362 |
+
[ Wed Sep 14 22:12:42 2022 ] Batch(135/243) done. Loss: 0.3078 lr:0.100000 network_time: 0.0274
|
363 |
+
[ Wed Sep 14 22:13:55 2022 ] Batch(235/243) done. Loss: 0.4095 lr:0.100000 network_time: 0.0273
|
364 |
+
[ Wed Sep 14 22:14:00 2022 ] Eval epoch: 49
|
365 |
+
[ Wed Sep 14 22:15:33 2022 ] Mean test loss of 796 batches: 2.788438081741333.
|
366 |
+
[ Wed Sep 14 22:15:34 2022 ] Top1: 45.89%
|
367 |
+
[ Wed Sep 14 22:15:34 2022 ] Top5: 76.79%
|
368 |
+
[ Wed Sep 14 22:15:34 2022 ] Training epoch: 50
|
369 |
+
[ Wed Sep 14 22:16:45 2022 ] Batch(92/243) done. Loss: 0.3190 lr:0.100000 network_time: 0.0286
|
370 |
+
[ Wed Sep 14 22:17:57 2022 ] Batch(192/243) done. Loss: 0.3876 lr:0.100000 network_time: 0.0266
|
371 |
+
[ Wed Sep 14 22:18:34 2022 ] Eval epoch: 50
|
372 |
+
[ Wed Sep 14 22:20:07 2022 ] Mean test loss of 796 batches: 2.6796646118164062.
|
373 |
+
[ Wed Sep 14 22:20:07 2022 ] Top1: 46.75%
|
374 |
+
[ Wed Sep 14 22:20:08 2022 ] Top5: 77.72%
|
375 |
+
[ Wed Sep 14 22:20:08 2022 ] Training epoch: 51
|
376 |
+
[ Wed Sep 14 22:20:47 2022 ] Batch(49/243) done. Loss: 0.3189 lr:0.100000 network_time: 0.0269
|
377 |
+
[ Wed Sep 14 22:22:00 2022 ] Batch(149/243) done. Loss: 0.3324 lr:0.100000 network_time: 0.0317
|
378 |
+
[ Wed Sep 14 22:23:08 2022 ] Eval epoch: 51
|
379 |
+
[ Wed Sep 14 22:24:41 2022 ] Mean test loss of 796 batches: 2.946209669113159.
|
380 |
+
[ Wed Sep 14 22:24:42 2022 ] Top1: 44.48%
|
381 |
+
[ Wed Sep 14 22:24:42 2022 ] Top5: 75.47%
|
382 |
+
[ Wed Sep 14 22:24:42 2022 ] Training epoch: 52
|
383 |
+
[ Wed Sep 14 22:24:50 2022 ] Batch(6/243) done. Loss: 0.2887 lr:0.100000 network_time: 0.0283
|
384 |
+
[ Wed Sep 14 22:26:03 2022 ] Batch(106/243) done. Loss: 0.1677 lr:0.100000 network_time: 0.0299
|
385 |
+
[ Wed Sep 14 22:27:16 2022 ] Batch(206/243) done. Loss: 0.2791 lr:0.100000 network_time: 0.0266
|
386 |
+
[ Wed Sep 14 22:27:42 2022 ] Eval epoch: 52
|
387 |
+
[ Wed Sep 14 22:29:16 2022 ] Mean test loss of 796 batches: 2.9767680168151855.
|
388 |
+
[ Wed Sep 14 22:29:16 2022 ] Top1: 41.63%
|
389 |
+
[ Wed Sep 14 22:29:16 2022 ] Top5: 74.87%
|
390 |
+
[ Wed Sep 14 22:29:17 2022 ] Training epoch: 53
|
391 |
+
[ Wed Sep 14 22:30:06 2022 ] Batch(63/243) done. Loss: 0.2952 lr:0.100000 network_time: 0.0280
|
392 |
+
[ Wed Sep 14 22:31:19 2022 ] Batch(163/243) done. Loss: 0.4212 lr:0.100000 network_time: 0.0272
|
393 |
+
[ Wed Sep 14 22:32:16 2022 ] Eval epoch: 53
|
394 |
+
[ Wed Sep 14 22:33:50 2022 ] Mean test loss of 796 batches: 2.531792163848877.
|
395 |
+
[ Wed Sep 14 22:33:50 2022 ] Top1: 47.83%
|
396 |
+
[ Wed Sep 14 22:33:50 2022 ] Top5: 79.02%
|
397 |
+
[ Wed Sep 14 22:33:51 2022 ] Training epoch: 54
|
398 |
+
[ Wed Sep 14 22:34:09 2022 ] Batch(20/243) done. Loss: 0.1304 lr:0.100000 network_time: 0.0279
|
399 |
+
[ Wed Sep 14 22:35:21 2022 ] Batch(120/243) done. Loss: 0.2150 lr:0.100000 network_time: 0.0272
|
400 |
+
[ Wed Sep 14 22:36:34 2022 ] Batch(220/243) done. Loss: 0.3651 lr:0.100000 network_time: 0.0263
|
401 |
+
[ Wed Sep 14 22:36:50 2022 ] Eval epoch: 54
|
402 |
+
[ Wed Sep 14 22:38:23 2022 ] Mean test loss of 796 batches: 2.5210258960723877.
|
403 |
+
[ Wed Sep 14 22:38:23 2022 ] Top1: 47.76%
|
404 |
+
[ Wed Sep 14 22:38:24 2022 ] Top5: 78.98%
|
405 |
+
[ Wed Sep 14 22:38:24 2022 ] Training epoch: 55
|
406 |
+
[ Wed Sep 14 22:39:23 2022 ] Batch(77/243) done. Loss: 0.2751 lr:0.100000 network_time: 0.0326
|
407 |
+
[ Wed Sep 14 22:40:36 2022 ] Batch(177/243) done. Loss: 0.3404 lr:0.100000 network_time: 0.0312
|
408 |
+
[ Wed Sep 14 22:41:24 2022 ] Eval epoch: 55
|
409 |
+
[ Wed Sep 14 22:42:57 2022 ] Mean test loss of 796 batches: 2.994967460632324.
|
410 |
+
[ Wed Sep 14 22:42:57 2022 ] Top1: 43.31%
|
411 |
+
[ Wed Sep 14 22:42:58 2022 ] Top5: 75.28%
|
412 |
+
[ Wed Sep 14 22:42:58 2022 ] Training epoch: 56
|
413 |
+
[ Wed Sep 14 22:43:27 2022 ] Batch(34/243) done. Loss: 0.1377 lr:0.100000 network_time: 0.0277
|
414 |
+
[ Wed Sep 14 22:44:39 2022 ] Batch(134/243) done. Loss: 0.3377 lr:0.100000 network_time: 0.0270
|
415 |
+
[ Wed Sep 14 22:45:52 2022 ] Batch(234/243) done. Loss: 0.2269 lr:0.100000 network_time: 0.0270
|
416 |
+
[ Wed Sep 14 22:45:58 2022 ] Eval epoch: 56
|
417 |
+
[ Wed Sep 14 22:47:31 2022 ] Mean test loss of 796 batches: 2.9663078784942627.
|
418 |
+
[ Wed Sep 14 22:47:31 2022 ] Top1: 43.08%
|
419 |
+
[ Wed Sep 14 22:47:32 2022 ] Top5: 74.80%
|
420 |
+
[ Wed Sep 14 22:47:32 2022 ] Training epoch: 57
|
421 |
+
[ Wed Sep 14 22:48:42 2022 ] Batch(91/243) done. Loss: 0.4191 lr:0.100000 network_time: 0.0277
|
422 |
+
[ Wed Sep 14 22:49:55 2022 ] Batch(191/243) done. Loss: 0.2231 lr:0.100000 network_time: 0.0283
|
423 |
+
[ Wed Sep 14 22:50:32 2022 ] Eval epoch: 57
|
424 |
+
[ Wed Sep 14 22:52:05 2022 ] Mean test loss of 796 batches: 2.6926229000091553.
|
425 |
+
[ Wed Sep 14 22:52:05 2022 ] Top1: 47.01%
|
426 |
+
[ Wed Sep 14 22:52:06 2022 ] Top5: 77.91%
|
427 |
+
[ Wed Sep 14 22:52:06 2022 ] Training epoch: 58
|
428 |
+
[ Wed Sep 14 22:52:44 2022 ] Batch(48/243) done. Loss: 0.3491 lr:0.100000 network_time: 0.0275
|
429 |
+
[ Wed Sep 14 22:53:57 2022 ] Batch(148/243) done. Loss: 0.2899 lr:0.100000 network_time: 0.0272
|
430 |
+
[ Wed Sep 14 22:55:06 2022 ] Eval epoch: 58
|
431 |
+
[ Wed Sep 14 22:56:39 2022 ] Mean test loss of 796 batches: 2.6085290908813477.
|
432 |
+
[ Wed Sep 14 22:56:40 2022 ] Top1: 46.58%
|
433 |
+
[ Wed Sep 14 22:56:40 2022 ] Top5: 77.53%
|
434 |
+
[ Wed Sep 14 22:56:40 2022 ] Training epoch: 59
|
435 |
+
[ Wed Sep 14 22:56:47 2022 ] Batch(5/243) done. Loss: 0.3443 lr:0.100000 network_time: 0.0277
|
436 |
+
[ Wed Sep 14 22:58:00 2022 ] Batch(105/243) done. Loss: 0.2943 lr:0.100000 network_time: 0.0280
|
437 |
+
[ Wed Sep 14 22:59:13 2022 ] Batch(205/243) done. Loss: 0.3257 lr:0.100000 network_time: 0.0272
|
438 |
+
[ Wed Sep 14 22:59:40 2022 ] Eval epoch: 59
|
439 |
+
[ Wed Sep 14 23:01:13 2022 ] Mean test loss of 796 batches: 2.7719128131866455.
|
440 |
+
[ Wed Sep 14 23:01:14 2022 ] Top1: 42.90%
|
441 |
+
[ Wed Sep 14 23:01:14 2022 ] Top5: 76.71%
|
442 |
+
[ Wed Sep 14 23:01:15 2022 ] Training epoch: 60
|
443 |
+
[ Wed Sep 14 23:02:03 2022 ] Batch(62/243) done. Loss: 0.1431 lr:0.100000 network_time: 0.0277
|
444 |
+
[ Wed Sep 14 23:03:16 2022 ] Batch(162/243) done. Loss: 0.2946 lr:0.100000 network_time: 0.0275
|
445 |
+
[ Wed Sep 14 23:04:15 2022 ] Eval epoch: 60
|
446 |
+
[ Wed Sep 14 23:05:48 2022 ] Mean test loss of 796 batches: 2.693972587585449.
|
447 |
+
[ Wed Sep 14 23:05:48 2022 ] Top1: 46.52%
|
448 |
+
[ Wed Sep 14 23:05:49 2022 ] Top5: 79.53%
|
449 |
+
[ Wed Sep 14 23:05:49 2022 ] Training epoch: 61
|
450 |
+
[ Wed Sep 14 23:06:06 2022 ] Batch(19/243) done. Loss: 0.2575 lr:0.010000 network_time: 0.0274
|
451 |
+
[ Wed Sep 14 23:07:19 2022 ] Batch(119/243) done. Loss: 0.1340 lr:0.010000 network_time: 0.0308
|
452 |
+
[ Wed Sep 14 23:08:32 2022 ] Batch(219/243) done. Loss: 0.0472 lr:0.010000 network_time: 0.0275
|
453 |
+
[ Wed Sep 14 23:08:48 2022 ] Eval epoch: 61
|
454 |
+
[ Wed Sep 14 23:10:21 2022 ] Mean test loss of 796 batches: 2.258368492126465.
|
455 |
+
[ Wed Sep 14 23:10:22 2022 ] Top1: 52.89%
|
456 |
+
[ Wed Sep 14 23:10:22 2022 ] Top5: 82.95%
|
457 |
+
[ Wed Sep 14 23:10:23 2022 ] Training epoch: 62
|
458 |
+
[ Wed Sep 14 23:11:21 2022 ] Batch(76/243) done. Loss: 0.0563 lr:0.010000 network_time: 0.0273
|
459 |
+
[ Wed Sep 14 23:12:34 2022 ] Batch(176/243) done. Loss: 0.1186 lr:0.010000 network_time: 0.0261
|
460 |
+
[ Wed Sep 14 23:13:22 2022 ] Eval epoch: 62
|
461 |
+
[ Wed Sep 14 23:14:56 2022 ] Mean test loss of 796 batches: 2.279740810394287.
|
462 |
+
[ Wed Sep 14 23:14:56 2022 ] Top1: 53.11%
|
463 |
+
[ Wed Sep 14 23:14:56 2022 ] Top5: 82.97%
|
464 |
+
[ Wed Sep 14 23:14:57 2022 ] Training epoch: 63
|
465 |
+
[ Wed Sep 14 23:15:24 2022 ] Batch(33/243) done. Loss: 0.1131 lr:0.010000 network_time: 0.0274
|
466 |
+
[ Wed Sep 14 23:16:37 2022 ] Batch(133/243) done. Loss: 0.0521 lr:0.010000 network_time: 0.0284
|
467 |
+
[ Wed Sep 14 23:17:50 2022 ] Batch(233/243) done. Loss: 0.0699 lr:0.010000 network_time: 0.0274
|
468 |
+
[ Wed Sep 14 23:17:57 2022 ] Eval epoch: 63
|
469 |
+
[ Wed Sep 14 23:19:30 2022 ] Mean test loss of 796 batches: 2.2916676998138428.
|
470 |
+
[ Wed Sep 14 23:19:30 2022 ] Top1: 53.36%
|
471 |
+
[ Wed Sep 14 23:19:31 2022 ] Top5: 83.03%
|
472 |
+
[ Wed Sep 14 23:19:31 2022 ] Training epoch: 64
|
473 |
+
[ Wed Sep 14 23:20:40 2022 ] Batch(90/243) done. Loss: 0.0341 lr:0.010000 network_time: 0.0263
|
474 |
+
[ Wed Sep 14 23:21:53 2022 ] Batch(190/243) done. Loss: 0.0185 lr:0.010000 network_time: 0.0279
|
475 |
+
[ Wed Sep 14 23:22:31 2022 ] Eval epoch: 64
|
476 |
+
[ Wed Sep 14 23:24:04 2022 ] Mean test loss of 796 batches: 2.2869088649749756.
|
477 |
+
[ Wed Sep 14 23:24:04 2022 ] Top1: 53.79%
|
478 |
+
[ Wed Sep 14 23:24:05 2022 ] Top5: 83.33%
|
479 |
+
[ Wed Sep 14 23:24:05 2022 ] Training epoch: 65
|
480 |
+
[ Wed Sep 14 23:24:43 2022 ] Batch(47/243) done. Loss: 0.0168 lr:0.010000 network_time: 0.0316
|
481 |
+
[ Wed Sep 14 23:25:56 2022 ] Batch(147/243) done. Loss: 0.1102 lr:0.010000 network_time: 0.0275
|
482 |
+
[ Wed Sep 14 23:27:05 2022 ] Eval epoch: 65
|
483 |
+
[ Wed Sep 14 23:28:38 2022 ] Mean test loss of 796 batches: 2.2452545166015625.
|
484 |
+
[ Wed Sep 14 23:28:38 2022 ] Top1: 54.37%
|
485 |
+
[ Wed Sep 14 23:28:39 2022 ] Top5: 83.70%
|
486 |
+
[ Wed Sep 14 23:28:39 2022 ] Training epoch: 66
|
487 |
+
[ Wed Sep 14 23:28:45 2022 ] Batch(4/243) done. Loss: 0.0400 lr:0.010000 network_time: 0.0312
|
488 |
+
[ Wed Sep 14 23:29:58 2022 ] Batch(104/243) done. Loss: 0.0174 lr:0.010000 network_time: 0.0328
|
489 |
+
[ Wed Sep 14 23:31:11 2022 ] Batch(204/243) done. Loss: 0.0698 lr:0.010000 network_time: 0.0290
|
490 |
+
[ Wed Sep 14 23:31:39 2022 ] Eval epoch: 66
|
491 |
+
[ Wed Sep 14 23:33:11 2022 ] Mean test loss of 796 batches: 2.329601287841797.
|
492 |
+
[ Wed Sep 14 23:33:12 2022 ] Top1: 54.02%
|
493 |
+
[ Wed Sep 14 23:33:12 2022 ] Top5: 83.33%
|
494 |
+
[ Wed Sep 14 23:33:12 2022 ] Training epoch: 67
|
495 |
+
[ Wed Sep 14 23:34:01 2022 ] Batch(61/243) done. Loss: 0.0428 lr:0.010000 network_time: 0.0375
|
496 |
+
[ Wed Sep 14 23:35:13 2022 ] Batch(161/243) done. Loss: 0.0339 lr:0.010000 network_time: 0.0270
|
497 |
+
[ Wed Sep 14 23:36:13 2022 ] Eval epoch: 67
|
498 |
+
[ Wed Sep 14 23:37:46 2022 ] Mean test loss of 796 batches: 2.3496899604797363.
|
499 |
+
[ Wed Sep 14 23:37:46 2022 ] Top1: 53.81%
|
500 |
+
[ Wed Sep 14 23:37:46 2022 ] Top5: 83.23%
|
501 |
+
[ Wed Sep 14 23:37:47 2022 ] Training epoch: 68
|
502 |
+
[ Wed Sep 14 23:38:04 2022 ] Batch(18/243) done. Loss: 0.0441 lr:0.010000 network_time: 0.0321
|
503 |
+
[ Wed Sep 14 23:39:16 2022 ] Batch(118/243) done. Loss: 0.0339 lr:0.010000 network_time: 0.0282
|
504 |
+
[ Wed Sep 14 23:40:29 2022 ] Batch(218/243) done. Loss: 0.0333 lr:0.010000 network_time: 0.0314
|
505 |
+
[ Wed Sep 14 23:40:47 2022 ] Eval epoch: 68
|
506 |
+
[ Wed Sep 14 23:42:20 2022 ] Mean test loss of 796 batches: 2.2746517658233643.
|
507 |
+
[ Wed Sep 14 23:42:20 2022 ] Top1: 54.56%
|
508 |
+
[ Wed Sep 14 23:42:21 2022 ] Top5: 83.64%
|
509 |
+
[ Wed Sep 14 23:42:21 2022 ] Training epoch: 69
|
510 |
+
[ Wed Sep 14 23:43:19 2022 ] Batch(75/243) done. Loss: 0.0304 lr:0.010000 network_time: 0.0301
|
511 |
+
[ Wed Sep 14 23:44:32 2022 ] Batch(175/243) done. Loss: 0.0474 lr:0.010000 network_time: 0.0283
|
512 |
+
[ Wed Sep 14 23:45:21 2022 ] Eval epoch: 69
|
513 |
+
[ Wed Sep 14 23:46:54 2022 ] Mean test loss of 796 batches: 2.3214352130889893.
|
514 |
+
[ Wed Sep 14 23:46:55 2022 ] Top1: 54.18%
|
515 |
+
[ Wed Sep 14 23:46:55 2022 ] Top5: 83.58%
|
516 |
+
[ Wed Sep 14 23:46:56 2022 ] Training epoch: 70
|
517 |
+
[ Wed Sep 14 23:47:22 2022 ] Batch(32/243) done. Loss: 0.0169 lr:0.010000 network_time: 0.0282
|
518 |
+
[ Wed Sep 14 23:48:35 2022 ] Batch(132/243) done. Loss: 0.0310 lr:0.010000 network_time: 0.0441
|
519 |
+
[ Wed Sep 14 23:49:48 2022 ] Batch(232/243) done. Loss: 0.0086 lr:0.010000 network_time: 0.0269
|
520 |
+
[ Wed Sep 14 23:49:55 2022 ] Eval epoch: 70
|
521 |
+
[ Wed Sep 14 23:51:28 2022 ] Mean test loss of 796 batches: 2.321195125579834.
|
522 |
+
[ Wed Sep 14 23:51:29 2022 ] Top1: 54.32%
|
523 |
+
[ Wed Sep 14 23:51:29 2022 ] Top5: 83.51%
|
524 |
+
[ Wed Sep 14 23:51:29 2022 ] Training epoch: 71
|
525 |
+
[ Wed Sep 14 23:52:38 2022 ] Batch(89/243) done. Loss: 0.0126 lr:0.010000 network_time: 0.0265
|
526 |
+
[ Wed Sep 14 23:53:50 2022 ] Batch(189/243) done. Loss: 0.0313 lr:0.010000 network_time: 0.0274
|
527 |
+
[ Wed Sep 14 23:54:29 2022 ] Eval epoch: 71
|
528 |
+
[ Wed Sep 14 23:56:02 2022 ] Mean test loss of 796 batches: 2.401102304458618.
|
529 |
+
[ Wed Sep 14 23:56:02 2022 ] Top1: 53.23%
|
530 |
+
[ Wed Sep 14 23:56:03 2022 ] Top5: 82.83%
|
531 |
+
[ Wed Sep 14 23:56:03 2022 ] Training epoch: 72
|
532 |
+
[ Wed Sep 14 23:56:40 2022 ] Batch(46/243) done. Loss: 0.0246 lr:0.010000 network_time: 0.0278
|
533 |
+
[ Wed Sep 14 23:57:53 2022 ] Batch(146/243) done. Loss: 0.0394 lr:0.010000 network_time: 0.0282
|
534 |
+
[ Wed Sep 14 23:59:03 2022 ] Eval epoch: 72
|
535 |
+
[ Thu Sep 15 00:00:36 2022 ] Mean test loss of 796 batches: 2.392033576965332.
|
536 |
+
[ Thu Sep 15 00:00:37 2022 ] Top1: 54.03%
|
537 |
+
[ Thu Sep 15 00:00:37 2022 ] Top5: 83.16%
|
538 |
+
[ Thu Sep 15 00:00:37 2022 ] Training epoch: 73
|
539 |
+
[ Thu Sep 15 00:00:43 2022 ] Batch(3/243) done. Loss: 0.0221 lr:0.010000 network_time: 0.0276
|
540 |
+
[ Thu Sep 15 00:01:56 2022 ] Batch(103/243) done. Loss: 0.0159 lr:0.010000 network_time: 0.0272
|
541 |
+
[ Thu Sep 15 00:03:08 2022 ] Batch(203/243) done. Loss: 0.0126 lr:0.010000 network_time: 0.0346
|
542 |
+
[ Thu Sep 15 00:03:37 2022 ] Eval epoch: 73
|
543 |
+
[ Thu Sep 15 00:05:10 2022 ] Mean test loss of 796 batches: 2.3562662601470947.
|
544 |
+
[ Thu Sep 15 00:05:10 2022 ] Top1: 54.12%
|
545 |
+
[ Thu Sep 15 00:05:11 2022 ] Top5: 83.33%
|
546 |
+
[ Thu Sep 15 00:05:11 2022 ] Training epoch: 74
|
547 |
+
[ Thu Sep 15 00:05:58 2022 ] Batch(60/243) done. Loss: 0.0294 lr:0.010000 network_time: 0.0278
|
548 |
+
[ Thu Sep 15 00:07:11 2022 ] Batch(160/243) done. Loss: 0.0119 lr:0.010000 network_time: 0.0279
|
549 |
+
[ Thu Sep 15 00:08:11 2022 ] Eval epoch: 74
|
550 |
+
[ Thu Sep 15 00:09:43 2022 ] Mean test loss of 796 batches: 2.4100046157836914.
|
551 |
+
[ Thu Sep 15 00:09:44 2022 ] Top1: 53.70%
|
552 |
+
[ Thu Sep 15 00:09:44 2022 ] Top5: 83.22%
|
553 |
+
[ Thu Sep 15 00:09:44 2022 ] Training epoch: 75
|
554 |
+
[ Thu Sep 15 00:10:00 2022 ] Batch(17/243) done. Loss: 0.0336 lr:0.010000 network_time: 0.0269
|
555 |
+
[ Thu Sep 15 00:11:13 2022 ] Batch(117/243) done. Loss: 0.0248 lr:0.010000 network_time: 0.0274
|
556 |
+
[ Thu Sep 15 00:12:26 2022 ] Batch(217/243) done. Loss: 0.0063 lr:0.010000 network_time: 0.0320
|
557 |
+
[ Thu Sep 15 00:12:44 2022 ] Eval epoch: 75
|
558 |
+
[ Thu Sep 15 00:14:17 2022 ] Mean test loss of 796 batches: 2.353419065475464.
|
559 |
+
[ Thu Sep 15 00:14:17 2022 ] Top1: 54.40%
|
560 |
+
[ Thu Sep 15 00:14:18 2022 ] Top5: 83.38%
|
561 |
+
[ Thu Sep 15 00:14:18 2022 ] Training epoch: 76
|
562 |
+
[ Thu Sep 15 00:15:15 2022 ] Batch(74/243) done. Loss: 0.0206 lr:0.010000 network_time: 0.0268
|
563 |
+
[ Thu Sep 15 00:16:28 2022 ] Batch(174/243) done. Loss: 0.0125 lr:0.010000 network_time: 0.0327
|
564 |
+
[ Thu Sep 15 00:17:18 2022 ] Eval epoch: 76
|
565 |
+
[ Thu Sep 15 00:18:51 2022 ] Mean test loss of 796 batches: 2.3497185707092285.
|
566 |
+
[ Thu Sep 15 00:18:51 2022 ] Top1: 54.24%
|
567 |
+
[ Thu Sep 15 00:18:52 2022 ] Top5: 83.60%
|
568 |
+
[ Thu Sep 15 00:18:52 2022 ] Training epoch: 77
|
569 |
+
[ Thu Sep 15 00:19:18 2022 ] Batch(31/243) done. Loss: 0.0244 lr:0.010000 network_time: 0.0286
|
570 |
+
[ Thu Sep 15 00:20:31 2022 ] Batch(131/243) done. Loss: 0.0173 lr:0.010000 network_time: 0.0315
|
571 |
+
[ Thu Sep 15 00:21:44 2022 ] Batch(231/243) done. Loss: 0.0246 lr:0.010000 network_time: 0.0267
|
572 |
+
[ Thu Sep 15 00:21:52 2022 ] Eval epoch: 77
|
573 |
+
[ Thu Sep 15 00:23:25 2022 ] Mean test loss of 796 batches: 2.3904168605804443.
|
574 |
+
[ Thu Sep 15 00:23:25 2022 ] Top1: 54.23%
|
575 |
+
[ Thu Sep 15 00:23:26 2022 ] Top5: 83.21%
|
576 |
+
[ Thu Sep 15 00:23:26 2022 ] Training epoch: 78
|
577 |
+
[ Thu Sep 15 00:24:33 2022 ] Batch(88/243) done. Loss: 0.0248 lr:0.010000 network_time: 0.0272
|
578 |
+
[ Thu Sep 15 00:25:46 2022 ] Batch(188/243) done. Loss: 0.0154 lr:0.010000 network_time: 0.0273
|
579 |
+
[ Thu Sep 15 00:26:25 2022 ] Eval epoch: 78
|
580 |
+
[ Thu Sep 15 00:27:58 2022 ] Mean test loss of 796 batches: 2.406836986541748.
|
581 |
+
[ Thu Sep 15 00:27:59 2022 ] Top1: 54.40%
|
582 |
+
[ Thu Sep 15 00:27:59 2022 ] Top5: 83.45%
|
583 |
+
[ Thu Sep 15 00:27:59 2022 ] Training epoch: 79
|
584 |
+
[ Thu Sep 15 00:28:35 2022 ] Batch(45/243) done. Loss: 0.0187 lr:0.010000 network_time: 0.0270
|
585 |
+
[ Thu Sep 15 00:29:48 2022 ] Batch(145/243) done. Loss: 0.0228 lr:0.010000 network_time: 0.0348
|
586 |
+
[ Thu Sep 15 00:30:59 2022 ] Eval epoch: 79
|
587 |
+
[ Thu Sep 15 00:32:32 2022 ] Mean test loss of 796 batches: 2.3902182579040527.
|
588 |
+
[ Thu Sep 15 00:32:32 2022 ] Top1: 54.54%
|
589 |
+
[ Thu Sep 15 00:32:33 2022 ] Top5: 83.39%
|
590 |
+
[ Thu Sep 15 00:32:33 2022 ] Training epoch: 80
|
591 |
+
[ Thu Sep 15 00:32:38 2022 ] Batch(2/243) done. Loss: 0.0107 lr:0.010000 network_time: 0.0275
|
592 |
+
[ Thu Sep 15 00:33:51 2022 ] Batch(102/243) done. Loss: 0.0209 lr:0.010000 network_time: 0.0309
|
593 |
+
[ Thu Sep 15 00:35:04 2022 ] Batch(202/243) done. Loss: 0.0197 lr:0.010000 network_time: 0.0264
|
594 |
+
[ Thu Sep 15 00:35:33 2022 ] Eval epoch: 80
|
595 |
+
[ Thu Sep 15 00:37:05 2022 ] Mean test loss of 796 batches: 2.3967974185943604.
|
596 |
+
[ Thu Sep 15 00:37:06 2022 ] Top1: 54.35%
|
597 |
+
[ Thu Sep 15 00:37:06 2022 ] Top5: 83.47%
|
598 |
+
[ Thu Sep 15 00:37:06 2022 ] Training epoch: 81
|
599 |
+
[ Thu Sep 15 00:37:53 2022 ] Batch(59/243) done. Loss: 0.0184 lr:0.001000 network_time: 0.0276
|
600 |
+
[ Thu Sep 15 00:39:06 2022 ] Batch(159/243) done. Loss: 0.0099 lr:0.001000 network_time: 0.0268
|
601 |
+
[ Thu Sep 15 00:40:06 2022 ] Eval epoch: 81
|
602 |
+
[ Thu Sep 15 00:41:38 2022 ] Mean test loss of 796 batches: 2.3979151248931885.
|
603 |
+
[ Thu Sep 15 00:41:39 2022 ] Top1: 54.10%
|
604 |
+
[ Thu Sep 15 00:41:39 2022 ] Top5: 83.37%
|
605 |
+
[ Thu Sep 15 00:41:39 2022 ] Training epoch: 82
|
606 |
+
[ Thu Sep 15 00:41:55 2022 ] Batch(16/243) done. Loss: 0.0092 lr:0.001000 network_time: 0.0291
|
607 |
+
[ Thu Sep 15 00:43:08 2022 ] Batch(116/243) done. Loss: 0.0069 lr:0.001000 network_time: 0.0308
|
608 |
+
[ Thu Sep 15 00:44:20 2022 ] Batch(216/243) done. Loss: 0.0327 lr:0.001000 network_time: 0.0267
|
609 |
+
[ Thu Sep 15 00:44:40 2022 ] Eval epoch: 82
|
610 |
+
[ Thu Sep 15 00:46:12 2022 ] Mean test loss of 796 batches: 2.402644395828247.
|
611 |
+
[ Thu Sep 15 00:46:12 2022 ] Top1: 54.29%
|
612 |
+
[ Thu Sep 15 00:46:13 2022 ] Top5: 83.50%
|
613 |
+
[ Thu Sep 15 00:46:13 2022 ] Training epoch: 83
|
614 |
+
[ Thu Sep 15 00:47:09 2022 ] Batch(73/243) done. Loss: 0.0706 lr:0.001000 network_time: 0.0351
|
615 |
+
[ Thu Sep 15 00:48:22 2022 ] Batch(173/243) done. Loss: 0.0146 lr:0.001000 network_time: 0.0319
|
616 |
+
[ Thu Sep 15 00:49:13 2022 ] Eval epoch: 83
|
617 |
+
[ Thu Sep 15 00:50:45 2022 ] Mean test loss of 796 batches: 2.4071590900421143.
|
618 |
+
[ Thu Sep 15 00:50:46 2022 ] Top1: 54.04%
|
619 |
+
[ Thu Sep 15 00:50:46 2022 ] Top5: 83.16%
|
620 |
+
[ Thu Sep 15 00:50:46 2022 ] Training epoch: 84
|
621 |
+
[ Thu Sep 15 00:51:12 2022 ] Batch(30/243) done. Loss: 0.0100 lr:0.001000 network_time: 0.0293
|
622 |
+
[ Thu Sep 15 00:52:24 2022 ] Batch(130/243) done. Loss: 0.0056 lr:0.001000 network_time: 0.0277
|
623 |
+
[ Thu Sep 15 00:53:37 2022 ] Batch(230/243) done. Loss: 0.0132 lr:0.001000 network_time: 0.0276
|
624 |
+
[ Thu Sep 15 00:53:46 2022 ] Eval epoch: 84
|
625 |
+
[ Thu Sep 15 00:55:19 2022 ] Mean test loss of 796 batches: 2.37986159324646.
|
626 |
+
[ Thu Sep 15 00:55:19 2022 ] Top1: 54.50%
|
627 |
+
[ Thu Sep 15 00:55:20 2022 ] Top5: 83.56%
|
628 |
+
[ Thu Sep 15 00:55:20 2022 ] Training epoch: 85
|
629 |
+
[ Thu Sep 15 00:56:27 2022 ] Batch(87/243) done. Loss: 0.0309 lr:0.001000 network_time: 0.0269
|
630 |
+
[ Thu Sep 15 00:57:40 2022 ] Batch(187/243) done. Loss: 0.0386 lr:0.001000 network_time: 0.0278
|
631 |
+
[ Thu Sep 15 00:58:20 2022 ] Eval epoch: 85
|
632 |
+
[ Thu Sep 15 00:59:53 2022 ] Mean test loss of 796 batches: 2.370398759841919.
|
633 |
+
[ Thu Sep 15 00:59:53 2022 ] Top1: 54.49%
|
634 |
+
[ Thu Sep 15 00:59:54 2022 ] Top5: 83.59%
|
635 |
+
[ Thu Sep 15 00:59:54 2022 ] Training epoch: 86
|
636 |
+
[ Thu Sep 15 01:00:30 2022 ] Batch(44/243) done. Loss: 0.0253 lr:0.001000 network_time: 0.0271
|
637 |
+
[ Thu Sep 15 01:01:43 2022 ] Batch(144/243) done. Loss: 0.0103 lr:0.001000 network_time: 0.0267
|
638 |
+
[ Thu Sep 15 01:02:54 2022 ] Eval epoch: 86
|
639 |
+
[ Thu Sep 15 01:04:27 2022 ] Mean test loss of 796 batches: 2.41347599029541.
|
640 |
+
[ Thu Sep 15 01:04:27 2022 ] Top1: 54.08%
|
641 |
+
[ Thu Sep 15 01:04:28 2022 ] Top5: 83.20%
|
642 |
+
[ Thu Sep 15 01:04:28 2022 ] Training epoch: 87
|
643 |
+
[ Thu Sep 15 01:04:32 2022 ] Batch(1/243) done. Loss: 0.0237 lr:0.001000 network_time: 0.0335
|
644 |
+
[ Thu Sep 15 01:05:45 2022 ] Batch(101/243) done. Loss: 0.0139 lr:0.001000 network_time: 0.0310
|
645 |
+
[ Thu Sep 15 01:06:58 2022 ] Batch(201/243) done. Loss: 0.0094 lr:0.001000 network_time: 0.0274
|
646 |
+
[ Thu Sep 15 01:07:28 2022 ] Eval epoch: 87
|
647 |
+
[ Thu Sep 15 01:09:01 2022 ] Mean test loss of 796 batches: 2.3874456882476807.
|
648 |
+
[ Thu Sep 15 01:09:01 2022 ] Top1: 54.32%
|
649 |
+
[ Thu Sep 15 01:09:01 2022 ] Top5: 83.40%
|
650 |
+
[ Thu Sep 15 01:09:02 2022 ] Training epoch: 88
|
651 |
+
[ Thu Sep 15 01:09:47 2022 ] Batch(58/243) done. Loss: 0.0042 lr:0.001000 network_time: 0.0244
|
652 |
+
[ Thu Sep 15 01:11:00 2022 ] Batch(158/243) done. Loss: 0.0253 lr:0.001000 network_time: 0.0332
|
653 |
+
[ Thu Sep 15 01:12:01 2022 ] Eval epoch: 88
|
654 |
+
[ Thu Sep 15 01:13:34 2022 ] Mean test loss of 796 batches: 2.40490460395813.
|
655 |
+
[ Thu Sep 15 01:13:35 2022 ] Top1: 54.15%
|
656 |
+
[ Thu Sep 15 01:13:35 2022 ] Top5: 83.23%
|
657 |
+
[ Thu Sep 15 01:13:35 2022 ] Training epoch: 89
|
658 |
+
[ Thu Sep 15 01:13:50 2022 ] Batch(15/243) done. Loss: 0.0143 lr:0.001000 network_time: 0.0278
|
659 |
+
[ Thu Sep 15 01:15:02 2022 ] Batch(115/243) done. Loss: 0.0147 lr:0.001000 network_time: 0.0268
|
660 |
+
[ Thu Sep 15 01:16:15 2022 ] Batch(215/243) done. Loss: 0.0171 lr:0.001000 network_time: 0.0322
|
661 |
+
[ Thu Sep 15 01:16:35 2022 ] Eval epoch: 89
|
662 |
+
[ Thu Sep 15 01:18:08 2022 ] Mean test loss of 796 batches: 2.404038429260254.
|
663 |
+
[ Thu Sep 15 01:18:08 2022 ] Top1: 54.38%
|
664 |
+
[ Thu Sep 15 01:18:08 2022 ] Top5: 83.37%
|
665 |
+
[ Thu Sep 15 01:18:09 2022 ] Training epoch: 90
|
666 |
+
[ Thu Sep 15 01:19:04 2022 ] Batch(72/243) done. Loss: 0.0041 lr:0.001000 network_time: 0.0265
|
667 |
+
[ Thu Sep 15 01:20:17 2022 ] Batch(172/243) done. Loss: 0.0216 lr:0.001000 network_time: 0.0229
|
668 |
+
[ Thu Sep 15 01:21:08 2022 ] Eval epoch: 90
|
669 |
+
[ Thu Sep 15 01:22:42 2022 ] Mean test loss of 796 batches: 2.388312578201294.
|
670 |
+
[ Thu Sep 15 01:22:42 2022 ] Top1: 54.44%
|
671 |
+
[ Thu Sep 15 01:22:42 2022 ] Top5: 83.45%
|
672 |
+
[ Thu Sep 15 01:22:42 2022 ] Training epoch: 91
|
673 |
+
[ Thu Sep 15 01:23:07 2022 ] Batch(29/243) done. Loss: 0.0074 lr:0.001000 network_time: 0.0278
|
674 |
+
[ Thu Sep 15 01:24:20 2022 ] Batch(129/243) done. Loss: 0.0215 lr:0.001000 network_time: 0.0301
|
675 |
+
[ Thu Sep 15 01:25:33 2022 ] Batch(229/243) done. Loss: 0.0123 lr:0.001000 network_time: 0.0303
|
676 |
+
[ Thu Sep 15 01:25:42 2022 ] Eval epoch: 91
|
677 |
+
[ Thu Sep 15 01:27:15 2022 ] Mean test loss of 796 batches: 2.387159824371338.
|
678 |
+
[ Thu Sep 15 01:27:15 2022 ] Top1: 54.49%
|
679 |
+
[ Thu Sep 15 01:27:16 2022 ] Top5: 83.50%
|
680 |
+
[ Thu Sep 15 01:27:16 2022 ] Training epoch: 92
|
681 |
+
[ Thu Sep 15 01:28:22 2022 ] Batch(86/243) done. Loss: 0.0077 lr:0.001000 network_time: 0.0285
|
682 |
+
[ Thu Sep 15 01:29:35 2022 ] Batch(186/243) done. Loss: 0.0153 lr:0.001000 network_time: 0.0272
|
683 |
+
[ Thu Sep 15 01:30:16 2022 ] Eval epoch: 92
|
684 |
+
[ Thu Sep 15 01:31:49 2022 ] Mean test loss of 796 batches: 2.400331735610962.
|
685 |
+
[ Thu Sep 15 01:31:49 2022 ] Top1: 54.54%
|
686 |
+
[ Thu Sep 15 01:31:49 2022 ] Top5: 83.64%
|
687 |
+
[ Thu Sep 15 01:31:50 2022 ] Training epoch: 93
|
688 |
+
[ Thu Sep 15 01:32:24 2022 ] Batch(43/243) done. Loss: 0.0090 lr:0.001000 network_time: 0.0501
|
689 |
+
[ Thu Sep 15 01:33:37 2022 ] Batch(143/243) done. Loss: 0.0139 lr:0.001000 network_time: 0.0314
|
690 |
+
[ Thu Sep 15 01:34:49 2022 ] Eval epoch: 93
|
691 |
+
[ Thu Sep 15 01:36:22 2022 ] Mean test loss of 796 batches: 2.417159080505371.
|
692 |
+
[ Thu Sep 15 01:36:22 2022 ] Top1: 54.29%
|
693 |
+
[ Thu Sep 15 01:36:23 2022 ] Top5: 83.38%
|
694 |
+
[ Thu Sep 15 01:36:23 2022 ] Training epoch: 94
|
695 |
+
[ Thu Sep 15 01:36:27 2022 ] Batch(0/243) done. Loss: 0.0224 lr:0.001000 network_time: 0.0792
|
696 |
+
[ Thu Sep 15 01:37:40 2022 ] Batch(100/243) done. Loss: 0.0111 lr:0.001000 network_time: 0.0296
|
697 |
+
[ Thu Sep 15 01:38:52 2022 ] Batch(200/243) done. Loss: 0.0087 lr:0.001000 network_time: 0.0284
|
698 |
+
[ Thu Sep 15 01:39:23 2022 ] Eval epoch: 94
|
699 |
+
[ Thu Sep 15 01:40:56 2022 ] Mean test loss of 796 batches: 2.390749216079712.
|
700 |
+
[ Thu Sep 15 01:40:56 2022 ] Top1: 54.04%
|
701 |
+
[ Thu Sep 15 01:40:57 2022 ] Top5: 83.39%
|
702 |
+
[ Thu Sep 15 01:40:57 2022 ] Training epoch: 95
|
703 |
+
[ Thu Sep 15 01:41:42 2022 ] Batch(57/243) done. Loss: 0.0137 lr:0.001000 network_time: 0.0269
|
704 |
+
[ Thu Sep 15 01:42:55 2022 ] Batch(157/243) done. Loss: 0.0110 lr:0.001000 network_time: 0.0282
|
705 |
+
[ Thu Sep 15 01:43:57 2022 ] Eval epoch: 95
|
706 |
+
[ Thu Sep 15 01:45:29 2022 ] Mean test loss of 796 batches: 2.38088321685791.
|
707 |
+
[ Thu Sep 15 01:45:30 2022 ] Top1: 54.41%
|
708 |
+
[ Thu Sep 15 01:45:30 2022 ] Top5: 83.42%
|
709 |
+
[ Thu Sep 15 01:45:30 2022 ] Training epoch: 96
|
710 |
+
[ Thu Sep 15 01:45:44 2022 ] Batch(14/243) done. Loss: 0.0109 lr:0.001000 network_time: 0.0302
|
711 |
+
[ Thu Sep 15 01:46:57 2022 ] Batch(114/243) done. Loss: 0.0126 lr:0.001000 network_time: 0.0279
|
712 |
+
[ Thu Sep 15 01:48:09 2022 ] Batch(214/243) done. Loss: 0.0165 lr:0.001000 network_time: 0.0282
|
713 |
+
[ Thu Sep 15 01:48:30 2022 ] Eval epoch: 96
|
714 |
+
[ Thu Sep 15 01:50:03 2022 ] Mean test loss of 796 batches: 2.4235730171203613.
|
715 |
+
[ Thu Sep 15 01:50:03 2022 ] Top1: 54.09%
|
716 |
+
[ Thu Sep 15 01:50:03 2022 ] Top5: 83.24%
|
717 |
+
[ Thu Sep 15 01:50:04 2022 ] Training epoch: 97
|
718 |
+
[ Thu Sep 15 01:50:59 2022 ] Batch(71/243) done. Loss: 0.0114 lr:0.001000 network_time: 0.0276
|
719 |
+
[ Thu Sep 15 01:52:12 2022 ] Batch(171/243) done. Loss: 0.0131 lr:0.001000 network_time: 0.0273
|
720 |
+
[ Thu Sep 15 01:53:03 2022 ] Eval epoch: 97
|
721 |
+
[ Thu Sep 15 01:54:36 2022 ] Mean test loss of 796 batches: 2.4135332107543945.
|
722 |
+
[ Thu Sep 15 01:54:37 2022 ] Top1: 54.24%
|
723 |
+
[ Thu Sep 15 01:54:37 2022 ] Top5: 83.38%
|
724 |
+
[ Thu Sep 15 01:54:37 2022 ] Training epoch: 98
|
725 |
+
[ Thu Sep 15 01:55:01 2022 ] Batch(28/243) done. Loss: 0.0141 lr:0.001000 network_time: 0.0267
|
726 |
+
[ Thu Sep 15 01:56:14 2022 ] Batch(128/243) done. Loss: 0.0163 lr:0.001000 network_time: 0.0277
|
727 |
+
[ Thu Sep 15 01:57:27 2022 ] Batch(228/243) done. Loss: 0.0186 lr:0.001000 network_time: 0.0282
|
728 |
+
[ Thu Sep 15 01:57:37 2022 ] Eval epoch: 98
|
729 |
+
[ Thu Sep 15 01:59:10 2022 ] Mean test loss of 796 batches: 2.4122824668884277.
|
730 |
+
[ Thu Sep 15 01:59:10 2022 ] Top1: 54.46%
|
731 |
+
[ Thu Sep 15 01:59:10 2022 ] Top5: 83.42%
|
732 |
+
[ Thu Sep 15 01:59:11 2022 ] Training epoch: 99
|
733 |
+
[ Thu Sep 15 02:00:16 2022 ] Batch(85/243) done. Loss: 0.0143 lr:0.001000 network_time: 0.0274
|
734 |
+
[ Thu Sep 15 02:01:29 2022 ] Batch(185/243) done. Loss: 0.0190 lr:0.001000 network_time: 0.0283
|
735 |
+
[ Thu Sep 15 02:02:11 2022 ] Eval epoch: 99
|
736 |
+
[ Thu Sep 15 02:03:43 2022 ] Mean test loss of 796 batches: 2.417081117630005.
|
737 |
+
[ Thu Sep 15 02:03:44 2022 ] Top1: 54.22%
|
738 |
+
[ Thu Sep 15 02:03:44 2022 ] Top5: 83.36%
|
739 |
+
[ Thu Sep 15 02:03:44 2022 ] Training epoch: 100
|
740 |
+
[ Thu Sep 15 02:04:18 2022 ] Batch(42/243) done. Loss: 0.0297 lr:0.001000 network_time: 0.0278
|
741 |
+
[ Thu Sep 15 02:05:31 2022 ] Batch(142/243) done. Loss: 0.0040 lr:0.001000 network_time: 0.0267
|
742 |
+
[ Thu Sep 15 02:06:44 2022 ] Batch(242/243) done. Loss: 0.0077 lr:0.001000 network_time: 0.0278
|
743 |
+
[ Thu Sep 15 02:06:44 2022 ] Eval epoch: 100
|
744 |
+
[ Thu Sep 15 02:08:16 2022 ] Mean test loss of 796 batches: 2.3927650451660156.
|
745 |
+
[ Thu Sep 15 02:08:17 2022 ] Top1: 54.51%
|
746 |
+
[ Thu Sep 15 02:08:17 2022 ] Top5: 83.63%
|
747 |
+
[ Thu Sep 15 02:08:17 2022 ] Training epoch: 101
|
748 |
+
[ Thu Sep 15 02:09:33 2022 ] Batch(99/243) done. Loss: 0.0114 lr:0.000100 network_time: 0.0298
|
749 |
+
[ Thu Sep 15 02:10:46 2022 ] Batch(199/243) done. Loss: 0.0074 lr:0.000100 network_time: 0.0264
|
750 |
+
[ Thu Sep 15 02:11:17 2022 ] Eval epoch: 101
|
751 |
+
[ Thu Sep 15 02:12:50 2022 ] Mean test loss of 796 batches: 2.3835721015930176.
|
752 |
+
[ Thu Sep 15 02:12:50 2022 ] Top1: 54.72%
|
753 |
+
[ Thu Sep 15 02:12:50 2022 ] Top5: 83.62%
|
754 |
+
[ Thu Sep 15 02:12:51 2022 ] Training epoch: 102
|
755 |
+
[ Thu Sep 15 02:13:35 2022 ] Batch(56/243) done. Loss: 0.0081 lr:0.000100 network_time: 0.0329
|
756 |
+
[ Thu Sep 15 02:14:48 2022 ] Batch(156/243) done. Loss: 0.0097 lr:0.000100 network_time: 0.0268
|
757 |
+
[ Thu Sep 15 02:15:50 2022 ] Eval epoch: 102
|
758 |
+
[ Thu Sep 15 02:17:23 2022 ] Mean test loss of 796 batches: 2.402935028076172.
|
759 |
+
[ Thu Sep 15 02:17:23 2022 ] Top1: 54.45%
|
760 |
+
[ Thu Sep 15 02:17:24 2022 ] Top5: 83.50%
|
761 |
+
[ Thu Sep 15 02:17:24 2022 ] Training epoch: 103
|
762 |
+
[ Thu Sep 15 02:17:37 2022 ] Batch(13/243) done. Loss: 0.0062 lr:0.000100 network_time: 0.0318
|
763 |
+
[ Thu Sep 15 02:18:50 2022 ] Batch(113/243) done. Loss: 0.0048 lr:0.000100 network_time: 0.0277
|
764 |
+
[ Thu Sep 15 02:20:03 2022 ] Batch(213/243) done. Loss: 0.0063 lr:0.000100 network_time: 0.0273
|
765 |
+
[ Thu Sep 15 02:20:24 2022 ] Eval epoch: 103
|
766 |
+
[ Thu Sep 15 02:21:57 2022 ] Mean test loss of 796 batches: 2.4096858501434326.
|
767 |
+
[ Thu Sep 15 02:21:57 2022 ] Top1: 53.87%
|
768 |
+
[ Thu Sep 15 02:21:57 2022 ] Top5: 83.20%
|
769 |
+
[ Thu Sep 15 02:21:58 2022 ] Training epoch: 104
|
770 |
+
[ Thu Sep 15 02:22:52 2022 ] Batch(70/243) done. Loss: 0.0091 lr:0.000100 network_time: 0.0273
|
771 |
+
[ Thu Sep 15 02:24:05 2022 ] Batch(170/243) done. Loss: 0.0122 lr:0.000100 network_time: 0.0311
|
772 |
+
[ Thu Sep 15 02:24:57 2022 ] Eval epoch: 104
|
773 |
+
[ Thu Sep 15 02:26:30 2022 ] Mean test loss of 796 batches: 2.4239163398742676.
|
774 |
+
[ Thu Sep 15 02:26:30 2022 ] Top1: 54.40%
|
775 |
+
[ Thu Sep 15 02:26:31 2022 ] Top5: 83.51%
|
776 |
+
[ Thu Sep 15 02:26:31 2022 ] Training epoch: 105
|
777 |
+
[ Thu Sep 15 02:26:54 2022 ] Batch(27/243) done. Loss: 0.0324 lr:0.000100 network_time: 0.0311
|
778 |
+
[ Thu Sep 15 02:28:07 2022 ] Batch(127/243) done. Loss: 0.0078 lr:0.000100 network_time: 0.0313
|
779 |
+
[ Thu Sep 15 02:29:20 2022 ] Batch(227/243) done. Loss: 0.0403 lr:0.000100 network_time: 0.0328
|
780 |
+
[ Thu Sep 15 02:29:31 2022 ] Eval epoch: 105
|
781 |
+
[ Thu Sep 15 02:31:03 2022 ] Mean test loss of 796 batches: 2.446220874786377.
|
782 |
+
[ Thu Sep 15 02:31:04 2022 ] Top1: 53.80%
|
783 |
+
[ Thu Sep 15 02:31:04 2022 ] Top5: 83.13%
|
784 |
+
[ Thu Sep 15 02:31:04 2022 ] Training epoch: 106
|
785 |
+
[ Thu Sep 15 02:32:09 2022 ] Batch(84/243) done. Loss: 0.0101 lr:0.000100 network_time: 0.0266
|
786 |
+
[ Thu Sep 15 02:33:22 2022 ] Batch(184/243) done. Loss: 0.0108 lr:0.000100 network_time: 0.0369
|
787 |
+
[ Thu Sep 15 02:34:04 2022 ] Eval epoch: 106
|
788 |
+
[ Thu Sep 15 02:35:37 2022 ] Mean test loss of 796 batches: 2.384615659713745.
|
789 |
+
[ Thu Sep 15 02:35:38 2022 ] Top1: 54.44%
|
790 |
+
[ Thu Sep 15 02:35:38 2022 ] Top5: 83.58%
|
791 |
+
[ Thu Sep 15 02:35:38 2022 ] Training epoch: 107
|
792 |
+
[ Thu Sep 15 02:36:12 2022 ] Batch(41/243) done. Loss: 0.0059 lr:0.000100 network_time: 0.0267
|
793 |
+
[ Thu Sep 15 02:37:24 2022 ] Batch(141/243) done. Loss: 0.0183 lr:0.000100 network_time: 0.0275
|
794 |
+
[ Thu Sep 15 02:38:37 2022 ] Batch(241/243) done. Loss: 0.0087 lr:0.000100 network_time: 0.0357
|
795 |
+
[ Thu Sep 15 02:38:38 2022 ] Eval epoch: 107
|
796 |
+
[ Thu Sep 15 02:40:11 2022 ] Mean test loss of 796 batches: 2.3720390796661377.
|
797 |
+
[ Thu Sep 15 02:40:12 2022 ] Top1: 54.51%
|
798 |
+
[ Thu Sep 15 02:40:12 2022 ] Top5: 83.78%
|
799 |
+
[ Thu Sep 15 02:40:12 2022 ] Training epoch: 108
|
800 |
+
[ Thu Sep 15 02:41:27 2022 ] Batch(98/243) done. Loss: 0.0098 lr:0.000100 network_time: 0.0312
|
801 |
+
[ Thu Sep 15 02:42:40 2022 ] Batch(198/243) done. Loss: 0.0157 lr:0.000100 network_time: 0.0335
|
802 |
+
[ Thu Sep 15 02:43:12 2022 ] Eval epoch: 108
|
803 |
+
[ Thu Sep 15 02:44:45 2022 ] Mean test loss of 796 batches: 2.4088966846466064.
|
804 |
+
[ Thu Sep 15 02:44:45 2022 ] Top1: 54.23%
|
805 |
+
[ Thu Sep 15 02:44:46 2022 ] Top5: 83.49%
|
806 |
+
[ Thu Sep 15 02:44:46 2022 ] Training epoch: 109
|
807 |
+
[ Thu Sep 15 02:45:29 2022 ] Batch(55/243) done. Loss: 0.0081 lr:0.000100 network_time: 0.0278
|
808 |
+
[ Thu Sep 15 02:46:42 2022 ] Batch(155/243) done. Loss: 0.0096 lr:0.000100 network_time: 0.0290
|
809 |
+
[ Thu Sep 15 02:47:45 2022 ] Eval epoch: 109
|
810 |
+
[ Thu Sep 15 02:49:18 2022 ] Mean test loss of 796 batches: 2.4085729122161865.
|
811 |
+
[ Thu Sep 15 02:49:19 2022 ] Top1: 54.15%
|
812 |
+
[ Thu Sep 15 02:49:19 2022 ] Top5: 83.47%
|
813 |
+
[ Thu Sep 15 02:49:19 2022 ] Training epoch: 110
|
814 |
+
[ Thu Sep 15 02:49:32 2022 ] Batch(12/243) done. Loss: 0.0069 lr:0.000100 network_time: 0.0312
|
815 |
+
[ Thu Sep 15 02:50:44 2022 ] Batch(112/243) done. Loss: 0.0133 lr:0.000100 network_time: 0.0290
|
816 |
+
[ Thu Sep 15 02:51:57 2022 ] Batch(212/243) done. Loss: 0.0086 lr:0.000100 network_time: 0.0279
|
817 |
+
[ Thu Sep 15 02:52:19 2022 ] Eval epoch: 110
|
818 |
+
[ Thu Sep 15 02:53:52 2022 ] Mean test loss of 796 batches: 2.4391942024230957.
|
819 |
+
[ Thu Sep 15 02:53:52 2022 ] Top1: 54.12%
|
820 |
+
[ Thu Sep 15 02:53:53 2022 ] Top5: 83.40%
|
821 |
+
[ Thu Sep 15 02:53:53 2022 ] Training epoch: 111
|
822 |
+
[ Thu Sep 15 02:54:47 2022 ] Batch(69/243) done. Loss: 0.0309 lr:0.000100 network_time: 0.0285
|
823 |
+
[ Thu Sep 15 02:55:59 2022 ] Batch(169/243) done. Loss: 0.0130 lr:0.000100 network_time: 0.0274
|
824 |
+
[ Thu Sep 15 02:56:53 2022 ] Eval epoch: 111
|
825 |
+
[ Thu Sep 15 02:58:25 2022 ] Mean test loss of 796 batches: 2.412464141845703.
|
826 |
+
[ Thu Sep 15 02:58:25 2022 ] Top1: 54.33%
|
827 |
+
[ Thu Sep 15 02:58:26 2022 ] Top5: 83.24%
|
828 |
+
[ Thu Sep 15 02:58:26 2022 ] Training epoch: 112
|
829 |
+
[ Thu Sep 15 02:58:49 2022 ] Batch(26/243) done. Loss: 0.0087 lr:0.000100 network_time: 0.0325
|
830 |
+
[ Thu Sep 15 03:00:01 2022 ] Batch(126/243) done. Loss: 0.0126 lr:0.000100 network_time: 0.0319
|
831 |
+
[ Thu Sep 15 03:01:14 2022 ] Batch(226/243) done. Loss: 0.0311 lr:0.000100 network_time: 0.0269
|
832 |
+
[ Thu Sep 15 03:01:26 2022 ] Eval epoch: 112
|
833 |
+
[ Thu Sep 15 03:02:59 2022 ] Mean test loss of 796 batches: 2.444413900375366.
|
834 |
+
[ Thu Sep 15 03:02:59 2022 ] Top1: 53.70%
|
835 |
+
[ Thu Sep 15 03:02:59 2022 ] Top5: 82.84%
|
836 |
+
[ Thu Sep 15 03:03:00 2022 ] Training epoch: 113
|
837 |
+
[ Thu Sep 15 03:04:04 2022 ] Batch(83/243) done. Loss: 0.0062 lr:0.000100 network_time: 0.0278
|
838 |
+
[ Thu Sep 15 03:05:16 2022 ] Batch(183/243) done. Loss: 0.0063 lr:0.000100 network_time: 0.0313
|
839 |
+
[ Thu Sep 15 03:06:00 2022 ] Eval epoch: 113
|
840 |
+
[ Thu Sep 15 03:07:32 2022 ] Mean test loss of 796 batches: 2.4518001079559326.
|
841 |
+
[ Thu Sep 15 03:07:32 2022 ] Top1: 54.17%
|
842 |
+
[ Thu Sep 15 03:07:33 2022 ] Top5: 83.25%
|
843 |
+
[ Thu Sep 15 03:07:33 2022 ] Training epoch: 114
|
844 |
+
[ Thu Sep 15 03:08:05 2022 ] Batch(40/243) done. Loss: 0.0074 lr:0.000100 network_time: 0.0309
|
845 |
+
[ Thu Sep 15 03:09:18 2022 ] Batch(140/243) done. Loss: 0.0063 lr:0.000100 network_time: 0.0328
|
846 |
+
[ Thu Sep 15 03:10:31 2022 ] Batch(240/243) done. Loss: 0.0074 lr:0.000100 network_time: 0.0273
|
847 |
+
[ Thu Sep 15 03:10:33 2022 ] Eval epoch: 114
|
848 |
+
[ Thu Sep 15 03:12:04 2022 ] Mean test loss of 796 batches: 2.400949478149414.
|
849 |
+
[ Thu Sep 15 03:12:05 2022 ] Top1: 54.15%
|
850 |
+
[ Thu Sep 15 03:12:05 2022 ] Top5: 83.42%
|
851 |
+
[ Thu Sep 15 03:12:05 2022 ] Training epoch: 115
|
852 |
+
[ Thu Sep 15 03:13:19 2022 ] Batch(97/243) done. Loss: 0.0092 lr:0.000100 network_time: 0.0287
|
853 |
+
[ Thu Sep 15 03:14:32 2022 ] Batch(197/243) done. Loss: 0.0152 lr:0.000100 network_time: 0.0226
|
854 |
+
[ Thu Sep 15 03:15:05 2022 ] Eval epoch: 115
|
855 |
+
[ Thu Sep 15 03:16:37 2022 ] Mean test loss of 796 batches: 2.374425172805786.
|
856 |
+
[ Thu Sep 15 03:16:37 2022 ] Top1: 54.36%
|
857 |
+
[ Thu Sep 15 03:16:37 2022 ] Top5: 83.42%
|
858 |
+
[ Thu Sep 15 03:16:38 2022 ] Training epoch: 116
|
859 |
+
[ Thu Sep 15 03:17:20 2022 ] Batch(54/243) done. Loss: 0.0063 lr:0.000100 network_time: 0.0280
|
860 |
+
[ Thu Sep 15 03:18:33 2022 ] Batch(154/243) done. Loss: 0.0058 lr:0.000100 network_time: 0.0323
|
861 |
+
[ Thu Sep 15 03:19:37 2022 ] Eval epoch: 116
|
862 |
+
[ Thu Sep 15 03:21:10 2022 ] Mean test loss of 796 batches: 2.3895974159240723.
|
863 |
+
[ Thu Sep 15 03:21:11 2022 ] Top1: 54.53%
|
864 |
+
[ Thu Sep 15 03:21:11 2022 ] Top5: 83.50%
|
865 |
+
[ Thu Sep 15 03:21:11 2022 ] Training epoch: 117
|
866 |
+
[ Thu Sep 15 03:21:23 2022 ] Batch(11/243) done. Loss: 0.0143 lr:0.000100 network_time: 0.0276
|
867 |
+
[ Thu Sep 15 03:22:35 2022 ] Batch(111/243) done. Loss: 0.0089 lr:0.000100 network_time: 0.0298
|
868 |
+
[ Thu Sep 15 03:23:48 2022 ] Batch(211/243) done. Loss: 0.0094 lr:0.000100 network_time: 0.0317
|
869 |
+
[ Thu Sep 15 03:24:11 2022 ] Eval epoch: 117
|
870 |
+
[ Thu Sep 15 03:25:43 2022 ] Mean test loss of 796 batches: 2.401299476623535.
|
871 |
+
[ Thu Sep 15 03:25:44 2022 ] Top1: 54.57%
|
872 |
+
[ Thu Sep 15 03:25:44 2022 ] Top5: 83.51%
|
873 |
+
[ Thu Sep 15 03:25:44 2022 ] Training epoch: 118
|
874 |
+
[ Thu Sep 15 03:26:37 2022 ] Batch(68/243) done. Loss: 0.0067 lr:0.000100 network_time: 0.0279
|
875 |
+
[ Thu Sep 15 03:27:50 2022 ] Batch(168/243) done. Loss: 0.0088 lr:0.000100 network_time: 0.0352
|
876 |
+
[ Thu Sep 15 03:28:44 2022 ] Eval epoch: 118
|
877 |
+
[ Thu Sep 15 03:30:17 2022 ] Mean test loss of 796 batches: 2.439582586288452.
|
878 |
+
[ Thu Sep 15 03:30:17 2022 ] Top1: 53.99%
|
879 |
+
[ Thu Sep 15 03:30:17 2022 ] Top5: 83.18%
|
880 |
+
[ Thu Sep 15 03:30:18 2022 ] Training epoch: 119
|
881 |
+
[ Thu Sep 15 03:30:39 2022 ] Batch(25/243) done. Loss: 0.0191 lr:0.000100 network_time: 0.0256
|
882 |
+
[ Thu Sep 15 03:31:52 2022 ] Batch(125/243) done. Loss: 0.0259 lr:0.000100 network_time: 0.0326
|
883 |
+
[ Thu Sep 15 03:33:05 2022 ] Batch(225/243) done. Loss: 0.0171 lr:0.000100 network_time: 0.0325
|
884 |
+
[ Thu Sep 15 03:33:17 2022 ] Eval epoch: 119
|
885 |
+
[ Thu Sep 15 03:34:50 2022 ] Mean test loss of 796 batches: 2.4420394897460938.
|
886 |
+
[ Thu Sep 15 03:34:51 2022 ] Top1: 53.83%
|
887 |
+
[ Thu Sep 15 03:34:51 2022 ] Top5: 83.19%
|
888 |
+
[ Thu Sep 15 03:34:51 2022 ] Training epoch: 120
|
889 |
+
[ Thu Sep 15 03:35:54 2022 ] Batch(82/243) done. Loss: 0.0074 lr:0.000100 network_time: 0.0271
|
890 |
+
[ Thu Sep 15 03:37:07 2022 ] Batch(182/243) done. Loss: 0.0215 lr:0.000100 network_time: 0.0474
|
891 |
+
[ Thu Sep 15 03:37:51 2022 ] Eval epoch: 120
|
892 |
+
[ Thu Sep 15 03:39:23 2022 ] Mean test loss of 796 batches: 2.4470932483673096.
|
893 |
+
[ Thu Sep 15 03:39:24 2022 ] Top1: 54.29%
|
894 |
+
[ Thu Sep 15 03:39:24 2022 ] Top5: 83.36%
|
895 |
+
[ Thu Sep 15 03:39:24 2022 ] Training epoch: 121
|
896 |
+
[ Thu Sep 15 03:39:56 2022 ] Batch(39/243) done. Loss: 0.0121 lr:0.000100 network_time: 0.0261
|
897 |
+
[ Thu Sep 15 03:41:09 2022 ] Batch(139/243) done. Loss: 0.0200 lr:0.000100 network_time: 0.0289
|
898 |
+
[ Thu Sep 15 03:42:22 2022 ] Batch(239/243) done. Loss: 0.0115 lr:0.000100 network_time: 0.0284
|
899 |
+
[ Thu Sep 15 03:42:24 2022 ] Eval epoch: 121
|
900 |
+
[ Thu Sep 15 03:43:57 2022 ] Mean test loss of 796 batches: 2.3847100734710693.
|
901 |
+
[ Thu Sep 15 03:43:57 2022 ] Top1: 54.56%
|
902 |
+
[ Thu Sep 15 03:43:57 2022 ] Top5: 83.73%
|
903 |
+
[ Thu Sep 15 03:43:58 2022 ] Training epoch: 122
|
904 |
+
[ Thu Sep 15 03:45:11 2022 ] Batch(96/243) done. Loss: 0.0116 lr:0.000100 network_time: 0.0288
|
905 |
+
[ Thu Sep 15 03:46:24 2022 ] Batch(196/243) done. Loss: 0.0115 lr:0.000100 network_time: 0.0275
|
906 |
+
[ Thu Sep 15 03:46:57 2022 ] Eval epoch: 122
|
907 |
+
[ Thu Sep 15 03:48:30 2022 ] Mean test loss of 796 batches: 2.420030355453491.
|
908 |
+
[ Thu Sep 15 03:48:31 2022 ] Top1: 54.13%
|
909 |
+
[ Thu Sep 15 03:48:31 2022 ] Top5: 83.32%
|
910 |
+
[ Thu Sep 15 03:48:31 2022 ] Training epoch: 123
|
911 |
+
[ Thu Sep 15 03:49:13 2022 ] Batch(53/243) done. Loss: 0.0080 lr:0.000100 network_time: 0.0324
|
912 |
+
[ Thu Sep 15 03:50:26 2022 ] Batch(153/243) done. Loss: 0.0132 lr:0.000100 network_time: 0.0288
|
913 |
+
[ Thu Sep 15 03:51:31 2022 ] Eval epoch: 123
|
914 |
+
[ Thu Sep 15 03:53:03 2022 ] Mean test loss of 796 batches: 2.4071152210235596.
|
915 |
+
[ Thu Sep 15 03:53:04 2022 ] Top1: 54.40%
|
916 |
+
[ Thu Sep 15 03:53:04 2022 ] Top5: 83.43%
|
917 |
+
[ Thu Sep 15 03:53:04 2022 ] Training epoch: 124
|
918 |
+
[ Thu Sep 15 03:53:15 2022 ] Batch(10/243) done. Loss: 0.0096 lr:0.000100 network_time: 0.0536
|
919 |
+
[ Thu Sep 15 03:54:28 2022 ] Batch(110/243) done. Loss: 0.0061 lr:0.000100 network_time: 0.0281
|
920 |
+
[ Thu Sep 15 03:55:41 2022 ] Batch(210/243) done. Loss: 0.0115 lr:0.000100 network_time: 0.0273
|
921 |
+
[ Thu Sep 15 03:56:05 2022 ] Eval epoch: 124
|
922 |
+
[ Thu Sep 15 03:57:38 2022 ] Mean test loss of 796 batches: 2.3790695667266846.
|
923 |
+
[ Thu Sep 15 03:57:38 2022 ] Top1: 54.58%
|
924 |
+
[ Thu Sep 15 03:57:38 2022 ] Top5: 83.58%
|
925 |
+
[ Thu Sep 15 03:57:38 2022 ] Training epoch: 125
|
926 |
+
[ Thu Sep 15 03:58:31 2022 ] Batch(67/243) done. Loss: 0.0104 lr:0.000100 network_time: 0.0276
|
927 |
+
[ Thu Sep 15 03:59:44 2022 ] Batch(167/243) done. Loss: 0.0475 lr:0.000100 network_time: 0.0301
|
928 |
+
[ Thu Sep 15 04:00:38 2022 ] Eval epoch: 125
|
929 |
+
[ Thu Sep 15 04:02:11 2022 ] Mean test loss of 796 batches: 2.4057438373565674.
|
930 |
+
[ Thu Sep 15 04:02:11 2022 ] Top1: 54.09%
|
931 |
+
[ Thu Sep 15 04:02:11 2022 ] Top5: 83.32%
|
932 |
+
[ Thu Sep 15 04:02:12 2022 ] Training epoch: 126
|
933 |
+
[ Thu Sep 15 04:02:33 2022 ] Batch(24/243) done. Loss: 0.0141 lr:0.000100 network_time: 0.0558
|
934 |
+
[ Thu Sep 15 04:03:45 2022 ] Batch(124/243) done. Loss: 0.0090 lr:0.000100 network_time: 0.0287
|
935 |
+
[ Thu Sep 15 04:04:58 2022 ] Batch(224/243) done. Loss: 0.0155 lr:0.000100 network_time: 0.0302
|
936 |
+
[ Thu Sep 15 04:05:11 2022 ] Eval epoch: 126
|
937 |
+
[ Thu Sep 15 04:06:43 2022 ] Mean test loss of 796 batches: 2.4487736225128174.
|
938 |
+
[ Thu Sep 15 04:06:44 2022 ] Top1: 54.18%
|
939 |
+
[ Thu Sep 15 04:06:44 2022 ] Top5: 83.42%
|
940 |
+
[ Thu Sep 15 04:06:44 2022 ] Training epoch: 127
|
941 |
+
[ Thu Sep 15 04:07:47 2022 ] Batch(81/243) done. Loss: 0.0202 lr:0.000100 network_time: 0.0272
|
942 |
+
[ Thu Sep 15 04:09:00 2022 ] Batch(181/243) done. Loss: 0.0151 lr:0.000100 network_time: 0.0267
|
943 |
+
[ Thu Sep 15 04:09:44 2022 ] Eval epoch: 127
|
944 |
+
[ Thu Sep 15 04:11:16 2022 ] Mean test loss of 796 batches: 2.4265387058258057.
|
945 |
+
[ Thu Sep 15 04:11:16 2022 ] Top1: 54.10%
|
946 |
+
[ Thu Sep 15 04:11:17 2022 ] Top5: 83.26%
|
947 |
+
[ Thu Sep 15 04:11:17 2022 ] Training epoch: 128
|
948 |
+
[ Thu Sep 15 04:11:49 2022 ] Batch(38/243) done. Loss: 0.0314 lr:0.000100 network_time: 0.0346
|
949 |
+
[ Thu Sep 15 04:13:01 2022 ] Batch(138/243) done. Loss: 0.0061 lr:0.000100 network_time: 0.0271
|
950 |
+
[ Thu Sep 15 04:14:14 2022 ] Batch(238/243) done. Loss: 0.0216 lr:0.000100 network_time: 0.0269
|
951 |
+
[ Thu Sep 15 04:14:17 2022 ] Eval epoch: 128
|
952 |
+
[ Thu Sep 15 04:15:50 2022 ] Mean test loss of 796 batches: 2.398974895477295.
|
953 |
+
[ Thu Sep 15 04:15:50 2022 ] Top1: 54.33%
|
954 |
+
[ Thu Sep 15 04:15:51 2022 ] Top5: 83.47%
|
955 |
+
[ Thu Sep 15 04:15:51 2022 ] Training epoch: 129
|
956 |
+
[ Thu Sep 15 04:17:04 2022 ] Batch(95/243) done. Loss: 0.0208 lr:0.000100 network_time: 0.0319
|
957 |
+
[ Thu Sep 15 04:18:17 2022 ] Batch(195/243) done. Loss: 0.0156 lr:0.000100 network_time: 0.0264
|
958 |
+
[ Thu Sep 15 04:18:51 2022 ] Eval epoch: 129
|
959 |
+
[ Thu Sep 15 04:20:23 2022 ] Mean test loss of 796 batches: 2.408602714538574.
|
960 |
+
[ Thu Sep 15 04:20:24 2022 ] Top1: 54.14%
|
961 |
+
[ Thu Sep 15 04:20:24 2022 ] Top5: 83.28%
|
962 |
+
[ Thu Sep 15 04:20:24 2022 ] Training epoch: 130
|
963 |
+
[ Thu Sep 15 04:21:06 2022 ] Batch(52/243) done. Loss: 0.0093 lr:0.000100 network_time: 0.0272
|
964 |
+
[ Thu Sep 15 04:22:18 2022 ] Batch(152/243) done. Loss: 0.0065 lr:0.000100 network_time: 0.0276
|
965 |
+
[ Thu Sep 15 04:23:24 2022 ] Eval epoch: 130
|
966 |
+
[ Thu Sep 15 04:24:57 2022 ] Mean test loss of 796 batches: 2.363591194152832.
|
967 |
+
[ Thu Sep 15 04:24:58 2022 ] Top1: 54.93%
|
968 |
+
[ Thu Sep 15 04:24:58 2022 ] Top5: 83.73%
|
969 |
+
[ Thu Sep 15 04:24:58 2022 ] Training epoch: 131
|
970 |
+
[ Thu Sep 15 04:25:08 2022 ] Batch(9/243) done. Loss: 0.0161 lr:0.000100 network_time: 0.0317
|
971 |
+
[ Thu Sep 15 04:26:21 2022 ] Batch(109/243) done. Loss: 0.0075 lr:0.000100 network_time: 0.0283
|
972 |
+
[ Thu Sep 15 04:27:34 2022 ] Batch(209/243) done. Loss: 0.0127 lr:0.000100 network_time: 0.0266
|
973 |
+
[ Thu Sep 15 04:27:58 2022 ] Eval epoch: 131
|
974 |
+
[ Thu Sep 15 04:29:31 2022 ] Mean test loss of 796 batches: 2.4064884185791016.
|
975 |
+
[ Thu Sep 15 04:29:31 2022 ] Top1: 54.13%
|
976 |
+
[ Thu Sep 15 04:29:32 2022 ] Top5: 83.39%
|
977 |
+
[ Thu Sep 15 04:29:32 2022 ] Training epoch: 132
|
978 |
+
[ Thu Sep 15 04:30:23 2022 ] Batch(66/243) done. Loss: 0.0080 lr:0.000100 network_time: 0.0281
|
979 |
+
[ Thu Sep 15 04:31:36 2022 ] Batch(166/243) done. Loss: 0.0110 lr:0.000100 network_time: 0.0267
|
980 |
+
[ Thu Sep 15 04:32:32 2022 ] Eval epoch: 132
|
981 |
+
[ Thu Sep 15 04:34:05 2022 ] Mean test loss of 796 batches: 2.361076593399048.
|
982 |
+
[ Thu Sep 15 04:34:06 2022 ] Top1: 54.92%
|
983 |
+
[ Thu Sep 15 04:34:06 2022 ] Top5: 83.69%
|
984 |
+
[ Thu Sep 15 04:34:06 2022 ] Training epoch: 133
|
985 |
+
[ Thu Sep 15 04:34:27 2022 ] Batch(23/243) done. Loss: 0.0093 lr:0.000100 network_time: 0.0285
|
986 |
+
[ Thu Sep 15 04:35:40 2022 ] Batch(123/243) done. Loss: 0.0074 lr:0.000100 network_time: 0.0266
|
987 |
+
[ Thu Sep 15 04:36:52 2022 ] Batch(223/243) done. Loss: 0.0105 lr:0.000100 network_time: 0.0310
|
988 |
+
[ Thu Sep 15 04:37:06 2022 ] Eval epoch: 133
|
989 |
+
[ Thu Sep 15 04:38:40 2022 ] Mean test loss of 796 batches: 2.408871650695801.
|
990 |
+
[ Thu Sep 15 04:38:40 2022 ] Top1: 54.18%
|
991 |
+
[ Thu Sep 15 04:38:40 2022 ] Top5: 83.23%
|
992 |
+
[ Thu Sep 15 04:38:41 2022 ] Training epoch: 134
|
993 |
+
[ Thu Sep 15 04:39:42 2022 ] Batch(80/243) done. Loss: 0.0139 lr:0.000100 network_time: 0.0264
|
994 |
+
[ Thu Sep 15 04:40:55 2022 ] Batch(180/243) done. Loss: 0.0066 lr:0.000100 network_time: 0.0264
|
995 |
+
[ Thu Sep 15 04:41:40 2022 ] Eval epoch: 134
|
996 |
+
[ Thu Sep 15 04:43:13 2022 ] Mean test loss of 796 batches: 2.3809244632720947.
|
997 |
+
[ Thu Sep 15 04:43:13 2022 ] Top1: 54.55%
|
998 |
+
[ Thu Sep 15 04:43:13 2022 ] Top5: 83.58%
|
999 |
+
[ Thu Sep 15 04:43:13 2022 ] Training epoch: 135
|
1000 |
+
[ Thu Sep 15 04:43:44 2022 ] Batch(37/243) done. Loss: 0.0068 lr:0.000100 network_time: 0.0288
|
1001 |
+
[ Thu Sep 15 04:44:57 2022 ] Batch(137/243) done. Loss: 0.0115 lr:0.000100 network_time: 0.0331
|
1002 |
+
[ Thu Sep 15 04:46:10 2022 ] Batch(237/243) done. Loss: 0.0098 lr:0.000100 network_time: 0.0309
|
1003 |
+
[ Thu Sep 15 04:46:14 2022 ] Eval epoch: 135
|
1004 |
+
[ Thu Sep 15 04:47:46 2022 ] Mean test loss of 796 batches: 2.4107375144958496.
|
1005 |
+
[ Thu Sep 15 04:47:46 2022 ] Top1: 54.19%
|
1006 |
+
[ Thu Sep 15 04:47:47 2022 ] Top5: 83.28%
|
1007 |
+
[ Thu Sep 15 04:47:47 2022 ] Training epoch: 136
|
1008 |
+
[ Thu Sep 15 04:48:58 2022 ] Batch(94/243) done. Loss: 0.0069 lr:0.000100 network_time: 0.0280
|
1009 |
+
[ Thu Sep 15 04:50:11 2022 ] Batch(194/243) done. Loss: 0.0253 lr:0.000100 network_time: 0.0259
|
1010 |
+
[ Thu Sep 15 04:50:46 2022 ] Eval epoch: 136
|
1011 |
+
[ Thu Sep 15 04:52:19 2022 ] Mean test loss of 796 batches: 2.412553310394287.
|
1012 |
+
[ Thu Sep 15 04:52:19 2022 ] Top1: 54.30%
|
1013 |
+
[ Thu Sep 15 04:52:19 2022 ] Top5: 83.34%
|
1014 |
+
[ Thu Sep 15 04:52:20 2022 ] Training epoch: 137
|
1015 |
+
[ Thu Sep 15 04:53:00 2022 ] Batch(51/243) done. Loss: 0.0092 lr:0.000100 network_time: 0.0282
|
1016 |
+
[ Thu Sep 15 04:54:13 2022 ] Batch(151/243) done. Loss: 0.0118 lr:0.000100 network_time: 0.0291
|
1017 |
+
[ Thu Sep 15 04:55:19 2022 ] Eval epoch: 137
|
1018 |
+
[ Thu Sep 15 04:56:52 2022 ] Mean test loss of 796 batches: 2.393608331680298.
|
1019 |
+
[ Thu Sep 15 04:56:52 2022 ] Top1: 54.69%
|
1020 |
+
[ Thu Sep 15 04:56:53 2022 ] Top5: 83.61%
|
1021 |
+
[ Thu Sep 15 04:56:53 2022 ] Training epoch: 138
|
1022 |
+
[ Thu Sep 15 04:57:02 2022 ] Batch(8/243) done. Loss: 0.0195 lr:0.000100 network_time: 0.0266
|
1023 |
+
[ Thu Sep 15 04:58:15 2022 ] Batch(108/243) done. Loss: 0.0269 lr:0.000100 network_time: 0.0290
|
1024 |
+
[ Thu Sep 15 04:59:28 2022 ] Batch(208/243) done. Loss: 0.0116 lr:0.000100 network_time: 0.0282
|
1025 |
+
[ Thu Sep 15 04:59:53 2022 ] Eval epoch: 138
|
1026 |
+
[ Thu Sep 15 05:01:26 2022 ] Mean test loss of 796 batches: 2.412797212600708.
|
1027 |
+
[ Thu Sep 15 05:01:26 2022 ] Top1: 53.92%
|
1028 |
+
[ Thu Sep 15 05:01:26 2022 ] Top5: 83.29%
|
1029 |
+
[ Thu Sep 15 05:01:27 2022 ] Training epoch: 139
|
1030 |
+
[ Thu Sep 15 05:02:18 2022 ] Batch(65/243) done. Loss: 0.0478 lr:0.000100 network_time: 0.0294
|
1031 |
+
[ Thu Sep 15 05:03:30 2022 ] Batch(165/243) done. Loss: 0.0116 lr:0.000100 network_time: 0.0262
|
1032 |
+
[ Thu Sep 15 05:04:27 2022 ] Eval epoch: 139
|
1033 |
+
[ Thu Sep 15 05:05:59 2022 ] Mean test loss of 796 batches: 2.435910701751709.
|
1034 |
+
[ Thu Sep 15 05:06:00 2022 ] Top1: 54.09%
|
1035 |
+
[ Thu Sep 15 05:06:00 2022 ] Top5: 83.17%
|
1036 |
+
[ Thu Sep 15 05:06:00 2022 ] Training epoch: 140
|
1037 |
+
[ Thu Sep 15 05:06:20 2022 ] Batch(22/243) done. Loss: 0.0075 lr:0.000100 network_time: 0.0277
|
1038 |
+
[ Thu Sep 15 05:07:33 2022 ] Batch(122/243) done. Loss: 0.0352 lr:0.000100 network_time: 0.0317
|
1039 |
+
[ Thu Sep 15 05:08:45 2022 ] Batch(222/243) done. Loss: 0.0075 lr:0.000100 network_time: 0.0277
|
1040 |
+
[ Thu Sep 15 05:09:00 2022 ] Eval epoch: 140
|
1041 |
+
[ Thu Sep 15 05:10:33 2022 ] Mean test loss of 796 batches: 2.3889408111572266.
|
1042 |
+
[ Thu Sep 15 05:10:33 2022 ] Top1: 54.65%
|
1043 |
+
[ Thu Sep 15 05:10:34 2022 ] Top5: 83.62%
|
ckpt/Others/Shift-GCN/ntu120_xsub/ntu120_joint_xsub/shift_gcn.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torch.autograd import Variable
|
5 |
+
import numpy as np
|
6 |
+
import math
|
7 |
+
|
8 |
+
import sys
|
9 |
+
sys.path.append("./model/Temporal_shift/")
|
10 |
+
|
11 |
+
from cuda.shift import Shift
|
12 |
+
|
13 |
+
|
14 |
+
def import_class(name):
|
15 |
+
components = name.split('.')
|
16 |
+
mod = __import__(components[0])
|
17 |
+
for comp in components[1:]:
|
18 |
+
mod = getattr(mod, comp)
|
19 |
+
return mod
|
20 |
+
|
21 |
+
def conv_init(conv):
|
22 |
+
nn.init.kaiming_normal(conv.weight, mode='fan_out')
|
23 |
+
nn.init.constant(conv.bias, 0)
|
24 |
+
|
25 |
+
|
26 |
+
def bn_init(bn, scale):
|
27 |
+
nn.init.constant(bn.weight, scale)
|
28 |
+
nn.init.constant(bn.bias, 0)
|
29 |
+
|
30 |
+
|
31 |
+
class tcn(nn.Module):
|
32 |
+
def __init__(self, in_channels, out_channels, kernel_size=9, stride=1):
|
33 |
+
super(tcn, self).__init__()
|
34 |
+
pad = int((kernel_size - 1) / 2)
|
35 |
+
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=(kernel_size, 1), padding=(pad, 0),
|
36 |
+
stride=(stride, 1))
|
37 |
+
|
38 |
+
self.bn = nn.BatchNorm2d(out_channels)
|
39 |
+
self.relu = nn.ReLU()
|
40 |
+
conv_init(self.conv)
|
41 |
+
bn_init(self.bn, 1)
|
42 |
+
|
43 |
+
def forward(self, x):
|
44 |
+
x = self.bn(self.conv(x))
|
45 |
+
return x
|
46 |
+
|
47 |
+
|
48 |
+
class Shift_tcn(nn.Module):
|
49 |
+
def __init__(self, in_channels, out_channels, kernel_size=9, stride=1):
|
50 |
+
super(Shift_tcn, self).__init__()
|
51 |
+
|
52 |
+
self.in_channels = in_channels
|
53 |
+
self.out_channels = out_channels
|
54 |
+
|
55 |
+
self.bn = nn.BatchNorm2d(in_channels)
|
56 |
+
self.bn2 = nn.BatchNorm2d(in_channels)
|
57 |
+
bn_init(self.bn2, 1)
|
58 |
+
self.relu = nn.ReLU(inplace=True)
|
59 |
+
self.shift_in = Shift(channel=in_channels, stride=1, init_scale=1)
|
60 |
+
self.shift_out = Shift(channel=out_channels, stride=stride, init_scale=1)
|
61 |
+
|
62 |
+
self.temporal_linear = nn.Conv2d(in_channels, out_channels, 1)
|
63 |
+
nn.init.kaiming_normal(self.temporal_linear.weight, mode='fan_out')
|
64 |
+
|
65 |
+
def forward(self, x):
|
66 |
+
x = self.bn(x)
|
67 |
+
# shift1
|
68 |
+
x = self.shift_in(x)
|
69 |
+
x = self.temporal_linear(x)
|
70 |
+
x = self.relu(x)
|
71 |
+
# shift2
|
72 |
+
x = self.shift_out(x)
|
73 |
+
x = self.bn2(x)
|
74 |
+
return x
|
75 |
+
|
76 |
+
|
77 |
+
class Shift_gcn(nn.Module):
|
78 |
+
def __init__(self, in_channels, out_channels, A, coff_embedding=4, num_subset=3):
|
79 |
+
super(Shift_gcn, self).__init__()
|
80 |
+
self.in_channels = in_channels
|
81 |
+
self.out_channels = out_channels
|
82 |
+
if in_channels != out_channels:
|
83 |
+
self.down = nn.Sequential(
|
84 |
+
nn.Conv2d(in_channels, out_channels, 1),
|
85 |
+
nn.BatchNorm2d(out_channels)
|
86 |
+
)
|
87 |
+
else:
|
88 |
+
self.down = lambda x: x
|
89 |
+
|
90 |
+
self.Linear_weight = nn.Parameter(torch.zeros(in_channels, out_channels, requires_grad=True, device='cuda'), requires_grad=True)
|
91 |
+
nn.init.normal_(self.Linear_weight, 0,math.sqrt(1.0/out_channels))
|
92 |
+
|
93 |
+
self.Linear_bias = nn.Parameter(torch.zeros(1,1,out_channels,requires_grad=True,device='cuda'),requires_grad=True)
|
94 |
+
nn.init.constant(self.Linear_bias, 0)
|
95 |
+
|
96 |
+
self.Feature_Mask = nn.Parameter(torch.ones(1,25,in_channels, requires_grad=True,device='cuda'),requires_grad=True)
|
97 |
+
nn.init.constant(self.Feature_Mask, 0)
|
98 |
+
|
99 |
+
self.bn = nn.BatchNorm1d(25*out_channels)
|
100 |
+
self.relu = nn.ReLU()
|
101 |
+
|
102 |
+
for m in self.modules():
|
103 |
+
if isinstance(m, nn.Conv2d):
|
104 |
+
conv_init(m)
|
105 |
+
elif isinstance(m, nn.BatchNorm2d):
|
106 |
+
bn_init(m, 1)
|
107 |
+
|
108 |
+
index_array = np.empty(25*in_channels).astype(np.int)
|
109 |
+
for i in range(25):
|
110 |
+
for j in range(in_channels):
|
111 |
+
index_array[i*in_channels + j] = (i*in_channels + j + j*in_channels)%(in_channels*25)
|
112 |
+
self.shift_in = nn.Parameter(torch.from_numpy(index_array),requires_grad=False)
|
113 |
+
|
114 |
+
index_array = np.empty(25*out_channels).astype(np.int)
|
115 |
+
for i in range(25):
|
116 |
+
for j in range(out_channels):
|
117 |
+
index_array[i*out_channels + j] = (i*out_channels + j - j*out_channels)%(out_channels*25)
|
118 |
+
self.shift_out = nn.Parameter(torch.from_numpy(index_array),requires_grad=False)
|
119 |
+
|
120 |
+
|
121 |
+
def forward(self, x0):
|
122 |
+
n, c, t, v = x0.size()
|
123 |
+
x = x0.permute(0,2,3,1).contiguous()
|
124 |
+
|
125 |
+
# shift1
|
126 |
+
x = x.view(n*t,v*c)
|
127 |
+
x = torch.index_select(x, 1, self.shift_in)
|
128 |
+
x = x.view(n*t,v,c)
|
129 |
+
x = x * (torch.tanh(self.Feature_Mask)+1)
|
130 |
+
|
131 |
+
x = torch.einsum('nwc,cd->nwd', (x, self.Linear_weight)).contiguous() # nt,v,c
|
132 |
+
x = x + self.Linear_bias
|
133 |
+
|
134 |
+
# shift2
|
135 |
+
x = x.view(n*t,-1)
|
136 |
+
x = torch.index_select(x, 1, self.shift_out)
|
137 |
+
x = self.bn(x)
|
138 |
+
x = x.view(n,t,v,self.out_channels).permute(0,3,1,2) # n,c,t,v
|
139 |
+
|
140 |
+
x = x + self.down(x0)
|
141 |
+
x = self.relu(x)
|
142 |
+
return x
|
143 |
+
|
144 |
+
|
145 |
+
class TCN_GCN_unit(nn.Module):
|
146 |
+
def __init__(self, in_channels, out_channels, A, stride=1, residual=True):
|
147 |
+
super(TCN_GCN_unit, self).__init__()
|
148 |
+
self.gcn1 = Shift_gcn(in_channels, out_channels, A)
|
149 |
+
self.tcn1 = Shift_tcn(out_channels, out_channels, stride=stride)
|
150 |
+
self.relu = nn.ReLU()
|
151 |
+
|
152 |
+
if not residual:
|
153 |
+
self.residual = lambda x: 0
|
154 |
+
|
155 |
+
elif (in_channels == out_channels) and (stride == 1):
|
156 |
+
self.residual = lambda x: x
|
157 |
+
else:
|
158 |
+
self.residual = tcn(in_channels, out_channels, kernel_size=1, stride=stride)
|
159 |
+
|
160 |
+
def forward(self, x):
|
161 |
+
x = self.tcn1(self.gcn1(x)) + self.residual(x)
|
162 |
+
return self.relu(x)
|
163 |
+
|
164 |
+
|
165 |
+
class Model(nn.Module):
|
166 |
+
def __init__(self, num_class=60, num_point=25, num_person=2, graph=None, graph_args=dict(), in_channels=3):
|
167 |
+
super(Model, self).__init__()
|
168 |
+
|
169 |
+
if graph is None:
|
170 |
+
raise ValueError()
|
171 |
+
else:
|
172 |
+
Graph = import_class(graph)
|
173 |
+
self.graph = Graph(**graph_args)
|
174 |
+
|
175 |
+
A = self.graph.A
|
176 |
+
self.data_bn = nn.BatchNorm1d(num_person * in_channels * num_point)
|
177 |
+
|
178 |
+
self.l1 = TCN_GCN_unit(3, 64, A, residual=False)
|
179 |
+
self.l2 = TCN_GCN_unit(64, 64, A)
|
180 |
+
self.l3 = TCN_GCN_unit(64, 64, A)
|
181 |
+
self.l4 = TCN_GCN_unit(64, 64, A)
|
182 |
+
self.l5 = TCN_GCN_unit(64, 128, A, stride=2)
|
183 |
+
self.l6 = TCN_GCN_unit(128, 128, A)
|
184 |
+
self.l7 = TCN_GCN_unit(128, 128, A)
|
185 |
+
self.l8 = TCN_GCN_unit(128, 256, A, stride=2)
|
186 |
+
self.l9 = TCN_GCN_unit(256, 256, A)
|
187 |
+
self.l10 = TCN_GCN_unit(256, 256, A)
|
188 |
+
|
189 |
+
self.fc = nn.Linear(256, num_class)
|
190 |
+
nn.init.normal(self.fc.weight, 0, math.sqrt(2. / num_class))
|
191 |
+
bn_init(self.data_bn, 1)
|
192 |
+
|
193 |
+
def forward(self, x):
|
194 |
+
N, C, T, V, M = x.size()
|
195 |
+
|
196 |
+
x = x.permute(0, 4, 3, 1, 2).contiguous().view(N, M * V * C, T)
|
197 |
+
x = self.data_bn(x)
|
198 |
+
x = x.view(N, M, V, C, T).permute(0, 1, 3, 4, 2).contiguous().view(N * M, C, T, V)
|
199 |
+
|
200 |
+
x = self.l1(x)
|
201 |
+
x = self.l2(x)
|
202 |
+
x = self.l3(x)
|
203 |
+
x = self.l4(x)
|
204 |
+
x = self.l5(x)
|
205 |
+
x = self.l6(x)
|
206 |
+
x = self.l7(x)
|
207 |
+
x = self.l8(x)
|
208 |
+
x = self.l9(x)
|
209 |
+
x = self.l10(x)
|
210 |
+
|
211 |
+
# N*M,C,T,V
|
212 |
+
c_new = x.size(1)
|
213 |
+
x = x.view(N, M, c_new, -1)
|
214 |
+
x = x.mean(3).mean(1)
|
215 |
+
|
216 |
+
return self.fc(x)
|
ckpt/Others/Shift-GCN/ntu60_xsub/ntu_ShiftGCN_bone_motion_xsub/config.yaml
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Experiment_name: ntu_ShiftGCN_bone_motion_xsub
|
2 |
+
base_lr: 0.1
|
3 |
+
batch_size: 64
|
4 |
+
config: ./config/nturgbd-cross-subject/train_bone_motion.yaml
|
5 |
+
device:
|
6 |
+
- 4
|
7 |
+
- 5
|
8 |
+
- 6
|
9 |
+
- 7
|
10 |
+
eval_interval: 5
|
11 |
+
feeder: feeders.feeder.Feeder
|
12 |
+
ignore_weights: []
|
13 |
+
log_interval: 100
|
14 |
+
model: model.shift_gcn.Model
|
15 |
+
model_args:
|
16 |
+
graph: graph.ntu_rgb_d.Graph
|
17 |
+
graph_args:
|
18 |
+
labeling_mode: spatial
|
19 |
+
num_class: 60
|
20 |
+
num_person: 2
|
21 |
+
num_point: 25
|
22 |
+
model_saved_name: ./save_models/ntu_ShiftGCN_bone_motion_xsub
|
23 |
+
nesterov: true
|
24 |
+
num_epoch: 140
|
25 |
+
num_worker: 32
|
26 |
+
only_train_epoch: 1
|
27 |
+
only_train_part: true
|
28 |
+
optimizer: SGD
|
29 |
+
phase: train
|
30 |
+
print_log: true
|
31 |
+
save_interval: 2
|
32 |
+
save_score: false
|
33 |
+
seed: 1
|
34 |
+
show_topk:
|
35 |
+
- 1
|
36 |
+
- 5
|
37 |
+
start_epoch: 0
|
38 |
+
step:
|
39 |
+
- 60
|
40 |
+
- 80
|
41 |
+
- 100
|
42 |
+
test_batch_size: 64
|
43 |
+
test_feeder_args:
|
44 |
+
data_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/val_data_bone_motion.npy
|
45 |
+
label_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/val_label.pkl
|
46 |
+
train_feeder_args:
|
47 |
+
data_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/train_data_bone_motion.npy
|
48 |
+
debug: false
|
49 |
+
label_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/train_label.pkl
|
50 |
+
normalization: false
|
51 |
+
random_choose: false
|
52 |
+
random_move: false
|
53 |
+
random_shift: false
|
54 |
+
window_size: -1
|
55 |
+
warm_up_epoch: 0
|
56 |
+
weight_decay: 0.0001
|
57 |
+
weights: null
|
58 |
+
work_dir: ./work_dir/ntu_ShiftGCN_bone_motion_xsub
|
ckpt/Others/Shift-GCN/ntu60_xsub/ntu_ShiftGCN_bone_motion_xsub/eval_results/best_acc.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d8d96c42be1b3bb086a94b5fc3ff17cda1a170098b51a4909889e7109b7b5f8c
|
3 |
+
size 4979902
|
ckpt/Others/Shift-GCN/ntu60_xsub/ntu_ShiftGCN_bone_motion_xsub/log.txt
ADDED
@@ -0,0 +1,875 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[ Thu Sep 15 17:47:56 2022 ] Parameters:
|
2 |
+
{'work_dir': './work_dir/ntu_ShiftGCN_bone_motion_xsub', 'model_saved_name': './save_models/ntu_ShiftGCN_bone_motion_xsub', 'Experiment_name': 'ntu_ShiftGCN_bone_motion_xsub', 'config': './config/nturgbd-cross-subject/train_bone_motion.yaml', 'phase': 'train', 'save_score': False, 'seed': 1, 'log_interval': 100, 'save_interval': 2, 'eval_interval': 5, 'print_log': True, 'show_topk': [1, 5], 'feeder': 'feeders.feeder.Feeder', 'num_worker': 32, 'train_feeder_args': {'data_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/train_data_bone_motion.npy', 'label_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/train_label.pkl', 'debug': False, 'random_choose': False, 'random_shift': False, 'random_move': False, 'window_size': -1, 'normalization': False}, 'test_feeder_args': {'data_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/val_data_bone_motion.npy', 'label_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/val_label.pkl'}, 'model': 'model.shift_gcn.Model', 'model_args': {'num_class': 60, 'num_point': 25, 'num_person': 2, 'graph': 'graph.ntu_rgb_d.Graph', 'graph_args': {'labeling_mode': 'spatial'}}, 'weights': None, 'ignore_weights': [], 'base_lr': 0.1, 'step': [60, 80, 100], 'device': [4, 5, 6, 7], 'optimizer': 'SGD', 'nesterov': True, 'batch_size': 64, 'test_batch_size': 64, 'start_epoch': 0, 'num_epoch': 140, 'weight_decay': 0.0001, 'only_train_part': True, 'only_train_epoch': 1, 'warm_up_epoch': 0}
|
3 |
+
|
4 |
+
[ Thu Sep 15 17:47:56 2022 ] Training epoch: 1
|
5 |
+
[ Thu Sep 15 17:48:44 2022 ] Batch(99/123) done. Loss: 2.3221 lr:0.100000 network_time: 0.0504
|
6 |
+
[ Thu Sep 15 17:48:52 2022 ] Eval epoch: 1
|
7 |
+
[ Thu Sep 15 17:49:15 2022 ] Mean test loss of 258 batches: 5.581438064575195.
|
8 |
+
[ Thu Sep 15 17:49:15 2022 ] Top1: 11.46%
|
9 |
+
[ Thu Sep 15 17:49:15 2022 ] Top5: 35.39%
|
10 |
+
[ Thu Sep 15 17:49:15 2022 ] Training epoch: 2
|
11 |
+
[ Thu Sep 15 17:49:47 2022 ] Batch(76/123) done. Loss: 1.9718 lr:0.100000 network_time: 0.0507
|
12 |
+
[ Thu Sep 15 17:50:05 2022 ] Eval epoch: 2
|
13 |
+
[ Thu Sep 15 17:50:27 2022 ] Mean test loss of 258 batches: 4.6655802726745605.
|
14 |
+
[ Thu Sep 15 17:50:28 2022 ] Top1: 22.79%
|
15 |
+
[ Thu Sep 15 17:50:28 2022 ] Top5: 53.54%
|
16 |
+
[ Thu Sep 15 17:50:28 2022 ] Training epoch: 3
|
17 |
+
[ Thu Sep 15 17:50:51 2022 ] Batch(53/123) done. Loss: 1.8279 lr:0.100000 network_time: 0.0490
|
18 |
+
[ Thu Sep 15 17:51:17 2022 ] Eval epoch: 3
|
19 |
+
[ Thu Sep 15 17:51:40 2022 ] Mean test loss of 258 batches: 4.853720188140869.
|
20 |
+
[ Thu Sep 15 17:51:40 2022 ] Top1: 23.39%
|
21 |
+
[ Thu Sep 15 17:51:40 2022 ] Top5: 53.48%
|
22 |
+
[ Thu Sep 15 17:51:41 2022 ] Training epoch: 4
|
23 |
+
[ Thu Sep 15 17:51:56 2022 ] Batch(30/123) done. Loss: 1.7001 lr:0.100000 network_time: 0.0515
|
24 |
+
[ Thu Sep 15 17:52:30 2022 ] Eval epoch: 4
|
25 |
+
[ Thu Sep 15 17:52:53 2022 ] Mean test loss of 258 batches: 4.209709644317627.
|
26 |
+
[ Thu Sep 15 17:52:53 2022 ] Top1: 28.01%
|
27 |
+
[ Thu Sep 15 17:52:53 2022 ] Top5: 59.43%
|
28 |
+
[ Thu Sep 15 17:52:53 2022 ] Training epoch: 5
|
29 |
+
[ Thu Sep 15 17:53:00 2022 ] Batch(7/123) done. Loss: 1.2025 lr:0.100000 network_time: 0.0503
|
30 |
+
[ Thu Sep 15 17:53:37 2022 ] Batch(107/123) done. Loss: 1.0203 lr:0.100000 network_time: 0.0518
|
31 |
+
[ Thu Sep 15 17:53:43 2022 ] Eval epoch: 5
|
32 |
+
[ Thu Sep 15 17:54:05 2022 ] Mean test loss of 258 batches: 4.861428260803223.
|
33 |
+
[ Thu Sep 15 17:54:05 2022 ] Top1: 19.81%
|
34 |
+
[ Thu Sep 15 17:54:05 2022 ] Top5: 47.30%
|
35 |
+
[ Thu Sep 15 17:54:05 2022 ] Training epoch: 6
|
36 |
+
[ Thu Sep 15 17:54:40 2022 ] Batch(84/123) done. Loss: 0.9977 lr:0.100000 network_time: 0.0506
|
37 |
+
[ Thu Sep 15 17:54:55 2022 ] Eval epoch: 6
|
38 |
+
[ Thu Sep 15 17:55:17 2022 ] Mean test loss of 258 batches: 3.8953726291656494.
|
39 |
+
[ Thu Sep 15 17:55:17 2022 ] Top1: 30.00%
|
40 |
+
[ Thu Sep 15 17:55:17 2022 ] Top5: 62.61%
|
41 |
+
[ Thu Sep 15 17:55:18 2022 ] Training epoch: 7
|
42 |
+
[ Thu Sep 15 17:55:44 2022 ] Batch(61/123) done. Loss: 0.9246 lr:0.100000 network_time: 0.0473
|
43 |
+
[ Thu Sep 15 17:56:06 2022 ] Eval epoch: 7
|
44 |
+
[ Thu Sep 15 17:56:29 2022 ] Mean test loss of 258 batches: 4.290779113769531.
|
45 |
+
[ Thu Sep 15 17:56:29 2022 ] Top1: 23.05%
|
46 |
+
[ Thu Sep 15 17:56:29 2022 ] Top5: 54.76%
|
47 |
+
[ Thu Sep 15 17:56:29 2022 ] Training epoch: 8
|
48 |
+
[ Thu Sep 15 17:56:48 2022 ] Batch(38/123) done. Loss: 0.7861 lr:0.100000 network_time: 0.0654
|
49 |
+
[ Thu Sep 15 17:57:19 2022 ] Eval epoch: 8
|
50 |
+
[ Thu Sep 15 17:57:41 2022 ] Mean test loss of 258 batches: 4.356398582458496.
|
51 |
+
[ Thu Sep 15 17:57:42 2022 ] Top1: 30.18%
|
52 |
+
[ Thu Sep 15 17:57:42 2022 ] Top5: 60.22%
|
53 |
+
[ Thu Sep 15 17:57:42 2022 ] Training epoch: 9
|
54 |
+
[ Thu Sep 15 17:57:52 2022 ] Batch(15/123) done. Loss: 0.7096 lr:0.100000 network_time: 0.0512
|
55 |
+
[ Thu Sep 15 17:58:28 2022 ] Batch(115/123) done. Loss: 0.8358 lr:0.100000 network_time: 0.0508
|
56 |
+
[ Thu Sep 15 17:58:31 2022 ] Eval epoch: 9
|
57 |
+
[ Thu Sep 15 17:58:54 2022 ] Mean test loss of 258 batches: 3.7923290729522705.
|
58 |
+
[ Thu Sep 15 17:58:55 2022 ] Top1: 36.03%
|
59 |
+
[ Thu Sep 15 17:58:55 2022 ] Top5: 67.22%
|
60 |
+
[ Thu Sep 15 17:58:55 2022 ] Training epoch: 10
|
61 |
+
[ Thu Sep 15 17:59:33 2022 ] Batch(92/123) done. Loss: 0.6539 lr:0.100000 network_time: 0.0534
|
62 |
+
[ Thu Sep 15 17:59:44 2022 ] Eval epoch: 10
|
63 |
+
[ Thu Sep 15 18:00:07 2022 ] Mean test loss of 258 batches: 2.477128744125366.
|
64 |
+
[ Thu Sep 15 18:00:07 2022 ] Top1: 43.65%
|
65 |
+
[ Thu Sep 15 18:00:07 2022 ] Top5: 77.15%
|
66 |
+
[ Thu Sep 15 18:00:07 2022 ] Training epoch: 11
|
67 |
+
[ Thu Sep 15 18:00:37 2022 ] Batch(69/123) done. Loss: 0.6608 lr:0.100000 network_time: 0.0509
|
68 |
+
[ Thu Sep 15 18:00:56 2022 ] Eval epoch: 11
|
69 |
+
[ Thu Sep 15 18:01:19 2022 ] Mean test loss of 258 batches: 2.566040515899658.
|
70 |
+
[ Thu Sep 15 18:01:19 2022 ] Top1: 45.59%
|
71 |
+
[ Thu Sep 15 18:01:19 2022 ] Top5: 80.48%
|
72 |
+
[ Thu Sep 15 18:01:19 2022 ] Training epoch: 12
|
73 |
+
[ Thu Sep 15 18:01:41 2022 ] Batch(46/123) done. Loss: 0.8870 lr:0.100000 network_time: 0.0499
|
74 |
+
[ Thu Sep 15 18:02:09 2022 ] Eval epoch: 12
|
75 |
+
[ Thu Sep 15 18:02:32 2022 ] Mean test loss of 258 batches: 2.7983829975128174.
|
76 |
+
[ Thu Sep 15 18:02:32 2022 ] Top1: 46.18%
|
77 |
+
[ Thu Sep 15 18:02:32 2022 ] Top5: 81.09%
|
78 |
+
[ Thu Sep 15 18:02:32 2022 ] Training epoch: 13
|
79 |
+
[ Thu Sep 15 18:02:45 2022 ] Batch(23/123) done. Loss: 0.5512 lr:0.100000 network_time: 0.0504
|
80 |
+
[ Thu Sep 15 18:03:21 2022 ] Eval epoch: 13
|
81 |
+
[ Thu Sep 15 18:03:44 2022 ] Mean test loss of 258 batches: 3.2849953174591064.
|
82 |
+
[ Thu Sep 15 18:03:44 2022 ] Top1: 40.53%
|
83 |
+
[ Thu Sep 15 18:03:44 2022 ] Top5: 75.00%
|
84 |
+
[ Thu Sep 15 18:03:44 2022 ] Training epoch: 14
|
85 |
+
[ Thu Sep 15 18:03:48 2022 ] Batch(0/123) done. Loss: 0.5177 lr:0.100000 network_time: 0.0880
|
86 |
+
[ Thu Sep 15 18:04:25 2022 ] Batch(100/123) done. Loss: 0.6363 lr:0.100000 network_time: 0.0537
|
87 |
+
[ Thu Sep 15 18:04:33 2022 ] Eval epoch: 14
|
88 |
+
[ Thu Sep 15 18:04:56 2022 ] Mean test loss of 258 batches: 2.9385926723480225.
|
89 |
+
[ Thu Sep 15 18:04:56 2022 ] Top1: 43.08%
|
90 |
+
[ Thu Sep 15 18:04:56 2022 ] Top5: 77.56%
|
91 |
+
[ Thu Sep 15 18:04:56 2022 ] Training epoch: 15
|
92 |
+
[ Thu Sep 15 18:05:29 2022 ] Batch(77/123) done. Loss: 0.6975 lr:0.100000 network_time: 0.0499
|
93 |
+
[ Thu Sep 15 18:05:46 2022 ] Eval epoch: 15
|
94 |
+
[ Thu Sep 15 18:06:09 2022 ] Mean test loss of 258 batches: 3.6805732250213623.
|
95 |
+
[ Thu Sep 15 18:06:09 2022 ] Top1: 37.67%
|
96 |
+
[ Thu Sep 15 18:06:09 2022 ] Top5: 71.69%
|
97 |
+
[ Thu Sep 15 18:06:09 2022 ] Training epoch: 16
|
98 |
+
[ Thu Sep 15 18:06:33 2022 ] Batch(54/123) done. Loss: 0.5238 lr:0.100000 network_time: 0.0507
|
99 |
+
[ Thu Sep 15 18:06:58 2022 ] Eval epoch: 16
|
100 |
+
[ Thu Sep 15 18:07:21 2022 ] Mean test loss of 258 batches: 3.097450017929077.
|
101 |
+
[ Thu Sep 15 18:07:21 2022 ] Top1: 37.42%
|
102 |
+
[ Thu Sep 15 18:07:21 2022 ] Top5: 76.38%
|
103 |
+
[ Thu Sep 15 18:07:21 2022 ] Training epoch: 17
|
104 |
+
[ Thu Sep 15 18:07:37 2022 ] Batch(31/123) done. Loss: 0.6358 lr:0.100000 network_time: 0.0481
|
105 |
+
[ Thu Sep 15 18:08:11 2022 ] Eval epoch: 17
|
106 |
+
[ Thu Sep 15 18:08:33 2022 ] Mean test loss of 258 batches: 3.424067497253418.
|
107 |
+
[ Thu Sep 15 18:08:33 2022 ] Top1: 42.69%
|
108 |
+
[ Thu Sep 15 18:08:34 2022 ] Top5: 77.68%
|
109 |
+
[ Thu Sep 15 18:08:34 2022 ] Training epoch: 18
|
110 |
+
[ Thu Sep 15 18:08:41 2022 ] Batch(8/123) done. Loss: 0.3318 lr:0.100000 network_time: 0.0513
|
111 |
+
[ Thu Sep 15 18:09:18 2022 ] Batch(108/123) done. Loss: 0.4070 lr:0.100000 network_time: 0.0516
|
112 |
+
[ Thu Sep 15 18:09:23 2022 ] Eval epoch: 18
|
113 |
+
[ Thu Sep 15 18:09:46 2022 ] Mean test loss of 258 batches: 2.758646011352539.
|
114 |
+
[ Thu Sep 15 18:09:46 2022 ] Top1: 45.64%
|
115 |
+
[ Thu Sep 15 18:09:46 2022 ] Top5: 77.97%
|
116 |
+
[ Thu Sep 15 18:09:46 2022 ] Training epoch: 19
|
117 |
+
[ Thu Sep 15 18:10:22 2022 ] Batch(85/123) done. Loss: 0.5093 lr:0.100000 network_time: 0.0535
|
118 |
+
[ Thu Sep 15 18:10:36 2022 ] Eval epoch: 19
|
119 |
+
[ Thu Sep 15 18:10:59 2022 ] Mean test loss of 258 batches: 2.7793309688568115.
|
120 |
+
[ Thu Sep 15 18:10:59 2022 ] Top1: 46.62%
|
121 |
+
[ Thu Sep 15 18:10:59 2022 ] Top5: 79.77%
|
122 |
+
[ Thu Sep 15 18:10:59 2022 ] Training epoch: 20
|
123 |
+
[ Thu Sep 15 18:11:26 2022 ] Batch(62/123) done. Loss: 0.3249 lr:0.100000 network_time: 0.0485
|
124 |
+
[ Thu Sep 15 18:11:48 2022 ] Eval epoch: 20
|
125 |
+
[ Thu Sep 15 18:12:11 2022 ] Mean test loss of 258 batches: 3.609997034072876.
|
126 |
+
[ Thu Sep 15 18:12:11 2022 ] Top1: 39.23%
|
127 |
+
[ Thu Sep 15 18:12:11 2022 ] Top5: 69.32%
|
128 |
+
[ Thu Sep 15 18:12:11 2022 ] Training epoch: 21
|
129 |
+
[ Thu Sep 15 18:12:30 2022 ] Batch(39/123) done. Loss: 0.4764 lr:0.100000 network_time: 0.0517
|
130 |
+
[ Thu Sep 15 18:13:01 2022 ] Eval epoch: 21
|
131 |
+
[ Thu Sep 15 18:13:24 2022 ] Mean test loss of 258 batches: 2.8876986503601074.
|
132 |
+
[ Thu Sep 15 18:13:24 2022 ] Top1: 46.73%
|
133 |
+
[ Thu Sep 15 18:13:24 2022 ] Top5: 80.28%
|
134 |
+
[ Thu Sep 15 18:13:24 2022 ] Training epoch: 22
|
135 |
+
[ Thu Sep 15 18:13:34 2022 ] Batch(16/123) done. Loss: 0.3911 lr:0.100000 network_time: 0.0489
|
136 |
+
[ Thu Sep 15 18:14:11 2022 ] Batch(116/123) done. Loss: 0.3523 lr:0.100000 network_time: 0.0512
|
137 |
+
[ Thu Sep 15 18:14:13 2022 ] Eval epoch: 22
|
138 |
+
[ Thu Sep 15 18:14:36 2022 ] Mean test loss of 258 batches: 3.206068992614746.
|
139 |
+
[ Thu Sep 15 18:14:36 2022 ] Top1: 40.12%
|
140 |
+
[ Thu Sep 15 18:14:36 2022 ] Top5: 75.93%
|
141 |
+
[ Thu Sep 15 18:14:36 2022 ] Training epoch: 23
|
142 |
+
[ Thu Sep 15 18:15:15 2022 ] Batch(93/123) done. Loss: 0.6690 lr:0.100000 network_time: 0.0495
|
143 |
+
[ Thu Sep 15 18:15:26 2022 ] Eval epoch: 23
|
144 |
+
[ Thu Sep 15 18:15:49 2022 ] Mean test loss of 258 batches: 2.487531900405884.
|
145 |
+
[ Thu Sep 15 18:15:49 2022 ] Top1: 50.01%
|
146 |
+
[ Thu Sep 15 18:15:49 2022 ] Top5: 81.78%
|
147 |
+
[ Thu Sep 15 18:15:49 2022 ] Training epoch: 24
|
148 |
+
[ Thu Sep 15 18:16:19 2022 ] Batch(70/123) done. Loss: 0.3341 lr:0.100000 network_time: 0.0536
|
149 |
+
[ Thu Sep 15 18:16:38 2022 ] Eval epoch: 24
|
150 |
+
[ Thu Sep 15 18:17:00 2022 ] Mean test loss of 258 batches: 3.2020022869110107.
|
151 |
+
[ Thu Sep 15 18:17:00 2022 ] Top1: 46.64%
|
152 |
+
[ Thu Sep 15 18:17:00 2022 ] Top5: 81.62%
|
153 |
+
[ Thu Sep 15 18:17:00 2022 ] Training epoch: 25
|
154 |
+
[ Thu Sep 15 18:17:22 2022 ] Batch(47/123) done. Loss: 0.2572 lr:0.100000 network_time: 0.0522
|
155 |
+
[ Thu Sep 15 18:17:50 2022 ] Eval epoch: 25
|
156 |
+
[ Thu Sep 15 18:18:13 2022 ] Mean test loss of 258 batches: 2.5256783962249756.
|
157 |
+
[ Thu Sep 15 18:18:13 2022 ] Top1: 53.64%
|
158 |
+
[ Thu Sep 15 18:18:13 2022 ] Top5: 85.21%
|
159 |
+
[ Thu Sep 15 18:18:13 2022 ] Training epoch: 26
|
160 |
+
[ Thu Sep 15 18:18:27 2022 ] Batch(24/123) done. Loss: 0.4852 lr:0.100000 network_time: 0.0493
|
161 |
+
[ Thu Sep 15 18:19:03 2022 ] Eval epoch: 26
|
162 |
+
[ Thu Sep 15 18:19:26 2022 ] Mean test loss of 258 batches: 2.4896974563598633.
|
163 |
+
[ Thu Sep 15 18:19:26 2022 ] Top1: 49.52%
|
164 |
+
[ Thu Sep 15 18:19:26 2022 ] Top5: 81.65%
|
165 |
+
[ Thu Sep 15 18:19:26 2022 ] Training epoch: 27
|
166 |
+
[ Thu Sep 15 18:19:30 2022 ] Batch(1/123) done. Loss: 0.1621 lr:0.100000 network_time: 0.0512
|
167 |
+
[ Thu Sep 15 18:20:07 2022 ] Batch(101/123) done. Loss: 0.4268 lr:0.100000 network_time: 0.0532
|
168 |
+
[ Thu Sep 15 18:20:15 2022 ] Eval epoch: 27
|
169 |
+
[ Thu Sep 15 18:20:38 2022 ] Mean test loss of 258 batches: 2.5876340866088867.
|
170 |
+
[ Thu Sep 15 18:20:38 2022 ] Top1: 50.75%
|
171 |
+
[ Thu Sep 15 18:20:38 2022 ] Top5: 83.54%
|
172 |
+
[ Thu Sep 15 18:20:38 2022 ] Training epoch: 28
|
173 |
+
[ Thu Sep 15 18:21:11 2022 ] Batch(78/123) done. Loss: 0.6055 lr:0.100000 network_time: 0.0523
|
174 |
+
[ Thu Sep 15 18:21:27 2022 ] Eval epoch: 28
|
175 |
+
[ Thu Sep 15 18:21:50 2022 ] Mean test loss of 258 batches: 2.8039703369140625.
|
176 |
+
[ Thu Sep 15 18:21:50 2022 ] Top1: 49.68%
|
177 |
+
[ Thu Sep 15 18:21:50 2022 ] Top5: 83.48%
|
178 |
+
[ Thu Sep 15 18:21:50 2022 ] Training epoch: 29
|
179 |
+
[ Thu Sep 15 18:22:15 2022 ] Batch(55/123) done. Loss: 0.2838 lr:0.100000 network_time: 0.0543
|
180 |
+
[ Thu Sep 15 18:22:40 2022 ] Eval epoch: 29
|
181 |
+
[ Thu Sep 15 18:23:03 2022 ] Mean test loss of 258 batches: 2.4521985054016113.
|
182 |
+
[ Thu Sep 15 18:23:03 2022 ] Top1: 51.04%
|
183 |
+
[ Thu Sep 15 18:23:03 2022 ] Top5: 84.35%
|
184 |
+
[ Thu Sep 15 18:23:03 2022 ] Training epoch: 30
|
185 |
+
[ Thu Sep 15 18:23:19 2022 ] Batch(32/123) done. Loss: 0.3162 lr:0.100000 network_time: 0.0495
|
186 |
+
[ Thu Sep 15 18:23:52 2022 ] Eval epoch: 30
|
187 |
+
[ Thu Sep 15 18:24:15 2022 ] Mean test loss of 258 batches: 2.2596545219421387.
|
188 |
+
[ Thu Sep 15 18:24:15 2022 ] Top1: 54.98%
|
189 |
+
[ Thu Sep 15 18:24:15 2022 ] Top5: 84.12%
|
190 |
+
[ Thu Sep 15 18:24:15 2022 ] Training epoch: 31
|
191 |
+
[ Thu Sep 15 18:24:23 2022 ] Batch(9/123) done. Loss: 0.2001 lr:0.100000 network_time: 0.0504
|
192 |
+
[ Thu Sep 15 18:24:59 2022 ] Batch(109/123) done. Loss: 0.2150 lr:0.100000 network_time: 0.0578
|
193 |
+
[ Thu Sep 15 18:25:05 2022 ] Eval epoch: 31
|
194 |
+
[ Thu Sep 15 18:25:27 2022 ] Mean test loss of 258 batches: 2.3336315155029297.
|
195 |
+
[ Thu Sep 15 18:25:27 2022 ] Top1: 53.68%
|
196 |
+
[ Thu Sep 15 18:25:27 2022 ] Top5: 83.42%
|
197 |
+
[ Thu Sep 15 18:25:27 2022 ] Training epoch: 32
|
198 |
+
[ Thu Sep 15 18:26:03 2022 ] Batch(86/123) done. Loss: 0.2091 lr:0.100000 network_time: 0.0493
|
199 |
+
[ Thu Sep 15 18:26:17 2022 ] Eval epoch: 32
|
200 |
+
[ Thu Sep 15 18:26:39 2022 ] Mean test loss of 258 batches: 3.5852153301239014.
|
201 |
+
[ Thu Sep 15 18:26:39 2022 ] Top1: 39.52%
|
202 |
+
[ Thu Sep 15 18:26:39 2022 ] Top5: 75.45%
|
203 |
+
[ Thu Sep 15 18:26:39 2022 ] Training epoch: 33
|
204 |
+
[ Thu Sep 15 18:27:07 2022 ] Batch(63/123) done. Loss: 0.1526 lr:0.100000 network_time: 0.0513
|
205 |
+
[ Thu Sep 15 18:27:29 2022 ] Eval epoch: 33
|
206 |
+
[ Thu Sep 15 18:27:52 2022 ] Mean test loss of 258 batches: 2.2551028728485107.
|
207 |
+
[ Thu Sep 15 18:27:52 2022 ] Top1: 55.06%
|
208 |
+
[ Thu Sep 15 18:27:52 2022 ] Top5: 85.82%
|
209 |
+
[ Thu Sep 15 18:27:52 2022 ] Training epoch: 34
|
210 |
+
[ Thu Sep 15 18:28:11 2022 ] Batch(40/123) done. Loss: 0.3211 lr:0.100000 network_time: 0.0549
|
211 |
+
[ Thu Sep 15 18:28:42 2022 ] Eval epoch: 34
|
212 |
+
[ Thu Sep 15 18:29:05 2022 ] Mean test loss of 258 batches: 2.2728934288024902.
|
213 |
+
[ Thu Sep 15 18:29:05 2022 ] Top1: 52.71%
|
214 |
+
[ Thu Sep 15 18:29:05 2022 ] Top5: 85.59%
|
215 |
+
[ Thu Sep 15 18:29:05 2022 ] Training epoch: 35
|
216 |
+
[ Thu Sep 15 18:29:16 2022 ] Batch(17/123) done. Loss: 0.1437 lr:0.100000 network_time: 0.0499
|
217 |
+
[ Thu Sep 15 18:29:52 2022 ] Batch(117/123) done. Loss: 0.2225 lr:0.100000 network_time: 0.0519
|
218 |
+
[ Thu Sep 15 18:29:54 2022 ] Eval epoch: 35
|
219 |
+
[ Thu Sep 15 18:30:17 2022 ] Mean test loss of 258 batches: 2.5030672550201416.
|
220 |
+
[ Thu Sep 15 18:30:17 2022 ] Top1: 49.17%
|
221 |
+
[ Thu Sep 15 18:30:17 2022 ] Top5: 82.40%
|
222 |
+
[ Thu Sep 15 18:30:17 2022 ] Training epoch: 36
|
223 |
+
[ Thu Sep 15 18:30:56 2022 ] Batch(94/123) done. Loss: 0.1613 lr:0.100000 network_time: 0.0522
|
224 |
+
[ Thu Sep 15 18:31:06 2022 ] Eval epoch: 36
|
225 |
+
[ Thu Sep 15 18:31:29 2022 ] Mean test loss of 258 batches: 3.4875588417053223.
|
226 |
+
[ Thu Sep 15 18:31:29 2022 ] Top1: 38.61%
|
227 |
+
[ Thu Sep 15 18:31:29 2022 ] Top5: 70.11%
|
228 |
+
[ Thu Sep 15 18:31:29 2022 ] Training epoch: 37
|
229 |
+
[ Thu Sep 15 18:31:59 2022 ] Batch(71/123) done. Loss: 0.3926 lr:0.100000 network_time: 0.0515
|
230 |
+
[ Thu Sep 15 18:32:18 2022 ] Eval epoch: 37
|
231 |
+
[ Thu Sep 15 18:32:41 2022 ] Mean test loss of 258 batches: 2.094217300415039.
|
232 |
+
[ Thu Sep 15 18:32:41 2022 ] Top1: 56.10%
|
233 |
+
[ Thu Sep 15 18:32:41 2022 ] Top5: 86.88%
|
234 |
+
[ Thu Sep 15 18:32:41 2022 ] Training epoch: 38
|
235 |
+
[ Thu Sep 15 18:33:03 2022 ] Batch(48/123) done. Loss: 0.1567 lr:0.100000 network_time: 0.0518
|
236 |
+
[ Thu Sep 15 18:33:31 2022 ] Eval epoch: 38
|
237 |
+
[ Thu Sep 15 18:33:53 2022 ] Mean test loss of 258 batches: 3.110715866088867.
|
238 |
+
[ Thu Sep 15 18:33:53 2022 ] Top1: 43.77%
|
239 |
+
[ Thu Sep 15 18:33:53 2022 ] Top5: 78.10%
|
240 |
+
[ Thu Sep 15 18:33:53 2022 ] Training epoch: 39
|
241 |
+
[ Thu Sep 15 18:34:07 2022 ] Batch(25/123) done. Loss: 0.3969 lr:0.100000 network_time: 0.0491
|
242 |
+
[ Thu Sep 15 18:34:43 2022 ] Eval epoch: 39
|
243 |
+
[ Thu Sep 15 18:35:06 2022 ] Mean test loss of 258 batches: 2.423691987991333.
|
244 |
+
[ Thu Sep 15 18:35:06 2022 ] Top1: 50.49%
|
245 |
+
[ Thu Sep 15 18:35:06 2022 ] Top5: 85.05%
|
246 |
+
[ Thu Sep 15 18:35:06 2022 ] Training epoch: 40
|
247 |
+
[ Thu Sep 15 18:35:11 2022 ] Batch(2/123) done. Loss: 0.3346 lr:0.100000 network_time: 0.0495
|
248 |
+
[ Thu Sep 15 18:35:47 2022 ] Batch(102/123) done. Loss: 0.2849 lr:0.100000 network_time: 0.0472
|
249 |
+
[ Thu Sep 15 18:35:55 2022 ] Eval epoch: 40
|
250 |
+
[ Thu Sep 15 18:36:18 2022 ] Mean test loss of 258 batches: 1.968823790550232.
|
251 |
+
[ Thu Sep 15 18:36:18 2022 ] Top1: 56.49%
|
252 |
+
[ Thu Sep 15 18:36:18 2022 ] Top5: 86.26%
|
253 |
+
[ Thu Sep 15 18:36:18 2022 ] Training epoch: 41
|
254 |
+
[ Thu Sep 15 18:36:52 2022 ] Batch(79/123) done. Loss: 0.2500 lr:0.100000 network_time: 0.0508
|
255 |
+
[ Thu Sep 15 18:37:08 2022 ] Eval epoch: 41
|
256 |
+
[ Thu Sep 15 18:37:30 2022 ] Mean test loss of 258 batches: 3.1059272289276123.
|
257 |
+
[ Thu Sep 15 18:37:30 2022 ] Top1: 46.44%
|
258 |
+
[ Thu Sep 15 18:37:30 2022 ] Top5: 79.26%
|
259 |
+
[ Thu Sep 15 18:37:30 2022 ] Training epoch: 42
|
260 |
+
[ Thu Sep 15 18:37:56 2022 ] Batch(56/123) done. Loss: 0.2638 lr:0.100000 network_time: 0.0531
|
261 |
+
[ Thu Sep 15 18:38:20 2022 ] Eval epoch: 42
|
262 |
+
[ Thu Sep 15 18:38:43 2022 ] Mean test loss of 258 batches: 3.350965976715088.
|
263 |
+
[ Thu Sep 15 18:38:43 2022 ] Top1: 46.13%
|
264 |
+
[ Thu Sep 15 18:38:43 2022 ] Top5: 79.26%
|
265 |
+
[ Thu Sep 15 18:38:43 2022 ] Training epoch: 43
|
266 |
+
[ Thu Sep 15 18:39:00 2022 ] Batch(33/123) done. Loss: 0.1191 lr:0.100000 network_time: 0.0537
|
267 |
+
[ Thu Sep 15 18:39:33 2022 ] Eval epoch: 43
|
268 |
+
[ Thu Sep 15 18:39:56 2022 ] Mean test loss of 258 batches: 2.9140000343322754.
|
269 |
+
[ Thu Sep 15 18:39:56 2022 ] Top1: 49.75%
|
270 |
+
[ Thu Sep 15 18:39:56 2022 ] Top5: 83.55%
|
271 |
+
[ Thu Sep 15 18:39:56 2022 ] Training epoch: 44
|
272 |
+
[ Thu Sep 15 18:40:04 2022 ] Batch(10/123) done. Loss: 0.1089 lr:0.100000 network_time: 0.0501
|
273 |
+
[ Thu Sep 15 18:40:41 2022 ] Batch(110/123) done. Loss: 0.1441 lr:0.100000 network_time: 0.0509
|
274 |
+
[ Thu Sep 15 18:40:45 2022 ] Eval epoch: 44
|
275 |
+
[ Thu Sep 15 18:41:08 2022 ] Mean test loss of 258 batches: 2.5323615074157715.
|
276 |
+
[ Thu Sep 15 18:41:08 2022 ] Top1: 49.69%
|
277 |
+
[ Thu Sep 15 18:41:08 2022 ] Top5: 81.96%
|
278 |
+
[ Thu Sep 15 18:41:08 2022 ] Training epoch: 45
|
279 |
+
[ Thu Sep 15 18:41:44 2022 ] Batch(87/123) done. Loss: 0.0759 lr:0.100000 network_time: 0.0525
|
280 |
+
[ Thu Sep 15 18:41:57 2022 ] Eval epoch: 45
|
281 |
+
[ Thu Sep 15 18:42:20 2022 ] Mean test loss of 258 batches: 2.6945436000823975.
|
282 |
+
[ Thu Sep 15 18:42:20 2022 ] Top1: 48.29%
|
283 |
+
[ Thu Sep 15 18:42:20 2022 ] Top5: 80.38%
|
284 |
+
[ Thu Sep 15 18:42:20 2022 ] Training epoch: 46
|
285 |
+
[ Thu Sep 15 18:42:48 2022 ] Batch(64/123) done. Loss: 0.1732 lr:0.100000 network_time: 0.0540
|
286 |
+
[ Thu Sep 15 18:43:10 2022 ] Eval epoch: 46
|
287 |
+
[ Thu Sep 15 18:43:33 2022 ] Mean test loss of 258 batches: 3.0958104133605957.
|
288 |
+
[ Thu Sep 15 18:43:33 2022 ] Top1: 48.04%
|
289 |
+
[ Thu Sep 15 18:43:33 2022 ] Top5: 81.45%
|
290 |
+
[ Thu Sep 15 18:43:33 2022 ] Training epoch: 47
|
291 |
+
[ Thu Sep 15 18:43:53 2022 ] Batch(41/123) done. Loss: 0.3669 lr:0.100000 network_time: 0.0520
|
292 |
+
[ Thu Sep 15 18:44:23 2022 ] Eval epoch: 47
|
293 |
+
[ Thu Sep 15 18:44:46 2022 ] Mean test loss of 258 batches: 3.1610655784606934.
|
294 |
+
[ Thu Sep 15 18:44:46 2022 ] Top1: 48.95%
|
295 |
+
[ Thu Sep 15 18:44:46 2022 ] Top5: 82.23%
|
296 |
+
[ Thu Sep 15 18:44:46 2022 ] Training epoch: 48
|
297 |
+
[ Thu Sep 15 18:44:57 2022 ] Batch(18/123) done. Loss: 0.2774 lr:0.100000 network_time: 0.0512
|
298 |
+
[ Thu Sep 15 18:45:33 2022 ] Batch(118/123) done. Loss: 0.1066 lr:0.100000 network_time: 0.0502
|
299 |
+
[ Thu Sep 15 18:45:35 2022 ] Eval epoch: 48
|
300 |
+
[ Thu Sep 15 18:45:58 2022 ] Mean test loss of 258 batches: 2.4199440479278564.
|
301 |
+
[ Thu Sep 15 18:45:58 2022 ] Top1: 53.91%
|
302 |
+
[ Thu Sep 15 18:45:58 2022 ] Top5: 84.36%
|
303 |
+
[ Thu Sep 15 18:45:58 2022 ] Training epoch: 49
|
304 |
+
[ Thu Sep 15 18:46:37 2022 ] Batch(95/123) done. Loss: 0.1835 lr:0.100000 network_time: 0.0520
|
305 |
+
[ Thu Sep 15 18:46:47 2022 ] Eval epoch: 49
|
306 |
+
[ Thu Sep 15 18:47:10 2022 ] Mean test loss of 258 batches: 2.5721118450164795.
|
307 |
+
[ Thu Sep 15 18:47:10 2022 ] Top1: 53.58%
|
308 |
+
[ Thu Sep 15 18:47:10 2022 ] Top5: 84.75%
|
309 |
+
[ Thu Sep 15 18:47:10 2022 ] Training epoch: 50
|
310 |
+
[ Thu Sep 15 18:47:41 2022 ] Batch(72/123) done. Loss: 0.1424 lr:0.100000 network_time: 0.0493
|
311 |
+
[ Thu Sep 15 18:47:59 2022 ] Eval epoch: 50
|
312 |
+
[ Thu Sep 15 18:48:22 2022 ] Mean test loss of 258 batches: 2.8164403438568115.
|
313 |
+
[ Thu Sep 15 18:48:22 2022 ] Top1: 49.89%
|
314 |
+
[ Thu Sep 15 18:48:22 2022 ] Top5: 83.20%
|
315 |
+
[ Thu Sep 15 18:48:22 2022 ] Training epoch: 51
|
316 |
+
[ Thu Sep 15 18:48:45 2022 ] Batch(49/123) done. Loss: 0.2530 lr:0.100000 network_time: 0.0525
|
317 |
+
[ Thu Sep 15 18:49:11 2022 ] Eval epoch: 51
|
318 |
+
[ Thu Sep 15 18:49:34 2022 ] Mean test loss of 258 batches: 3.0064849853515625.
|
319 |
+
[ Thu Sep 15 18:49:34 2022 ] Top1: 48.81%
|
320 |
+
[ Thu Sep 15 18:49:34 2022 ] Top5: 81.22%
|
321 |
+
[ Thu Sep 15 18:49:34 2022 ] Training epoch: 52
|
322 |
+
[ Thu Sep 15 18:49:48 2022 ] Batch(26/123) done. Loss: 0.2124 lr:0.100000 network_time: 0.0564
|
323 |
+
[ Thu Sep 15 18:50:23 2022 ] Eval epoch: 52
|
324 |
+
[ Thu Sep 15 18:50:46 2022 ] Mean test loss of 258 batches: 2.5954577922821045.
|
325 |
+
[ Thu Sep 15 18:50:47 2022 ] Top1: 51.74%
|
326 |
+
[ Thu Sep 15 18:50:47 2022 ] Top5: 84.36%
|
327 |
+
[ Thu Sep 15 18:50:47 2022 ] Training epoch: 53
|
328 |
+
[ Thu Sep 15 18:50:52 2022 ] Batch(3/123) done. Loss: 0.1510 lr:0.100000 network_time: 0.0513
|
329 |
+
[ Thu Sep 15 18:51:29 2022 ] Batch(103/123) done. Loss: 0.1510 lr:0.100000 network_time: 0.0507
|
330 |
+
[ Thu Sep 15 18:51:36 2022 ] Eval epoch: 53
|
331 |
+
[ Thu Sep 15 18:51:59 2022 ] Mean test loss of 258 batches: 2.450814723968506.
|
332 |
+
[ Thu Sep 15 18:51:59 2022 ] Top1: 52.99%
|
333 |
+
[ Thu Sep 15 18:51:59 2022 ] Top5: 84.93%
|
334 |
+
[ Thu Sep 15 18:51:59 2022 ] Training epoch: 54
|
335 |
+
[ Thu Sep 15 18:52:33 2022 ] Batch(80/123) done. Loss: 0.4379 lr:0.100000 network_time: 0.0502
|
336 |
+
[ Thu Sep 15 18:52:49 2022 ] Eval epoch: 54
|
337 |
+
[ Thu Sep 15 18:53:11 2022 ] Mean test loss of 258 batches: 2.9808332920074463.
|
338 |
+
[ Thu Sep 15 18:53:12 2022 ] Top1: 49.61%
|
339 |
+
[ Thu Sep 15 18:53:12 2022 ] Top5: 82.16%
|
340 |
+
[ Thu Sep 15 18:53:12 2022 ] Training epoch: 55
|
341 |
+
[ Thu Sep 15 18:53:37 2022 ] Batch(57/123) done. Loss: 0.1202 lr:0.100000 network_time: 0.0512
|
342 |
+
[ Thu Sep 15 18:54:01 2022 ] Eval epoch: 55
|
343 |
+
[ Thu Sep 15 18:54:24 2022 ] Mean test loss of 258 batches: 2.49838924407959.
|
344 |
+
[ Thu Sep 15 18:54:24 2022 ] Top1: 51.74%
|
345 |
+
[ Thu Sep 15 18:54:24 2022 ] Top5: 84.11%
|
346 |
+
[ Thu Sep 15 18:54:24 2022 ] Training epoch: 56
|
347 |
+
[ Thu Sep 15 18:54:41 2022 ] Batch(34/123) done. Loss: 0.1587 lr:0.100000 network_time: 0.0521
|
348 |
+
[ Thu Sep 15 18:55:13 2022 ] Eval epoch: 56
|
349 |
+
[ Thu Sep 15 18:55:36 2022 ] Mean test loss of 258 batches: 2.4359495639801025.
|
350 |
+
[ Thu Sep 15 18:55:36 2022 ] Top1: 53.91%
|
351 |
+
[ Thu Sep 15 18:55:36 2022 ] Top5: 84.18%
|
352 |
+
[ Thu Sep 15 18:55:36 2022 ] Training epoch: 57
|
353 |
+
[ Thu Sep 15 18:55:45 2022 ] Batch(11/123) done. Loss: 0.1714 lr:0.100000 network_time: 0.0544
|
354 |
+
[ Thu Sep 15 18:56:21 2022 ] Batch(111/123) done. Loss: 0.1316 lr:0.100000 network_time: 0.0676
|
355 |
+
[ Thu Sep 15 18:56:26 2022 ] Eval epoch: 57
|
356 |
+
[ Thu Sep 15 18:56:49 2022 ] Mean test loss of 258 batches: 2.2723708152770996.
|
357 |
+
[ Thu Sep 15 18:56:49 2022 ] Top1: 55.72%
|
358 |
+
[ Thu Sep 15 18:56:49 2022 ] Top5: 86.43%
|
359 |
+
[ Thu Sep 15 18:56:49 2022 ] Training epoch: 58
|
360 |
+
[ Thu Sep 15 18:57:26 2022 ] Batch(88/123) done. Loss: 0.0955 lr:0.100000 network_time: 0.0541
|
361 |
+
[ Thu Sep 15 18:57:38 2022 ] Eval epoch: 58
|
362 |
+
[ Thu Sep 15 18:58:01 2022 ] Mean test loss of 258 batches: 3.134904623031616.
|
363 |
+
[ Thu Sep 15 18:58:01 2022 ] Top1: 47.00%
|
364 |
+
[ Thu Sep 15 18:58:01 2022 ] Top5: 79.91%
|
365 |
+
[ Thu Sep 15 18:58:01 2022 ] Training epoch: 59
|
366 |
+
[ Thu Sep 15 18:58:30 2022 ] Batch(65/123) done. Loss: 0.1218 lr:0.100000 network_time: 0.0520
|
367 |
+
[ Thu Sep 15 18:58:51 2022 ] Eval epoch: 59
|
368 |
+
[ Thu Sep 15 18:59:14 2022 ] Mean test loss of 258 batches: 2.147733449935913.
|
369 |
+
[ Thu Sep 15 18:59:14 2022 ] Top1: 57.50%
|
370 |
+
[ Thu Sep 15 18:59:14 2022 ] Top5: 88.17%
|
371 |
+
[ Thu Sep 15 18:59:14 2022 ] Training epoch: 60
|
372 |
+
[ Thu Sep 15 18:59:34 2022 ] Batch(42/123) done. Loss: 0.0591 lr:0.100000 network_time: 0.0594
|
373 |
+
[ Thu Sep 15 19:00:03 2022 ] Eval epoch: 60
|
374 |
+
[ Thu Sep 15 19:00:26 2022 ] Mean test loss of 258 batches: 2.7868356704711914.
|
375 |
+
[ Thu Sep 15 19:00:26 2022 ] Top1: 52.62%
|
376 |
+
[ Thu Sep 15 19:00:26 2022 ] Top5: 84.46%
|
377 |
+
[ Thu Sep 15 19:00:26 2022 ] Training epoch: 61
|
378 |
+
[ Thu Sep 15 19:00:38 2022 ] Batch(19/123) done. Loss: 0.1423 lr:0.010000 network_time: 0.0548
|
379 |
+
[ Thu Sep 15 19:01:14 2022 ] Batch(119/123) done. Loss: 0.0520 lr:0.010000 network_time: 0.0510
|
380 |
+
[ Thu Sep 15 19:01:16 2022 ] Eval epoch: 61
|
381 |
+
[ Thu Sep 15 19:01:39 2022 ] Mean test loss of 258 batches: 1.9882783889770508.
|
382 |
+
[ Thu Sep 15 19:01:39 2022 ] Top1: 61.74%
|
383 |
+
[ Thu Sep 15 19:01:39 2022 ] Top5: 90.26%
|
384 |
+
[ Thu Sep 15 19:01:39 2022 ] Training epoch: 62
|
385 |
+
[ Thu Sep 15 19:02:18 2022 ] Batch(96/123) done. Loss: 0.0392 lr:0.010000 network_time: 0.0556
|
386 |
+
[ Thu Sep 15 19:02:28 2022 ] Eval epoch: 62
|
387 |
+
[ Thu Sep 15 19:02:51 2022 ] Mean test loss of 258 batches: 1.8952713012695312.
|
388 |
+
[ Thu Sep 15 19:02:51 2022 ] Top1: 62.84%
|
389 |
+
[ Thu Sep 15 19:02:51 2022 ] Top5: 90.74%
|
390 |
+
[ Thu Sep 15 19:02:51 2022 ] Training epoch: 63
|
391 |
+
[ Thu Sep 15 19:03:23 2022 ] Batch(73/123) done. Loss: 0.0216 lr:0.010000 network_time: 0.0502
|
392 |
+
[ Thu Sep 15 19:03:41 2022 ] Eval epoch: 63
|
393 |
+
[ Thu Sep 15 19:04:04 2022 ] Mean test loss of 258 batches: 2.003861665725708.
|
394 |
+
[ Thu Sep 15 19:04:04 2022 ] Top1: 62.39%
|
395 |
+
[ Thu Sep 15 19:04:04 2022 ] Top5: 90.72%
|
396 |
+
[ Thu Sep 15 19:04:04 2022 ] Training epoch: 64
|
397 |
+
[ Thu Sep 15 19:04:27 2022 ] Batch(50/123) done. Loss: 0.0158 lr:0.010000 network_time: 0.0504
|
398 |
+
[ Thu Sep 15 19:04:53 2022 ] Eval epoch: 64
|
399 |
+
[ Thu Sep 15 19:05:17 2022 ] Mean test loss of 258 batches: 1.8763132095336914.
|
400 |
+
[ Thu Sep 15 19:05:17 2022 ] Top1: 63.09%
|
401 |
+
[ Thu Sep 15 19:05:17 2022 ] Top5: 90.86%
|
402 |
+
[ Thu Sep 15 19:05:17 2022 ] Training epoch: 65
|
403 |
+
[ Thu Sep 15 19:05:31 2022 ] Batch(27/123) done. Loss: 0.0109 lr:0.010000 network_time: 0.0502
|
404 |
+
[ Thu Sep 15 19:06:06 2022 ] Eval epoch: 65
|
405 |
+
[ Thu Sep 15 19:06:29 2022 ] Mean test loss of 258 batches: 1.8442339897155762.
|
406 |
+
[ Thu Sep 15 19:06:29 2022 ] Top1: 63.47%
|
407 |
+
[ Thu Sep 15 19:06:29 2022 ] Top5: 91.11%
|
408 |
+
[ Thu Sep 15 19:06:29 2022 ] Training epoch: 66
|
409 |
+
[ Thu Sep 15 19:06:35 2022 ] Batch(4/123) done. Loss: 0.0147 lr:0.010000 network_time: 0.0531
|
410 |
+
[ Thu Sep 15 19:07:12 2022 ] Batch(104/123) done. Loss: 0.0279 lr:0.010000 network_time: 0.0553
|
411 |
+
[ Thu Sep 15 19:07:18 2022 ] Eval epoch: 66
|
412 |
+
[ Thu Sep 15 19:07:41 2022 ] Mean test loss of 258 batches: 1.8917242288589478.
|
413 |
+
[ Thu Sep 15 19:07:41 2022 ] Top1: 63.57%
|
414 |
+
[ Thu Sep 15 19:07:41 2022 ] Top5: 90.88%
|
415 |
+
[ Thu Sep 15 19:07:41 2022 ] Training epoch: 67
|
416 |
+
[ Thu Sep 15 19:08:16 2022 ] Batch(81/123) done. Loss: 0.0362 lr:0.010000 network_time: 0.0500
|
417 |
+
[ Thu Sep 15 19:08:31 2022 ] Eval epoch: 67
|
418 |
+
[ Thu Sep 15 19:08:54 2022 ] Mean test loss of 258 batches: 2.1126983165740967.
|
419 |
+
[ Thu Sep 15 19:08:54 2022 ] Top1: 59.51%
|
420 |
+
[ Thu Sep 15 19:08:54 2022 ] Top5: 89.03%
|
421 |
+
[ Thu Sep 15 19:08:54 2022 ] Training epoch: 68
|
422 |
+
[ Thu Sep 15 19:09:21 2022 ] Batch(58/123) done. Loss: 0.0134 lr:0.010000 network_time: 0.0545
|
423 |
+
[ Thu Sep 15 19:09:44 2022 ] Eval epoch: 68
|
424 |
+
[ Thu Sep 15 19:10:07 2022 ] Mean test loss of 258 batches: 1.7624281644821167.
|
425 |
+
[ Thu Sep 15 19:10:07 2022 ] Top1: 63.74%
|
426 |
+
[ Thu Sep 15 19:10:07 2022 ] Top5: 91.11%
|
427 |
+
[ Thu Sep 15 19:10:07 2022 ] Training epoch: 69
|
428 |
+
[ Thu Sep 15 19:10:25 2022 ] Batch(35/123) done. Loss: 0.0205 lr:0.010000 network_time: 0.0537
|
429 |
+
[ Thu Sep 15 19:10:57 2022 ] Eval epoch: 69
|
430 |
+
[ Thu Sep 15 19:11:20 2022 ] Mean test loss of 258 batches: 1.856307864189148.
|
431 |
+
[ Thu Sep 15 19:11:20 2022 ] Top1: 63.09%
|
432 |
+
[ Thu Sep 15 19:11:20 2022 ] Top5: 90.88%
|
433 |
+
[ Thu Sep 15 19:11:20 2022 ] Training epoch: 70
|
434 |
+
[ Thu Sep 15 19:11:29 2022 ] Batch(12/123) done. Loss: 0.0041 lr:0.010000 network_time: 0.0510
|
435 |
+
[ Thu Sep 15 19:12:05 2022 ] Batch(112/123) done. Loss: 0.0076 lr:0.010000 network_time: 0.0499
|
436 |
+
[ Thu Sep 15 19:12:09 2022 ] Eval epoch: 70
|
437 |
+
[ Thu Sep 15 19:12:32 2022 ] Mean test loss of 258 batches: 1.915732502937317.
|
438 |
+
[ Thu Sep 15 19:12:32 2022 ] Top1: 63.19%
|
439 |
+
[ Thu Sep 15 19:12:32 2022 ] Top5: 90.90%
|
440 |
+
[ Thu Sep 15 19:12:32 2022 ] Training epoch: 71
|
441 |
+
[ Thu Sep 15 19:13:09 2022 ] Batch(89/123) done. Loss: 0.0098 lr:0.010000 network_time: 0.0484
|
442 |
+
[ Thu Sep 15 19:13:22 2022 ] Eval epoch: 71
|
443 |
+
[ Thu Sep 15 19:13:45 2022 ] Mean test loss of 258 batches: 1.8895395994186401.
|
444 |
+
[ Thu Sep 15 19:13:45 2022 ] Top1: 63.75%
|
445 |
+
[ Thu Sep 15 19:13:45 2022 ] Top5: 91.01%
|
446 |
+
[ Thu Sep 15 19:13:45 2022 ] Training epoch: 72
|
447 |
+
[ Thu Sep 15 19:14:13 2022 ] Batch(66/123) done. Loss: 0.0059 lr:0.010000 network_time: 0.0547
|
448 |
+
[ Thu Sep 15 19:14:34 2022 ] Eval epoch: 72
|
449 |
+
[ Thu Sep 15 19:14:57 2022 ] Mean test loss of 258 batches: 1.7950252294540405.
|
450 |
+
[ Thu Sep 15 19:14:58 2022 ] Top1: 64.19%
|
451 |
+
[ Thu Sep 15 19:14:58 2022 ] Top5: 91.25%
|
452 |
+
[ Thu Sep 15 19:14:58 2022 ] Training epoch: 73
|
453 |
+
[ Thu Sep 15 19:15:17 2022 ] Batch(43/123) done. Loss: 0.0060 lr:0.010000 network_time: 0.0522
|
454 |
+
[ Thu Sep 15 19:15:47 2022 ] Eval epoch: 73
|
455 |
+
[ Thu Sep 15 19:16:09 2022 ] Mean test loss of 258 batches: 1.905718445777893.
|
456 |
+
[ Thu Sep 15 19:16:09 2022 ] Top1: 62.58%
|
457 |
+
[ Thu Sep 15 19:16:09 2022 ] Top5: 90.58%
|
458 |
+
[ Thu Sep 15 19:16:10 2022 ] Training epoch: 74
|
459 |
+
[ Thu Sep 15 19:16:21 2022 ] Batch(20/123) done. Loss: 0.0056 lr:0.010000 network_time: 0.0519
|
460 |
+
[ Thu Sep 15 19:16:58 2022 ] Batch(120/123) done. Loss: 0.0050 lr:0.010000 network_time: 0.0489
|
461 |
+
[ Thu Sep 15 19:16:59 2022 ] Eval epoch: 74
|
462 |
+
[ Thu Sep 15 19:17:21 2022 ] Mean test loss of 258 batches: 2.057525873184204.
|
463 |
+
[ Thu Sep 15 19:17:21 2022 ] Top1: 62.66%
|
464 |
+
[ Thu Sep 15 19:17:21 2022 ] Top5: 90.36%
|
465 |
+
[ Thu Sep 15 19:17:21 2022 ] Training epoch: 75
|
466 |
+
[ Thu Sep 15 19:18:01 2022 ] Batch(97/123) done. Loss: 0.0047 lr:0.010000 network_time: 0.0507
|
467 |
+
[ Thu Sep 15 19:18:11 2022 ] Eval epoch: 75
|
468 |
+
[ Thu Sep 15 19:18:34 2022 ] Mean test loss of 258 batches: 1.8387532234191895.
|
469 |
+
[ Thu Sep 15 19:18:34 2022 ] Top1: 63.74%
|
470 |
+
[ Thu Sep 15 19:18:34 2022 ] Top5: 91.15%
|
471 |
+
[ Thu Sep 15 19:18:34 2022 ] Training epoch: 76
|
472 |
+
[ Thu Sep 15 19:19:05 2022 ] Batch(74/123) done. Loss: 0.0057 lr:0.010000 network_time: 0.0508
|
473 |
+
[ Thu Sep 15 19:19:23 2022 ] Eval epoch: 76
|
474 |
+
[ Thu Sep 15 19:19:46 2022 ] Mean test loss of 258 batches: 1.8769611120224.
|
475 |
+
[ Thu Sep 15 19:19:46 2022 ] Top1: 62.75%
|
476 |
+
[ Thu Sep 15 19:19:46 2022 ] Top5: 90.65%
|
477 |
+
[ Thu Sep 15 19:19:46 2022 ] Training epoch: 77
|
478 |
+
[ Thu Sep 15 19:20:09 2022 ] Batch(51/123) done. Loss: 0.0035 lr:0.010000 network_time: 0.0497
|
479 |
+
[ Thu Sep 15 19:20:35 2022 ] Eval epoch: 77
|
480 |
+
[ Thu Sep 15 19:20:58 2022 ] Mean test loss of 258 batches: 2.2678627967834473.
|
481 |
+
[ Thu Sep 15 19:20:58 2022 ] Top1: 57.30%
|
482 |
+
[ Thu Sep 15 19:20:58 2022 ] Top5: 87.72%
|
483 |
+
[ Thu Sep 15 19:20:59 2022 ] Training epoch: 78
|
484 |
+
[ Thu Sep 15 19:21:13 2022 ] Batch(28/123) done. Loss: 0.0167 lr:0.010000 network_time: 0.0475
|
485 |
+
[ Thu Sep 15 19:21:47 2022 ] Eval epoch: 78
|
486 |
+
[ Thu Sep 15 19:22:10 2022 ] Mean test loss of 258 batches: 1.913560152053833.
|
487 |
+
[ Thu Sep 15 19:22:10 2022 ] Top1: 63.26%
|
488 |
+
[ Thu Sep 15 19:22:10 2022 ] Top5: 90.94%
|
489 |
+
[ Thu Sep 15 19:22:11 2022 ] Training epoch: 79
|
490 |
+
[ Thu Sep 15 19:22:17 2022 ] Batch(5/123) done. Loss: 0.0013 lr:0.010000 network_time: 0.0480
|
491 |
+
[ Thu Sep 15 19:22:53 2022 ] Batch(105/123) done. Loss: 0.0101 lr:0.010000 network_time: 0.0585
|
492 |
+
[ Thu Sep 15 19:23:00 2022 ] Eval epoch: 79
|
493 |
+
[ Thu Sep 15 19:23:23 2022 ] Mean test loss of 258 batches: 2.011691093444824.
|
494 |
+
[ Thu Sep 15 19:23:23 2022 ] Top1: 60.81%
|
495 |
+
[ Thu Sep 15 19:23:23 2022 ] Top5: 89.62%
|
496 |
+
[ Thu Sep 15 19:23:23 2022 ] Training epoch: 80
|
497 |
+
[ Thu Sep 15 19:23:57 2022 ] Batch(82/123) done. Loss: 0.0062 lr:0.010000 network_time: 0.0535
|
498 |
+
[ Thu Sep 15 19:24:12 2022 ] Eval epoch: 80
|
499 |
+
[ Thu Sep 15 19:24:36 2022 ] Mean test loss of 258 batches: 1.7865822315216064.
|
500 |
+
[ Thu Sep 15 19:24:36 2022 ] Top1: 64.81%
|
501 |
+
[ Thu Sep 15 19:24:36 2022 ] Top5: 91.50%
|
502 |
+
[ Thu Sep 15 19:24:36 2022 ] Training epoch: 81
|
503 |
+
[ Thu Sep 15 19:25:02 2022 ] Batch(59/123) done. Loss: 0.0120 lr:0.001000 network_time: 0.0486
|
504 |
+
[ Thu Sep 15 19:25:25 2022 ] Eval epoch: 81
|
505 |
+
[ Thu Sep 15 19:25:47 2022 ] Mean test loss of 258 batches: 1.9796819686889648.
|
506 |
+
[ Thu Sep 15 19:25:47 2022 ] Top1: 63.44%
|
507 |
+
[ Thu Sep 15 19:25:48 2022 ] Top5: 90.97%
|
508 |
+
[ Thu Sep 15 19:25:48 2022 ] Training epoch: 82
|
509 |
+
[ Thu Sep 15 19:26:05 2022 ] Batch(36/123) done. Loss: 0.0259 lr:0.001000 network_time: 0.0502
|
510 |
+
[ Thu Sep 15 19:26:37 2022 ] Eval epoch: 82
|
511 |
+
[ Thu Sep 15 19:27:00 2022 ] Mean test loss of 258 batches: 1.9062645435333252.
|
512 |
+
[ Thu Sep 15 19:27:00 2022 ] Top1: 63.77%
|
513 |
+
[ Thu Sep 15 19:27:00 2022 ] Top5: 90.79%
|
514 |
+
[ Thu Sep 15 19:27:00 2022 ] Training epoch: 83
|
515 |
+
[ Thu Sep 15 19:27:10 2022 ] Batch(13/123) done. Loss: 0.0035 lr:0.001000 network_time: 0.0514
|
516 |
+
[ Thu Sep 15 19:27:46 2022 ] Batch(113/123) done. Loss: 0.0037 lr:0.001000 network_time: 0.0515
|
517 |
+
[ Thu Sep 15 19:27:50 2022 ] Eval epoch: 83
|
518 |
+
[ Thu Sep 15 19:28:13 2022 ] Mean test loss of 258 batches: 1.767254114151001.
|
519 |
+
[ Thu Sep 15 19:28:13 2022 ] Top1: 64.40%
|
520 |
+
[ Thu Sep 15 19:28:13 2022 ] Top5: 91.42%
|
521 |
+
[ Thu Sep 15 19:28:13 2022 ] Training epoch: 84
|
522 |
+
[ Thu Sep 15 19:28:50 2022 ] Batch(90/123) done. Loss: 0.0036 lr:0.001000 network_time: 0.0538
|
523 |
+
[ Thu Sep 15 19:29:02 2022 ] Eval epoch: 84
|
524 |
+
[ Thu Sep 15 19:29:24 2022 ] Mean test loss of 258 batches: 1.8931705951690674.
|
525 |
+
[ Thu Sep 15 19:29:25 2022 ] Top1: 63.83%
|
526 |
+
[ Thu Sep 15 19:29:25 2022 ] Top5: 91.12%
|
527 |
+
[ Thu Sep 15 19:29:25 2022 ] Training epoch: 85
|
528 |
+
[ Thu Sep 15 19:29:53 2022 ] Batch(67/123) done. Loss: 0.0086 lr:0.001000 network_time: 0.0503
|
529 |
+
[ Thu Sep 15 19:30:14 2022 ] Eval epoch: 85
|
530 |
+
[ Thu Sep 15 19:30:37 2022 ] Mean test loss of 258 batches: 1.8183932304382324.
|
531 |
+
[ Thu Sep 15 19:30:37 2022 ] Top1: 64.40%
|
532 |
+
[ Thu Sep 15 19:30:37 2022 ] Top5: 91.35%
|
533 |
+
[ Thu Sep 15 19:30:37 2022 ] Training epoch: 86
|
534 |
+
[ Thu Sep 15 19:30:57 2022 ] Batch(44/123) done. Loss: 0.0045 lr:0.001000 network_time: 0.0499
|
535 |
+
[ Thu Sep 15 19:31:26 2022 ] Eval epoch: 86
|
536 |
+
[ Thu Sep 15 19:31:49 2022 ] Mean test loss of 258 batches: 1.9683622121810913.
|
537 |
+
[ Thu Sep 15 19:31:49 2022 ] Top1: 62.00%
|
538 |
+
[ Thu Sep 15 19:31:49 2022 ] Top5: 89.91%
|
539 |
+
[ Thu Sep 15 19:31:49 2022 ] Training epoch: 87
|
540 |
+
[ Thu Sep 15 19:32:01 2022 ] Batch(21/123) done. Loss: 0.0036 lr:0.001000 network_time: 0.0562
|
541 |
+
[ Thu Sep 15 19:32:38 2022 ] Batch(121/123) done. Loss: 0.0027 lr:0.001000 network_time: 0.0530
|
542 |
+
[ Thu Sep 15 19:32:38 2022 ] Eval epoch: 87
|
543 |
+
[ Thu Sep 15 19:33:01 2022 ] Mean test loss of 258 batches: 1.8199169635772705.
|
544 |
+
[ Thu Sep 15 19:33:01 2022 ] Top1: 64.49%
|
545 |
+
[ Thu Sep 15 19:33:01 2022 ] Top5: 91.22%
|
546 |
+
[ Thu Sep 15 19:33:01 2022 ] Training epoch: 88
|
547 |
+
[ Thu Sep 15 19:33:42 2022 ] Batch(98/123) done. Loss: 0.0041 lr:0.001000 network_time: 0.0566
|
548 |
+
[ Thu Sep 15 19:33:51 2022 ] Eval epoch: 88
|
549 |
+
[ Thu Sep 15 19:34:14 2022 ] Mean test loss of 258 batches: 1.8484878540039062.
|
550 |
+
[ Thu Sep 15 19:34:14 2022 ] Top1: 63.99%
|
551 |
+
[ Thu Sep 15 19:34:14 2022 ] Top5: 91.19%
|
552 |
+
[ Thu Sep 15 19:34:14 2022 ] Training epoch: 89
|
553 |
+
[ Thu Sep 15 19:34:45 2022 ] Batch(75/123) done. Loss: 0.0067 lr:0.001000 network_time: 0.0500
|
554 |
+
[ Thu Sep 15 19:35:03 2022 ] Eval epoch: 89
|
555 |
+
[ Thu Sep 15 19:35:26 2022 ] Mean test loss of 258 batches: 1.8942618370056152.
|
556 |
+
[ Thu Sep 15 19:35:26 2022 ] Top1: 62.35%
|
557 |
+
[ Thu Sep 15 19:35:26 2022 ] Top5: 90.16%
|
558 |
+
[ Thu Sep 15 19:35:26 2022 ] Training epoch: 90
|
559 |
+
[ Thu Sep 15 19:35:50 2022 ] Batch(52/123) done. Loss: 0.0045 lr:0.001000 network_time: 0.0503
|
560 |
+
[ Thu Sep 15 19:36:16 2022 ] Eval epoch: 90
|
561 |
+
[ Thu Sep 15 19:36:38 2022 ] Mean test loss of 258 batches: 1.8252038955688477.
|
562 |
+
[ Thu Sep 15 19:36:38 2022 ] Top1: 64.66%
|
563 |
+
[ Thu Sep 15 19:36:39 2022 ] Top5: 91.42%
|
564 |
+
[ Thu Sep 15 19:36:39 2022 ] Training epoch: 91
|
565 |
+
[ Thu Sep 15 19:36:54 2022 ] Batch(29/123) done. Loss: 0.0031 lr:0.001000 network_time: 0.0505
|
566 |
+
[ Thu Sep 15 19:37:28 2022 ] Eval epoch: 91
|
567 |
+
[ Thu Sep 15 19:37:51 2022 ] Mean test loss of 258 batches: 1.8925552368164062.
|
568 |
+
[ Thu Sep 15 19:37:51 2022 ] Top1: 63.90%
|
569 |
+
[ Thu Sep 15 19:37:52 2022 ] Top5: 90.99%
|
570 |
+
[ Thu Sep 15 19:37:52 2022 ] Training epoch: 92
|
571 |
+
[ Thu Sep 15 19:37:58 2022 ] Batch(6/123) done. Loss: 0.0046 lr:0.001000 network_time: 0.0621
|
572 |
+
[ Thu Sep 15 19:38:35 2022 ] Batch(106/123) done. Loss: 0.0084 lr:0.001000 network_time: 0.0526
|
573 |
+
[ Thu Sep 15 19:38:41 2022 ] Eval epoch: 92
|
574 |
+
[ Thu Sep 15 19:39:04 2022 ] Mean test loss of 258 batches: 1.8438127040863037.
|
575 |
+
[ Thu Sep 15 19:39:04 2022 ] Top1: 64.34%
|
576 |
+
[ Thu Sep 15 19:39:04 2022 ] Top5: 91.21%
|
577 |
+
[ Thu Sep 15 19:39:04 2022 ] Training epoch: 93
|
578 |
+
[ Thu Sep 15 19:39:39 2022 ] Batch(83/123) done. Loss: 0.0102 lr:0.001000 network_time: 0.0537
|
579 |
+
[ Thu Sep 15 19:39:54 2022 ] Eval epoch: 93
|
580 |
+
[ Thu Sep 15 19:40:16 2022 ] Mean test loss of 258 batches: 1.8425955772399902.
|
581 |
+
[ Thu Sep 15 19:40:16 2022 ] Top1: 64.31%
|
582 |
+
[ Thu Sep 15 19:40:16 2022 ] Top5: 91.17%
|
583 |
+
[ Thu Sep 15 19:40:17 2022 ] Training epoch: 94
|
584 |
+
[ Thu Sep 15 19:40:43 2022 ] Batch(60/123) done. Loss: 0.0067 lr:0.001000 network_time: 0.0549
|
585 |
+
[ Thu Sep 15 19:41:06 2022 ] Eval epoch: 94
|
586 |
+
[ Thu Sep 15 19:41:29 2022 ] Mean test loss of 258 batches: 1.8022571802139282.
|
587 |
+
[ Thu Sep 15 19:41:29 2022 ] Top1: 64.40%
|
588 |
+
[ Thu Sep 15 19:41:29 2022 ] Top5: 91.19%
|
589 |
+
[ Thu Sep 15 19:41:29 2022 ] Training epoch: 95
|
590 |
+
[ Thu Sep 15 19:41:47 2022 ] Batch(37/123) done. Loss: 0.0038 lr:0.001000 network_time: 0.0516
|
591 |
+
[ Thu Sep 15 19:42:18 2022 ] Eval epoch: 95
|
592 |
+
[ Thu Sep 15 19:42:41 2022 ] Mean test loss of 258 batches: 1.8983581066131592.
|
593 |
+
[ Thu Sep 15 19:42:41 2022 ] Top1: 63.29%
|
594 |
+
[ Thu Sep 15 19:42:41 2022 ] Top5: 90.73%
|
595 |
+
[ Thu Sep 15 19:42:41 2022 ] Training epoch: 96
|
596 |
+
[ Thu Sep 15 19:42:51 2022 ] Batch(14/123) done. Loss: 0.0238 lr:0.001000 network_time: 0.0616
|
597 |
+
[ Thu Sep 15 19:43:27 2022 ] Batch(114/123) done. Loss: 0.0055 lr:0.001000 network_time: 0.0515
|
598 |
+
[ Thu Sep 15 19:43:30 2022 ] Eval epoch: 96
|
599 |
+
[ Thu Sep 15 19:43:53 2022 ] Mean test loss of 258 batches: 1.8857086896896362.
|
600 |
+
[ Thu Sep 15 19:43:53 2022 ] Top1: 63.26%
|
601 |
+
[ Thu Sep 15 19:43:53 2022 ] Top5: 90.91%
|
602 |
+
[ Thu Sep 15 19:43:53 2022 ] Training epoch: 97
|
603 |
+
[ Thu Sep 15 19:44:31 2022 ] Batch(91/123) done. Loss: 0.0085 lr:0.001000 network_time: 0.0533
|
604 |
+
[ Thu Sep 15 19:44:43 2022 ] Eval epoch: 97
|
605 |
+
[ Thu Sep 15 19:45:06 2022 ] Mean test loss of 258 batches: 1.876707911491394.
|
606 |
+
[ Thu Sep 15 19:45:06 2022 ] Top1: 64.09%
|
607 |
+
[ Thu Sep 15 19:45:06 2022 ] Top5: 91.19%
|
608 |
+
[ Thu Sep 15 19:45:06 2022 ] Training epoch: 98
|
609 |
+
[ Thu Sep 15 19:45:35 2022 ] Batch(68/123) done. Loss: 0.0062 lr:0.001000 network_time: 0.0534
|
610 |
+
[ Thu Sep 15 19:45:55 2022 ] Eval epoch: 98
|
611 |
+
[ Thu Sep 15 19:46:18 2022 ] Mean test loss of 258 batches: 1.9330939054489136.
|
612 |
+
[ Thu Sep 15 19:46:18 2022 ] Top1: 63.33%
|
613 |
+
[ Thu Sep 15 19:46:18 2022 ] Top5: 90.91%
|
614 |
+
[ Thu Sep 15 19:46:18 2022 ] Training epoch: 99
|
615 |
+
[ Thu Sep 15 19:46:39 2022 ] Batch(45/123) done. Loss: 0.0026 lr:0.001000 network_time: 0.0587
|
616 |
+
[ Thu Sep 15 19:47:08 2022 ] Eval epoch: 99
|
617 |
+
[ Thu Sep 15 19:47:30 2022 ] Mean test loss of 258 batches: 1.8569103479385376.
|
618 |
+
[ Thu Sep 15 19:47:30 2022 ] Top1: 64.52%
|
619 |
+
[ Thu Sep 15 19:47:30 2022 ] Top5: 91.11%
|
620 |
+
[ Thu Sep 15 19:47:30 2022 ] Training epoch: 100
|
621 |
+
[ Thu Sep 15 19:47:43 2022 ] Batch(22/123) done. Loss: 0.0122 lr:0.001000 network_time: 0.0563
|
622 |
+
[ Thu Sep 15 19:48:19 2022 ] Batch(122/123) done. Loss: 0.0033 lr:0.001000 network_time: 0.0531
|
623 |
+
[ Thu Sep 15 19:48:20 2022 ] Eval epoch: 100
|
624 |
+
[ Thu Sep 15 19:48:43 2022 ] Mean test loss of 258 batches: 1.8815741539001465.
|
625 |
+
[ Thu Sep 15 19:48:43 2022 ] Top1: 63.68%
|
626 |
+
[ Thu Sep 15 19:48:43 2022 ] Top5: 90.88%
|
627 |
+
[ Thu Sep 15 19:48:43 2022 ] Training epoch: 101
|
628 |
+
[ Thu Sep 15 19:49:24 2022 ] Batch(99/123) done. Loss: 0.0063 lr:0.000100 network_time: 0.0554
|
629 |
+
[ Thu Sep 15 19:49:32 2022 ] Eval epoch: 101
|
630 |
+
[ Thu Sep 15 19:49:55 2022 ] Mean test loss of 258 batches: 1.9553409814834595.
|
631 |
+
[ Thu Sep 15 19:49:55 2022 ] Top1: 63.68%
|
632 |
+
[ Thu Sep 15 19:49:55 2022 ] Top5: 90.88%
|
633 |
+
[ Thu Sep 15 19:49:56 2022 ] Training epoch: 102
|
634 |
+
[ Thu Sep 15 19:50:28 2022 ] Batch(76/123) done. Loss: 0.0070 lr:0.000100 network_time: 0.0523
|
635 |
+
[ Thu Sep 15 19:50:45 2022 ] Eval epoch: 102
|
636 |
+
[ Thu Sep 15 19:51:08 2022 ] Mean test loss of 258 batches: 2.0229227542877197.
|
637 |
+
[ Thu Sep 15 19:51:08 2022 ] Top1: 61.29%
|
638 |
+
[ Thu Sep 15 19:51:08 2022 ] Top5: 89.88%
|
639 |
+
[ Thu Sep 15 19:51:08 2022 ] Training epoch: 103
|
640 |
+
[ Thu Sep 15 19:51:31 2022 ] Batch(53/123) done. Loss: 0.0044 lr:0.000100 network_time: 0.0533
|
641 |
+
[ Thu Sep 15 19:51:57 2022 ] Eval epoch: 103
|
642 |
+
[ Thu Sep 15 19:52:20 2022 ] Mean test loss of 258 batches: 1.82876455783844.
|
643 |
+
[ Thu Sep 15 19:52:20 2022 ] Top1: 64.74%
|
644 |
+
[ Thu Sep 15 19:52:20 2022 ] Top5: 91.20%
|
645 |
+
[ Thu Sep 15 19:52:20 2022 ] Training epoch: 104
|
646 |
+
[ Thu Sep 15 19:52:36 2022 ] Batch(30/123) done. Loss: 0.0089 lr:0.000100 network_time: 0.0563
|
647 |
+
[ Thu Sep 15 19:53:10 2022 ] Eval epoch: 104
|
648 |
+
[ Thu Sep 15 19:53:32 2022 ] Mean test loss of 258 batches: 1.8227325677871704.
|
649 |
+
[ Thu Sep 15 19:53:32 2022 ] Top1: 64.23%
|
650 |
+
[ Thu Sep 15 19:53:32 2022 ] Top5: 91.13%
|
651 |
+
[ Thu Sep 15 19:53:32 2022 ] Training epoch: 105
|
652 |
+
[ Thu Sep 15 19:53:39 2022 ] Batch(7/123) done. Loss: 0.0048 lr:0.000100 network_time: 0.0492
|
653 |
+
[ Thu Sep 15 19:54:16 2022 ] Batch(107/123) done. Loss: 0.0035 lr:0.000100 network_time: 0.0532
|
654 |
+
[ Thu Sep 15 19:54:22 2022 ] Eval epoch: 105
|
655 |
+
[ Thu Sep 15 19:54:44 2022 ] Mean test loss of 258 batches: 1.8803633451461792.
|
656 |
+
[ Thu Sep 15 19:54:44 2022 ] Top1: 63.32%
|
657 |
+
[ Thu Sep 15 19:54:44 2022 ] Top5: 90.86%
|
658 |
+
[ Thu Sep 15 19:54:44 2022 ] Training epoch: 106
|
659 |
+
[ Thu Sep 15 19:55:19 2022 ] Batch(84/123) done. Loss: 0.0057 lr:0.000100 network_time: 0.0537
|
660 |
+
[ Thu Sep 15 19:55:34 2022 ] Eval epoch: 106
|
661 |
+
[ Thu Sep 15 19:55:57 2022 ] Mean test loss of 258 batches: 2.0569188594818115.
|
662 |
+
[ Thu Sep 15 19:55:57 2022 ] Top1: 61.10%
|
663 |
+
[ Thu Sep 15 19:55:57 2022 ] Top5: 89.51%
|
664 |
+
[ Thu Sep 15 19:55:57 2022 ] Training epoch: 107
|
665 |
+
[ Thu Sep 15 19:56:24 2022 ] Batch(61/123) done. Loss: 0.0156 lr:0.000100 network_time: 0.0561
|
666 |
+
[ Thu Sep 15 19:56:46 2022 ] Eval epoch: 107
|
667 |
+
[ Thu Sep 15 19:57:09 2022 ] Mean test loss of 258 batches: 1.8778842687606812.
|
668 |
+
[ Thu Sep 15 19:57:09 2022 ] Top1: 63.09%
|
669 |
+
[ Thu Sep 15 19:57:09 2022 ] Top5: 90.79%
|
670 |
+
[ Thu Sep 15 19:57:09 2022 ] Training epoch: 108
|
671 |
+
[ Thu Sep 15 19:57:28 2022 ] Batch(38/123) done. Loss: 0.0017 lr:0.000100 network_time: 0.0534
|
672 |
+
[ Thu Sep 15 19:57:59 2022 ] Eval epoch: 108
|
673 |
+
[ Thu Sep 15 19:58:22 2022 ] Mean test loss of 258 batches: 1.8048086166381836.
|
674 |
+
[ Thu Sep 15 19:58:22 2022 ] Top1: 64.37%
|
675 |
+
[ Thu Sep 15 19:58:22 2022 ] Top5: 91.36%
|
676 |
+
[ Thu Sep 15 19:58:22 2022 ] Training epoch: 109
|
677 |
+
[ Thu Sep 15 19:58:32 2022 ] Batch(15/123) done. Loss: 0.0029 lr:0.000100 network_time: 0.0545
|
678 |
+
[ Thu Sep 15 19:59:08 2022 ] Batch(115/123) done. Loss: 0.0072 lr:0.000100 network_time: 0.0506
|
679 |
+
[ Thu Sep 15 19:59:11 2022 ] Eval epoch: 109
|
680 |
+
[ Thu Sep 15 19:59:34 2022 ] Mean test loss of 258 batches: 1.9837099313735962.
|
681 |
+
[ Thu Sep 15 19:59:34 2022 ] Top1: 62.79%
|
682 |
+
[ Thu Sep 15 19:59:34 2022 ] Top5: 90.65%
|
683 |
+
[ Thu Sep 15 19:59:34 2022 ] Training epoch: 110
|
684 |
+
[ Thu Sep 15 20:00:12 2022 ] Batch(92/123) done. Loss: 0.0081 lr:0.000100 network_time: 0.0531
|
685 |
+
[ Thu Sep 15 20:00:23 2022 ] Eval epoch: 110
|
686 |
+
[ Thu Sep 15 20:00:46 2022 ] Mean test loss of 258 batches: 1.920461893081665.
|
687 |
+
[ Thu Sep 15 20:00:46 2022 ] Top1: 63.84%
|
688 |
+
[ Thu Sep 15 20:00:46 2022 ] Top5: 90.85%
|
689 |
+
[ Thu Sep 15 20:00:46 2022 ] Training epoch: 111
|
690 |
+
[ Thu Sep 15 20:01:16 2022 ] Batch(69/123) done. Loss: 0.0067 lr:0.000100 network_time: 0.0588
|
691 |
+
[ Thu Sep 15 20:01:36 2022 ] Eval epoch: 111
|
692 |
+
[ Thu Sep 15 20:01:58 2022 ] Mean test loss of 258 batches: 1.7909228801727295.
|
693 |
+
[ Thu Sep 15 20:01:58 2022 ] Top1: 64.79%
|
694 |
+
[ Thu Sep 15 20:01:58 2022 ] Top5: 91.53%
|
695 |
+
[ Thu Sep 15 20:01:58 2022 ] Training epoch: 112
|
696 |
+
[ Thu Sep 15 20:02:19 2022 ] Batch(46/123) done. Loss: 0.0023 lr:0.000100 network_time: 0.0538
|
697 |
+
[ Thu Sep 15 20:02:48 2022 ] Eval epoch: 112
|
698 |
+
[ Thu Sep 15 20:03:11 2022 ] Mean test loss of 258 batches: 1.8119471073150635.
|
699 |
+
[ Thu Sep 15 20:03:11 2022 ] Top1: 64.38%
|
700 |
+
[ Thu Sep 15 20:03:11 2022 ] Top5: 91.19%
|
701 |
+
[ Thu Sep 15 20:03:11 2022 ] Training epoch: 113
|
702 |
+
[ Thu Sep 15 20:03:24 2022 ] Batch(23/123) done. Loss: 0.0052 lr:0.000100 network_time: 0.0573
|
703 |
+
[ Thu Sep 15 20:04:00 2022 ] Eval epoch: 113
|
704 |
+
[ Thu Sep 15 20:04:23 2022 ] Mean test loss of 258 batches: 1.8072237968444824.
|
705 |
+
[ Thu Sep 15 20:04:23 2022 ] Top1: 64.49%
|
706 |
+
[ Thu Sep 15 20:04:23 2022 ] Top5: 91.28%
|
707 |
+
[ Thu Sep 15 20:04:23 2022 ] Training epoch: 114
|
708 |
+
[ Thu Sep 15 20:04:28 2022 ] Batch(0/123) done. Loss: 0.0142 lr:0.000100 network_time: 0.0936
|
709 |
+
[ Thu Sep 15 20:05:04 2022 ] Batch(100/123) done. Loss: 0.0016 lr:0.000100 network_time: 0.0529
|
710 |
+
[ Thu Sep 15 20:05:13 2022 ] Eval epoch: 114
|
711 |
+
[ Thu Sep 15 20:05:35 2022 ] Mean test loss of 258 batches: 2.0189363956451416.
|
712 |
+
[ Thu Sep 15 20:05:36 2022 ] Top1: 61.37%
|
713 |
+
[ Thu Sep 15 20:05:36 2022 ] Top5: 89.63%
|
714 |
+
[ Thu Sep 15 20:05:36 2022 ] Training epoch: 115
|
715 |
+
[ Thu Sep 15 20:06:08 2022 ] Batch(77/123) done. Loss: 0.0031 lr:0.000100 network_time: 0.0503
|
716 |
+
[ Thu Sep 15 20:06:25 2022 ] Eval epoch: 115
|
717 |
+
[ Thu Sep 15 20:06:48 2022 ] Mean test loss of 258 batches: 1.9490886926651.
|
718 |
+
[ Thu Sep 15 20:06:48 2022 ] Top1: 62.44%
|
719 |
+
[ Thu Sep 15 20:06:48 2022 ] Top5: 90.64%
|
720 |
+
[ Thu Sep 15 20:06:48 2022 ] Training epoch: 116
|
721 |
+
[ Thu Sep 15 20:07:13 2022 ] Batch(54/123) done. Loss: 0.0228 lr:0.000100 network_time: 0.0544
|
722 |
+
[ Thu Sep 15 20:07:38 2022 ] Eval epoch: 116
|
723 |
+
[ Thu Sep 15 20:08:01 2022 ] Mean test loss of 258 batches: 1.801637887954712.
|
724 |
+
[ Thu Sep 15 20:08:01 2022 ] Top1: 64.53%
|
725 |
+
[ Thu Sep 15 20:08:01 2022 ] Top5: 91.27%
|
726 |
+
[ Thu Sep 15 20:08:01 2022 ] Training epoch: 117
|
727 |
+
[ Thu Sep 15 20:08:17 2022 ] Batch(31/123) done. Loss: 0.0068 lr:0.000100 network_time: 0.0506
|
728 |
+
[ Thu Sep 15 20:08:50 2022 ] Eval epoch: 117
|
729 |
+
[ Thu Sep 15 20:09:13 2022 ] Mean test loss of 258 batches: 1.8541256189346313.
|
730 |
+
[ Thu Sep 15 20:09:13 2022 ] Top1: 63.92%
|
731 |
+
[ Thu Sep 15 20:09:13 2022 ] Top5: 91.17%
|
732 |
+
[ Thu Sep 15 20:09:13 2022 ] Training epoch: 118
|
733 |
+
[ Thu Sep 15 20:09:21 2022 ] Batch(8/123) done. Loss: 0.0072 lr:0.000100 network_time: 0.0568
|
734 |
+
[ Thu Sep 15 20:09:58 2022 ] Batch(108/123) done. Loss: 0.0101 lr:0.000100 network_time: 0.0597
|
735 |
+
[ Thu Sep 15 20:10:03 2022 ] Eval epoch: 118
|
736 |
+
[ Thu Sep 15 20:10:26 2022 ] Mean test loss of 258 batches: 2.009375810623169.
|
737 |
+
[ Thu Sep 15 20:10:26 2022 ] Top1: 62.33%
|
738 |
+
[ Thu Sep 15 20:10:26 2022 ] Top5: 90.37%
|
739 |
+
[ Thu Sep 15 20:10:26 2022 ] Training epoch: 119
|
740 |
+
[ Thu Sep 15 20:11:02 2022 ] Batch(85/123) done. Loss: 0.0018 lr:0.000100 network_time: 0.0489
|
741 |
+
[ Thu Sep 15 20:11:15 2022 ] Eval epoch: 119
|
742 |
+
[ Thu Sep 15 20:11:38 2022 ] Mean test loss of 258 batches: 1.7464431524276733.
|
743 |
+
[ Thu Sep 15 20:11:38 2022 ] Top1: 64.95%
|
744 |
+
[ Thu Sep 15 20:11:38 2022 ] Top5: 91.34%
|
745 |
+
[ Thu Sep 15 20:11:38 2022 ] Training epoch: 120
|
746 |
+
[ Thu Sep 15 20:12:05 2022 ] Batch(62/123) done. Loss: 0.0046 lr:0.000100 network_time: 0.0513
|
747 |
+
[ Thu Sep 15 20:12:28 2022 ] Eval epoch: 120
|
748 |
+
[ Thu Sep 15 20:12:51 2022 ] Mean test loss of 258 batches: 1.892992377281189.
|
749 |
+
[ Thu Sep 15 20:12:51 2022 ] Top1: 63.81%
|
750 |
+
[ Thu Sep 15 20:12:51 2022 ] Top5: 90.92%
|
751 |
+
[ Thu Sep 15 20:12:51 2022 ] Training epoch: 121
|
752 |
+
[ Thu Sep 15 20:13:09 2022 ] Batch(39/123) done. Loss: 0.0030 lr:0.000100 network_time: 0.0722
|
753 |
+
[ Thu Sep 15 20:13:40 2022 ] Eval epoch: 121
|
754 |
+
[ Thu Sep 15 20:14:03 2022 ] Mean test loss of 258 batches: 1.9506547451019287.
|
755 |
+
[ Thu Sep 15 20:14:03 2022 ] Top1: 63.22%
|
756 |
+
[ Thu Sep 15 20:14:03 2022 ] Top5: 90.80%
|
757 |
+
[ Thu Sep 15 20:14:03 2022 ] Training epoch: 122
|
758 |
+
[ Thu Sep 15 20:14:14 2022 ] Batch(16/123) done. Loss: 0.0073 lr:0.000100 network_time: 0.0579
|
759 |
+
[ Thu Sep 15 20:14:50 2022 ] Batch(116/123) done. Loss: 0.0041 lr:0.000100 network_time: 0.0492
|
760 |
+
[ Thu Sep 15 20:14:53 2022 ] Eval epoch: 122
|
761 |
+
[ Thu Sep 15 20:15:15 2022 ] Mean test loss of 258 batches: 1.9415020942687988.
|
762 |
+
[ Thu Sep 15 20:15:16 2022 ] Top1: 62.73%
|
763 |
+
[ Thu Sep 15 20:15:16 2022 ] Top5: 90.48%
|
764 |
+
[ Thu Sep 15 20:15:16 2022 ] Training epoch: 123
|
765 |
+
[ Thu Sep 15 20:15:54 2022 ] Batch(93/123) done. Loss: 0.0050 lr:0.000100 network_time: 0.0531
|
766 |
+
[ Thu Sep 15 20:16:05 2022 ] Eval epoch: 123
|
767 |
+
[ Thu Sep 15 20:16:28 2022 ] Mean test loss of 258 batches: 1.7792094945907593.
|
768 |
+
[ Thu Sep 15 20:16:28 2022 ] Top1: 64.38%
|
769 |
+
[ Thu Sep 15 20:16:28 2022 ] Top5: 91.42%
|
770 |
+
[ Thu Sep 15 20:16:28 2022 ] Training epoch: 124
|
771 |
+
[ Thu Sep 15 20:16:58 2022 ] Batch(70/123) done. Loss: 0.0022 lr:0.000100 network_time: 0.0531
|
772 |
+
[ Thu Sep 15 20:17:18 2022 ] Eval epoch: 124
|
773 |
+
[ Thu Sep 15 20:17:41 2022 ] Mean test loss of 258 batches: 1.924527645111084.
|
774 |
+
[ Thu Sep 15 20:17:41 2022 ] Top1: 63.71%
|
775 |
+
[ Thu Sep 15 20:17:41 2022 ] Top5: 90.88%
|
776 |
+
[ Thu Sep 15 20:17:41 2022 ] Training epoch: 125
|
777 |
+
[ Thu Sep 15 20:18:03 2022 ] Batch(47/123) done. Loss: 0.0032 lr:0.000100 network_time: 0.0517
|
778 |
+
[ Thu Sep 15 20:18:30 2022 ] Eval epoch: 125
|
779 |
+
[ Thu Sep 15 20:18:53 2022 ] Mean test loss of 258 batches: 1.797371745109558.
|
780 |
+
[ Thu Sep 15 20:18:53 2022 ] Top1: 64.73%
|
781 |
+
[ Thu Sep 15 20:18:53 2022 ] Top5: 91.55%
|
782 |
+
[ Thu Sep 15 20:18:53 2022 ] Training epoch: 126
|
783 |
+
[ Thu Sep 15 20:19:07 2022 ] Batch(24/123) done. Loss: 0.0054 lr:0.000100 network_time: 0.0543
|
784 |
+
[ Thu Sep 15 20:19:42 2022 ] Eval epoch: 126
|
785 |
+
[ Thu Sep 15 20:20:06 2022 ] Mean test loss of 258 batches: 1.8714008331298828.
|
786 |
+
[ Thu Sep 15 20:20:06 2022 ] Top1: 63.84%
|
787 |
+
[ Thu Sep 15 20:20:06 2022 ] Top5: 91.07%
|
788 |
+
[ Thu Sep 15 20:20:06 2022 ] Training epoch: 127
|
789 |
+
[ Thu Sep 15 20:20:11 2022 ] Batch(1/123) done. Loss: 0.0051 lr:0.000100 network_time: 0.0559
|
790 |
+
[ Thu Sep 15 20:20:47 2022 ] Batch(101/123) done. Loss: 0.0022 lr:0.000100 network_time: 0.0472
|
791 |
+
[ Thu Sep 15 20:20:55 2022 ] Eval epoch: 127
|
792 |
+
[ Thu Sep 15 20:21:18 2022 ] Mean test loss of 258 batches: 1.848433494567871.
|
793 |
+
[ Thu Sep 15 20:21:18 2022 ] Top1: 64.39%
|
794 |
+
[ Thu Sep 15 20:21:18 2022 ] Top5: 91.31%
|
795 |
+
[ Thu Sep 15 20:21:18 2022 ] Training epoch: 128
|
796 |
+
[ Thu Sep 15 20:21:52 2022 ] Batch(78/123) done. Loss: 0.0029 lr:0.000100 network_time: 0.0501
|
797 |
+
[ Thu Sep 15 20:22:08 2022 ] Eval epoch: 128
|
798 |
+
[ Thu Sep 15 20:22:31 2022 ] Mean test loss of 258 batches: 1.849387288093567.
|
799 |
+
[ Thu Sep 15 20:22:31 2022 ] Top1: 64.44%
|
800 |
+
[ Thu Sep 15 20:22:31 2022 ] Top5: 91.35%
|
801 |
+
[ Thu Sep 15 20:22:31 2022 ] Training epoch: 129
|
802 |
+
[ Thu Sep 15 20:22:56 2022 ] Batch(55/123) done. Loss: 0.0056 lr:0.000100 network_time: 0.0462
|
803 |
+
[ Thu Sep 15 20:23:20 2022 ] Eval epoch: 129
|
804 |
+
[ Thu Sep 15 20:23:43 2022 ] Mean test loss of 258 batches: 1.9221100807189941.
|
805 |
+
[ Thu Sep 15 20:23:43 2022 ] Top1: 63.66%
|
806 |
+
[ Thu Sep 15 20:23:43 2022 ] Top5: 90.82%
|
807 |
+
[ Thu Sep 15 20:23:43 2022 ] Training epoch: 130
|
808 |
+
[ Thu Sep 15 20:24:00 2022 ] Batch(32/123) done. Loss: 0.0082 lr:0.000100 network_time: 0.0517
|
809 |
+
[ Thu Sep 15 20:24:33 2022 ] Eval epoch: 130
|
810 |
+
[ Thu Sep 15 20:24:56 2022 ] Mean test loss of 258 batches: 1.9553499221801758.
|
811 |
+
[ Thu Sep 15 20:24:56 2022 ] Top1: 63.26%
|
812 |
+
[ Thu Sep 15 20:24:56 2022 ] Top5: 90.82%
|
813 |
+
[ Thu Sep 15 20:24:56 2022 ] Training epoch: 131
|
814 |
+
[ Thu Sep 15 20:25:04 2022 ] Batch(9/123) done. Loss: 0.0023 lr:0.000100 network_time: 0.0526
|
815 |
+
[ Thu Sep 15 20:25:40 2022 ] Batch(109/123) done. Loss: 0.0263 lr:0.000100 network_time: 0.0494
|
816 |
+
[ Thu Sep 15 20:25:45 2022 ] Eval epoch: 131
|
817 |
+
[ Thu Sep 15 20:26:08 2022 ] Mean test loss of 258 batches: 1.9092321395874023.
|
818 |
+
[ Thu Sep 15 20:26:08 2022 ] Top1: 63.81%
|
819 |
+
[ Thu Sep 15 20:26:08 2022 ] Top5: 91.06%
|
820 |
+
[ Thu Sep 15 20:26:08 2022 ] Training epoch: 132
|
821 |
+
[ Thu Sep 15 20:26:44 2022 ] Batch(86/123) done. Loss: 0.0040 lr:0.000100 network_time: 0.0515
|
822 |
+
[ Thu Sep 15 20:26:57 2022 ] Eval epoch: 132
|
823 |
+
[ Thu Sep 15 20:27:20 2022 ] Mean test loss of 258 batches: 1.8571966886520386.
|
824 |
+
[ Thu Sep 15 20:27:21 2022 ] Top1: 63.51%
|
825 |
+
[ Thu Sep 15 20:27:21 2022 ] Top5: 91.11%
|
826 |
+
[ Thu Sep 15 20:27:21 2022 ] Training epoch: 133
|
827 |
+
[ Thu Sep 15 20:27:48 2022 ] Batch(63/123) done. Loss: 0.0079 lr:0.000100 network_time: 0.0532
|
828 |
+
[ Thu Sep 15 20:28:10 2022 ] Eval epoch: 133
|
829 |
+
[ Thu Sep 15 20:28:33 2022 ] Mean test loss of 258 batches: 2.009004831314087.
|
830 |
+
[ Thu Sep 15 20:28:33 2022 ] Top1: 62.72%
|
831 |
+
[ Thu Sep 15 20:28:33 2022 ] Top5: 90.47%
|
832 |
+
[ Thu Sep 15 20:28:33 2022 ] Training epoch: 134
|
833 |
+
[ Thu Sep 15 20:28:52 2022 ] Batch(40/123) done. Loss: 0.0086 lr:0.000100 network_time: 0.0507
|
834 |
+
[ Thu Sep 15 20:29:23 2022 ] Eval epoch: 134
|
835 |
+
[ Thu Sep 15 20:29:46 2022 ] Mean test loss of 258 batches: 1.814934253692627.
|
836 |
+
[ Thu Sep 15 20:29:46 2022 ] Top1: 64.21%
|
837 |
+
[ Thu Sep 15 20:29:46 2022 ] Top5: 91.35%
|
838 |
+
[ Thu Sep 15 20:29:46 2022 ] Training epoch: 135
|
839 |
+
[ Thu Sep 15 20:29:57 2022 ] Batch(17/123) done. Loss: 0.0034 lr:0.000100 network_time: 0.0575
|
840 |
+
[ Thu Sep 15 20:30:34 2022 ] Batch(117/123) done. Loss: 0.0049 lr:0.000100 network_time: 0.0484
|
841 |
+
[ Thu Sep 15 20:30:36 2022 ] Eval epoch: 135
|
842 |
+
[ Thu Sep 15 20:30:59 2022 ] Mean test loss of 258 batches: 1.8043664693832397.
|
843 |
+
[ Thu Sep 15 20:31:00 2022 ] Top1: 63.80%
|
844 |
+
[ Thu Sep 15 20:31:00 2022 ] Top5: 91.04%
|
845 |
+
[ Thu Sep 15 20:31:00 2022 ] Training epoch: 136
|
846 |
+
[ Thu Sep 15 20:31:39 2022 ] Batch(94/123) done. Loss: 0.0053 lr:0.000100 network_time: 0.0498
|
847 |
+
[ Thu Sep 15 20:31:49 2022 ] Eval epoch: 136
|
848 |
+
[ Thu Sep 15 20:32:12 2022 ] Mean test loss of 258 batches: 1.9689311981201172.
|
849 |
+
[ Thu Sep 15 20:32:12 2022 ] Top1: 63.80%
|
850 |
+
[ Thu Sep 15 20:32:12 2022 ] Top5: 90.93%
|
851 |
+
[ Thu Sep 15 20:32:12 2022 ] Training epoch: 137
|
852 |
+
[ Thu Sep 15 20:32:42 2022 ] Batch(71/123) done. Loss: 0.0085 lr:0.000100 network_time: 0.0516
|
853 |
+
[ Thu Sep 15 20:33:01 2022 ] Eval epoch: 137
|
854 |
+
[ Thu Sep 15 20:33:25 2022 ] Mean test loss of 258 batches: 1.8842922449111938.
|
855 |
+
[ Thu Sep 15 20:33:25 2022 ] Top1: 63.98%
|
856 |
+
[ Thu Sep 15 20:33:25 2022 ] Top5: 91.14%
|
857 |
+
[ Thu Sep 15 20:33:25 2022 ] Training epoch: 138
|
858 |
+
[ Thu Sep 15 20:33:47 2022 ] Batch(48/123) done. Loss: 0.0178 lr:0.000100 network_time: 0.0504
|
859 |
+
[ Thu Sep 15 20:34:14 2022 ] Eval epoch: 138
|
860 |
+
[ Thu Sep 15 20:34:37 2022 ] Mean test loss of 258 batches: 1.9904453754425049.
|
861 |
+
[ Thu Sep 15 20:34:37 2022 ] Top1: 62.78%
|
862 |
+
[ Thu Sep 15 20:34:37 2022 ] Top5: 90.56%
|
863 |
+
[ Thu Sep 15 20:34:37 2022 ] Training epoch: 139
|
864 |
+
[ Thu Sep 15 20:34:51 2022 ] Batch(25/123) done. Loss: 0.0022 lr:0.000100 network_time: 0.0549
|
865 |
+
[ Thu Sep 15 20:35:27 2022 ] Eval epoch: 139
|
866 |
+
[ Thu Sep 15 20:35:50 2022 ] Mean test loss of 258 batches: 1.9355473518371582.
|
867 |
+
[ Thu Sep 15 20:35:50 2022 ] Top1: 63.64%
|
868 |
+
[ Thu Sep 15 20:35:50 2022 ] Top5: 90.88%
|
869 |
+
[ Thu Sep 15 20:35:50 2022 ] Training epoch: 140
|
870 |
+
[ Thu Sep 15 20:35:56 2022 ] Batch(2/123) done. Loss: 0.0047 lr:0.000100 network_time: 0.0507
|
871 |
+
[ Thu Sep 15 20:36:33 2022 ] Batch(102/123) done. Loss: 0.0064 lr:0.000100 network_time: 0.0545
|
872 |
+
[ Thu Sep 15 20:36:41 2022 ] Eval epoch: 140
|
873 |
+
[ Thu Sep 15 20:37:04 2022 ] Mean test loss of 258 batches: 1.9572222232818604.
|
874 |
+
[ Thu Sep 15 20:37:04 2022 ] Top1: 62.53%
|
875 |
+
[ Thu Sep 15 20:37:04 2022 ] Top5: 90.63%
|
ckpt/Others/Shift-GCN/ntu60_xsub/ntu_ShiftGCN_bone_motion_xsub/shift_gcn.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torch.autograd import Variable
|
5 |
+
import numpy as np
|
6 |
+
import math
|
7 |
+
|
8 |
+
import sys
|
9 |
+
sys.path.append("./model/Temporal_shift/")
|
10 |
+
|
11 |
+
from cuda.shift import Shift
|
12 |
+
|
13 |
+
|
14 |
+
def import_class(name):
|
15 |
+
components = name.split('.')
|
16 |
+
mod = __import__(components[0])
|
17 |
+
for comp in components[1:]:
|
18 |
+
mod = getattr(mod, comp)
|
19 |
+
return mod
|
20 |
+
|
21 |
+
def conv_init(conv):
|
22 |
+
nn.init.kaiming_normal(conv.weight, mode='fan_out')
|
23 |
+
nn.init.constant(conv.bias, 0)
|
24 |
+
|
25 |
+
|
26 |
+
def bn_init(bn, scale):
|
27 |
+
nn.init.constant(bn.weight, scale)
|
28 |
+
nn.init.constant(bn.bias, 0)
|
29 |
+
|
30 |
+
|
31 |
+
class tcn(nn.Module):
|
32 |
+
def __init__(self, in_channels, out_channels, kernel_size=9, stride=1):
|
33 |
+
super(tcn, self).__init__()
|
34 |
+
pad = int((kernel_size - 1) / 2)
|
35 |
+
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=(kernel_size, 1), padding=(pad, 0),
|
36 |
+
stride=(stride, 1))
|
37 |
+
|
38 |
+
self.bn = nn.BatchNorm2d(out_channels)
|
39 |
+
self.relu = nn.ReLU()
|
40 |
+
conv_init(self.conv)
|
41 |
+
bn_init(self.bn, 1)
|
42 |
+
|
43 |
+
def forward(self, x):
|
44 |
+
x = self.bn(self.conv(x))
|
45 |
+
return x
|
46 |
+
|
47 |
+
|
48 |
+
class Shift_tcn(nn.Module):
|
49 |
+
def __init__(self, in_channels, out_channels, kernel_size=9, stride=1):
|
50 |
+
super(Shift_tcn, self).__init__()
|
51 |
+
|
52 |
+
self.in_channels = in_channels
|
53 |
+
self.out_channels = out_channels
|
54 |
+
|
55 |
+
self.bn = nn.BatchNorm2d(in_channels)
|
56 |
+
self.bn2 = nn.BatchNorm2d(in_channels)
|
57 |
+
bn_init(self.bn2, 1)
|
58 |
+
self.relu = nn.ReLU(inplace=True)
|
59 |
+
self.shift_in = Shift(channel=in_channels, stride=1, init_scale=1)
|
60 |
+
self.shift_out = Shift(channel=out_channels, stride=stride, init_scale=1)
|
61 |
+
|
62 |
+
self.temporal_linear = nn.Conv2d(in_channels, out_channels, 1)
|
63 |
+
nn.init.kaiming_normal(self.temporal_linear.weight, mode='fan_out')
|
64 |
+
|
65 |
+
def forward(self, x):
|
66 |
+
x = self.bn(x)
|
67 |
+
# shift1
|
68 |
+
x = self.shift_in(x)
|
69 |
+
x = self.temporal_linear(x)
|
70 |
+
x = self.relu(x)
|
71 |
+
# shift2
|
72 |
+
x = self.shift_out(x)
|
73 |
+
x = self.bn2(x)
|
74 |
+
return x
|
75 |
+
|
76 |
+
|
77 |
+
class Shift_gcn(nn.Module):
|
78 |
+
def __init__(self, in_channels, out_channels, A, coff_embedding=4, num_subset=3):
|
79 |
+
super(Shift_gcn, self).__init__()
|
80 |
+
self.in_channels = in_channels
|
81 |
+
self.out_channels = out_channels
|
82 |
+
if in_channels != out_channels:
|
83 |
+
self.down = nn.Sequential(
|
84 |
+
nn.Conv2d(in_channels, out_channels, 1),
|
85 |
+
nn.BatchNorm2d(out_channels)
|
86 |
+
)
|
87 |
+
else:
|
88 |
+
self.down = lambda x: x
|
89 |
+
|
90 |
+
self.Linear_weight = nn.Parameter(torch.zeros(in_channels, out_channels, requires_grad=True, device='cuda'), requires_grad=True)
|
91 |
+
nn.init.normal_(self.Linear_weight, 0,math.sqrt(1.0/out_channels))
|
92 |
+
|
93 |
+
self.Linear_bias = nn.Parameter(torch.zeros(1,1,out_channels,requires_grad=True,device='cuda'),requires_grad=True)
|
94 |
+
nn.init.constant(self.Linear_bias, 0)
|
95 |
+
|
96 |
+
self.Feature_Mask = nn.Parameter(torch.ones(1,25,in_channels, requires_grad=True,device='cuda'),requires_grad=True)
|
97 |
+
nn.init.constant(self.Feature_Mask, 0)
|
98 |
+
|
99 |
+
self.bn = nn.BatchNorm1d(25*out_channels)
|
100 |
+
self.relu = nn.ReLU()
|
101 |
+
|
102 |
+
for m in self.modules():
|
103 |
+
if isinstance(m, nn.Conv2d):
|
104 |
+
conv_init(m)
|
105 |
+
elif isinstance(m, nn.BatchNorm2d):
|
106 |
+
bn_init(m, 1)
|
107 |
+
|
108 |
+
index_array = np.empty(25*in_channels).astype(np.int)
|
109 |
+
for i in range(25):
|
110 |
+
for j in range(in_channels):
|
111 |
+
index_array[i*in_channels + j] = (i*in_channels + j + j*in_channels)%(in_channels*25)
|
112 |
+
self.shift_in = nn.Parameter(torch.from_numpy(index_array),requires_grad=False)
|
113 |
+
|
114 |
+
index_array = np.empty(25*out_channels).astype(np.int)
|
115 |
+
for i in range(25):
|
116 |
+
for j in range(out_channels):
|
117 |
+
index_array[i*out_channels + j] = (i*out_channels + j - j*out_channels)%(out_channels*25)
|
118 |
+
self.shift_out = nn.Parameter(torch.from_numpy(index_array),requires_grad=False)
|
119 |
+
|
120 |
+
|
121 |
+
def forward(self, x0):
|
122 |
+
n, c, t, v = x0.size()
|
123 |
+
x = x0.permute(0,2,3,1).contiguous()
|
124 |
+
|
125 |
+
# shift1
|
126 |
+
x = x.view(n*t,v*c)
|
127 |
+
x = torch.index_select(x, 1, self.shift_in)
|
128 |
+
x = x.view(n*t,v,c)
|
129 |
+
x = x * (torch.tanh(self.Feature_Mask)+1)
|
130 |
+
|
131 |
+
x = torch.einsum('nwc,cd->nwd', (x, self.Linear_weight)).contiguous() # nt,v,c
|
132 |
+
x = x + self.Linear_bias
|
133 |
+
|
134 |
+
# shift2
|
135 |
+
x = x.view(n*t,-1)
|
136 |
+
x = torch.index_select(x, 1, self.shift_out)
|
137 |
+
x = self.bn(x)
|
138 |
+
x = x.view(n,t,v,self.out_channels).permute(0,3,1,2) # n,c,t,v
|
139 |
+
|
140 |
+
x = x + self.down(x0)
|
141 |
+
x = self.relu(x)
|
142 |
+
return x
|
143 |
+
|
144 |
+
|
145 |
+
class TCN_GCN_unit(nn.Module):
|
146 |
+
def __init__(self, in_channels, out_channels, A, stride=1, residual=True):
|
147 |
+
super(TCN_GCN_unit, self).__init__()
|
148 |
+
self.gcn1 = Shift_gcn(in_channels, out_channels, A)
|
149 |
+
self.tcn1 = Shift_tcn(out_channels, out_channels, stride=stride)
|
150 |
+
self.relu = nn.ReLU()
|
151 |
+
|
152 |
+
if not residual:
|
153 |
+
self.residual = lambda x: 0
|
154 |
+
|
155 |
+
elif (in_channels == out_channels) and (stride == 1):
|
156 |
+
self.residual = lambda x: x
|
157 |
+
else:
|
158 |
+
self.residual = tcn(in_channels, out_channels, kernel_size=1, stride=stride)
|
159 |
+
|
160 |
+
def forward(self, x):
|
161 |
+
x = self.tcn1(self.gcn1(x)) + self.residual(x)
|
162 |
+
return self.relu(x)
|
163 |
+
|
164 |
+
|
165 |
+
class Model(nn.Module):
|
166 |
+
def __init__(self, num_class=60, num_point=25, num_person=2, graph=None, graph_args=dict(), in_channels=3):
|
167 |
+
super(Model, self).__init__()
|
168 |
+
|
169 |
+
if graph is None:
|
170 |
+
raise ValueError()
|
171 |
+
else:
|
172 |
+
Graph = import_class(graph)
|
173 |
+
self.graph = Graph(**graph_args)
|
174 |
+
|
175 |
+
A = self.graph.A
|
176 |
+
self.data_bn = nn.BatchNorm1d(num_person * in_channels * num_point)
|
177 |
+
|
178 |
+
self.l1 = TCN_GCN_unit(3, 64, A, residual=False)
|
179 |
+
self.l2 = TCN_GCN_unit(64, 64, A)
|
180 |
+
self.l3 = TCN_GCN_unit(64, 64, A)
|
181 |
+
self.l4 = TCN_GCN_unit(64, 64, A)
|
182 |
+
self.l5 = TCN_GCN_unit(64, 128, A, stride=2)
|
183 |
+
self.l6 = TCN_GCN_unit(128, 128, A)
|
184 |
+
self.l7 = TCN_GCN_unit(128, 128, A)
|
185 |
+
self.l8 = TCN_GCN_unit(128, 256, A, stride=2)
|
186 |
+
self.l9 = TCN_GCN_unit(256, 256, A)
|
187 |
+
self.l10 = TCN_GCN_unit(256, 256, A)
|
188 |
+
|
189 |
+
self.fc = nn.Linear(256, num_class)
|
190 |
+
nn.init.normal(self.fc.weight, 0, math.sqrt(2. / num_class))
|
191 |
+
bn_init(self.data_bn, 1)
|
192 |
+
|
193 |
+
def forward(self, x):
|
194 |
+
N, C, T, V, M = x.size()
|
195 |
+
|
196 |
+
x = x.permute(0, 4, 3, 1, 2).contiguous().view(N, M * V * C, T)
|
197 |
+
x = self.data_bn(x)
|
198 |
+
x = x.view(N, M, V, C, T).permute(0, 1, 3, 4, 2).contiguous().view(N * M, C, T, V)
|
199 |
+
|
200 |
+
x = self.l1(x)
|
201 |
+
x = self.l2(x)
|
202 |
+
x = self.l3(x)
|
203 |
+
x = self.l4(x)
|
204 |
+
x = self.l5(x)
|
205 |
+
x = self.l6(x)
|
206 |
+
x = self.l7(x)
|
207 |
+
x = self.l8(x)
|
208 |
+
x = self.l9(x)
|
209 |
+
x = self.l10(x)
|
210 |
+
|
211 |
+
# N*M,C,T,V
|
212 |
+
c_new = x.size(1)
|
213 |
+
x = x.view(N, M, c_new, -1)
|
214 |
+
x = x.mean(3).mean(1)
|
215 |
+
|
216 |
+
return self.fc(x)
|
ckpt/Others/Shift-GCN/ntu60_xsub/ntu_ShiftGCN_bone_xsub/config.yaml
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Experiment_name: ntu_ShiftGCN_bone_xsub
|
2 |
+
base_lr: 0.1
|
3 |
+
batch_size: 64
|
4 |
+
config: ./config/nturgbd-cross-subject/train_bone.yaml
|
5 |
+
device:
|
6 |
+
- 0
|
7 |
+
- 1
|
8 |
+
- 2
|
9 |
+
- 3
|
10 |
+
eval_interval: 5
|
11 |
+
feeder: feeders.feeder.Feeder
|
12 |
+
ignore_weights: []
|
13 |
+
log_interval: 100
|
14 |
+
model: model.shift_gcn.Model
|
15 |
+
model_args:
|
16 |
+
graph: graph.ntu_rgb_d.Graph
|
17 |
+
graph_args:
|
18 |
+
labeling_mode: spatial
|
19 |
+
num_class: 60
|
20 |
+
num_person: 2
|
21 |
+
num_point: 25
|
22 |
+
model_saved_name: ./save_models/ntu_ShiftGCN_bone_xsub
|
23 |
+
nesterov: true
|
24 |
+
num_epoch: 140
|
25 |
+
num_worker: 32
|
26 |
+
only_train_epoch: 1
|
27 |
+
only_train_part: true
|
28 |
+
optimizer: SGD
|
29 |
+
phase: train
|
30 |
+
print_log: true
|
31 |
+
save_interval: 2
|
32 |
+
save_score: false
|
33 |
+
seed: 1
|
34 |
+
show_topk:
|
35 |
+
- 1
|
36 |
+
- 5
|
37 |
+
start_epoch: 0
|
38 |
+
step:
|
39 |
+
- 60
|
40 |
+
- 80
|
41 |
+
- 100
|
42 |
+
test_batch_size: 64
|
43 |
+
test_feeder_args:
|
44 |
+
data_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/val_data_bone.npy
|
45 |
+
label_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/val_label.pkl
|
46 |
+
train_feeder_args:
|
47 |
+
data_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/train_data_bone.npy
|
48 |
+
debug: false
|
49 |
+
label_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/train_label.pkl
|
50 |
+
normalization: false
|
51 |
+
random_choose: false
|
52 |
+
random_move: false
|
53 |
+
random_shift: false
|
54 |
+
window_size: -1
|
55 |
+
warm_up_epoch: 0
|
56 |
+
weight_decay: 0.0001
|
57 |
+
weights: null
|
58 |
+
work_dir: ./work_dir/ntu_ShiftGCN_bone_xsub
|
ckpt/Others/Shift-GCN/ntu60_xsub/ntu_ShiftGCN_bone_xsub/eval_results/best_acc.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7d5bce80cdeecce4cce3300b402719cd25c45d5d8530e964406d10576c3a0f35
|
3 |
+
size 4979902
|
ckpt/Others/Shift-GCN/ntu60_xsub/ntu_ShiftGCN_bone_xsub/log.txt
ADDED
@@ -0,0 +1,875 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[ Thu Sep 15 17:47:53 2022 ] Parameters:
|
2 |
+
{'work_dir': './work_dir/ntu_ShiftGCN_bone_xsub', 'model_saved_name': './save_models/ntu_ShiftGCN_bone_xsub', 'Experiment_name': 'ntu_ShiftGCN_bone_xsub', 'config': './config/nturgbd-cross-subject/train_bone.yaml', 'phase': 'train', 'save_score': False, 'seed': 1, 'log_interval': 100, 'save_interval': 2, 'eval_interval': 5, 'print_log': True, 'show_topk': [1, 5], 'feeder': 'feeders.feeder.Feeder', 'num_worker': 32, 'train_feeder_args': {'data_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/train_data_bone.npy', 'label_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/train_label.pkl', 'debug': False, 'random_choose': False, 'random_shift': False, 'random_move': False, 'window_size': -1, 'normalization': False}, 'test_feeder_args': {'data_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/val_data_bone.npy', 'label_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/val_label.pkl'}, 'model': 'model.shift_gcn.Model', 'model_args': {'num_class': 60, 'num_point': 25, 'num_person': 2, 'graph': 'graph.ntu_rgb_d.Graph', 'graph_args': {'labeling_mode': 'spatial'}}, 'weights': None, 'ignore_weights': [], 'base_lr': 0.1, 'step': [60, 80, 100], 'device': [0, 1, 2, 3], 'optimizer': 'SGD', 'nesterov': True, 'batch_size': 64, 'test_batch_size': 64, 'start_epoch': 0, 'num_epoch': 140, 'weight_decay': 0.0001, 'only_train_part': True, 'only_train_epoch': 1, 'warm_up_epoch': 0}
|
3 |
+
|
4 |
+
[ Thu Sep 15 17:47:53 2022 ] Training epoch: 1
|
5 |
+
[ Thu Sep 15 17:48:40 2022 ] Batch(99/123) done. Loss: 2.3813 lr:0.100000 network_time: 0.0478
|
6 |
+
[ Thu Sep 15 17:48:49 2022 ] Eval epoch: 1
|
7 |
+
[ Thu Sep 15 17:49:11 2022 ] Mean test loss of 258 batches: 5.7082133293151855.
|
8 |
+
[ Thu Sep 15 17:49:11 2022 ] Top1: 10.85%
|
9 |
+
[ Thu Sep 15 17:49:11 2022 ] Top5: 36.14%
|
10 |
+
[ Thu Sep 15 17:49:11 2022 ] Training epoch: 2
|
11 |
+
[ Thu Sep 15 17:49:43 2022 ] Batch(76/123) done. Loss: 2.1921 lr:0.100000 network_time: 0.0540
|
12 |
+
[ Thu Sep 15 17:50:01 2022 ] Eval epoch: 2
|
13 |
+
[ Thu Sep 15 17:50:23 2022 ] Mean test loss of 258 batches: 6.640047550201416.
|
14 |
+
[ Thu Sep 15 17:50:23 2022 ] Top1: 21.72%
|
15 |
+
[ Thu Sep 15 17:50:23 2022 ] Top5: 51.43%
|
16 |
+
[ Thu Sep 15 17:50:23 2022 ] Training epoch: 3
|
17 |
+
[ Thu Sep 15 17:50:46 2022 ] Batch(53/123) done. Loss: 1.6533 lr:0.100000 network_time: 0.0488
|
18 |
+
[ Thu Sep 15 17:51:12 2022 ] Eval epoch: 3
|
19 |
+
[ Thu Sep 15 17:51:34 2022 ] Mean test loss of 258 batches: 3.587632656097412.
|
20 |
+
[ Thu Sep 15 17:51:34 2022 ] Top1: 26.24%
|
21 |
+
[ Thu Sep 15 17:51:34 2022 ] Top5: 60.65%
|
22 |
+
[ Thu Sep 15 17:51:34 2022 ] Training epoch: 4
|
23 |
+
[ Thu Sep 15 17:51:49 2022 ] Batch(30/123) done. Loss: 1.6216 lr:0.100000 network_time: 0.0511
|
24 |
+
[ Thu Sep 15 17:52:23 2022 ] Eval epoch: 4
|
25 |
+
[ Thu Sep 15 17:52:45 2022 ] Mean test loss of 258 batches: 2.7592902183532715.
|
26 |
+
[ Thu Sep 15 17:52:45 2022 ] Top1: 34.18%
|
27 |
+
[ Thu Sep 15 17:52:46 2022 ] Top5: 68.90%
|
28 |
+
[ Thu Sep 15 17:52:46 2022 ] Training epoch: 5
|
29 |
+
[ Thu Sep 15 17:52:52 2022 ] Batch(7/123) done. Loss: 1.1457 lr:0.100000 network_time: 0.0478
|
30 |
+
[ Thu Sep 15 17:53:29 2022 ] Batch(107/123) done. Loss: 1.0360 lr:0.100000 network_time: 0.0486
|
31 |
+
[ Thu Sep 15 17:53:35 2022 ] Eval epoch: 5
|
32 |
+
[ Thu Sep 15 17:53:56 2022 ] Mean test loss of 258 batches: 3.083068370819092.
|
33 |
+
[ Thu Sep 15 17:53:57 2022 ] Top1: 35.23%
|
34 |
+
[ Thu Sep 15 17:53:57 2022 ] Top5: 65.32%
|
35 |
+
[ Thu Sep 15 17:53:57 2022 ] Training epoch: 6
|
36 |
+
[ Thu Sep 15 17:54:32 2022 ] Batch(84/123) done. Loss: 1.1396 lr:0.100000 network_time: 0.0504
|
37 |
+
[ Thu Sep 15 17:54:46 2022 ] Eval epoch: 6
|
38 |
+
[ Thu Sep 15 17:55:08 2022 ] Mean test loss of 258 batches: 3.323880434036255.
|
39 |
+
[ Thu Sep 15 17:55:08 2022 ] Top1: 35.82%
|
40 |
+
[ Thu Sep 15 17:55:08 2022 ] Top5: 64.31%
|
41 |
+
[ Thu Sep 15 17:55:08 2022 ] Training epoch: 7
|
42 |
+
[ Thu Sep 15 17:55:35 2022 ] Batch(61/123) done. Loss: 0.8685 lr:0.100000 network_time: 0.0488
|
43 |
+
[ Thu Sep 15 17:55:58 2022 ] Eval epoch: 7
|
44 |
+
[ Thu Sep 15 17:56:20 2022 ] Mean test loss of 258 batches: 3.480191230773926.
|
45 |
+
[ Thu Sep 15 17:56:20 2022 ] Top1: 32.70%
|
46 |
+
[ Thu Sep 15 17:56:20 2022 ] Top5: 62.88%
|
47 |
+
[ Thu Sep 15 17:56:20 2022 ] Training epoch: 8
|
48 |
+
[ Thu Sep 15 17:56:38 2022 ] Batch(38/123) done. Loss: 1.0288 lr:0.100000 network_time: 0.0512
|
49 |
+
[ Thu Sep 15 17:57:09 2022 ] Eval epoch: 8
|
50 |
+
[ Thu Sep 15 17:57:32 2022 ] Mean test loss of 258 batches: 2.307069778442383.
|
51 |
+
[ Thu Sep 15 17:57:32 2022 ] Top1: 40.67%
|
52 |
+
[ Thu Sep 15 17:57:32 2022 ] Top5: 77.36%
|
53 |
+
[ Thu Sep 15 17:57:32 2022 ] Training epoch: 9
|
54 |
+
[ Thu Sep 15 17:57:42 2022 ] Batch(15/123) done. Loss: 0.9701 lr:0.100000 network_time: 0.0513
|
55 |
+
[ Thu Sep 15 17:58:18 2022 ] Batch(115/123) done. Loss: 1.0193 lr:0.100000 network_time: 0.0488
|
56 |
+
[ Thu Sep 15 17:58:21 2022 ] Eval epoch: 9
|
57 |
+
[ Thu Sep 15 17:58:43 2022 ] Mean test loss of 258 batches: 2.7951412200927734.
|
58 |
+
[ Thu Sep 15 17:58:43 2022 ] Top1: 37.25%
|
59 |
+
[ Thu Sep 15 17:58:43 2022 ] Top5: 70.56%
|
60 |
+
[ Thu Sep 15 17:58:43 2022 ] Training epoch: 10
|
61 |
+
[ Thu Sep 15 17:59:21 2022 ] Batch(92/123) done. Loss: 1.0893 lr:0.100000 network_time: 0.0515
|
62 |
+
[ Thu Sep 15 17:59:32 2022 ] Eval epoch: 10
|
63 |
+
[ Thu Sep 15 17:59:55 2022 ] Mean test loss of 258 batches: 2.059424638748169.
|
64 |
+
[ Thu Sep 15 17:59:55 2022 ] Top1: 47.10%
|
65 |
+
[ Thu Sep 15 17:59:55 2022 ] Top5: 80.37%
|
66 |
+
[ Thu Sep 15 17:59:55 2022 ] Training epoch: 11
|
67 |
+
[ Thu Sep 15 18:00:24 2022 ] Batch(69/123) done. Loss: 0.7402 lr:0.100000 network_time: 0.0520
|
68 |
+
[ Thu Sep 15 18:00:44 2022 ] Eval epoch: 11
|
69 |
+
[ Thu Sep 15 18:01:06 2022 ] Mean test loss of 258 batches: 2.2376978397369385.
|
70 |
+
[ Thu Sep 15 18:01:06 2022 ] Top1: 45.21%
|
71 |
+
[ Thu Sep 15 18:01:07 2022 ] Top5: 79.05%
|
72 |
+
[ Thu Sep 15 18:01:07 2022 ] Training epoch: 12
|
73 |
+
[ Thu Sep 15 18:01:28 2022 ] Batch(46/123) done. Loss: 0.5997 lr:0.100000 network_time: 0.0502
|
74 |
+
[ Thu Sep 15 18:01:56 2022 ] Eval epoch: 12
|
75 |
+
[ Thu Sep 15 18:02:18 2022 ] Mean test loss of 258 batches: 2.544092893600464.
|
76 |
+
[ Thu Sep 15 18:02:18 2022 ] Top1: 44.84%
|
77 |
+
[ Thu Sep 15 18:02:18 2022 ] Top5: 79.83%
|
78 |
+
[ Thu Sep 15 18:02:18 2022 ] Training epoch: 13
|
79 |
+
[ Thu Sep 15 18:02:31 2022 ] Batch(23/123) done. Loss: 0.9503 lr:0.100000 network_time: 0.0497
|
80 |
+
[ Thu Sep 15 18:03:07 2022 ] Eval epoch: 13
|
81 |
+
[ Thu Sep 15 18:03:29 2022 ] Mean test loss of 258 batches: 1.9147826433181763.
|
82 |
+
[ Thu Sep 15 18:03:29 2022 ] Top1: 51.48%
|
83 |
+
[ Thu Sep 15 18:03:29 2022 ] Top5: 83.05%
|
84 |
+
[ Thu Sep 15 18:03:29 2022 ] Training epoch: 14
|
85 |
+
[ Thu Sep 15 18:03:34 2022 ] Batch(0/123) done. Loss: 0.5457 lr:0.100000 network_time: 0.1016
|
86 |
+
[ Thu Sep 15 18:04:10 2022 ] Batch(100/123) done. Loss: 0.5821 lr:0.100000 network_time: 0.0494
|
87 |
+
[ Thu Sep 15 18:04:19 2022 ] Eval epoch: 14
|
88 |
+
[ Thu Sep 15 18:04:41 2022 ] Mean test loss of 258 batches: 3.2059364318847656.
|
89 |
+
[ Thu Sep 15 18:04:41 2022 ] Top1: 40.05%
|
90 |
+
[ Thu Sep 15 18:04:41 2022 ] Top5: 73.72%
|
91 |
+
[ Thu Sep 15 18:04:42 2022 ] Training epoch: 15
|
92 |
+
[ Thu Sep 15 18:05:14 2022 ] Batch(77/123) done. Loss: 0.7532 lr:0.100000 network_time: 0.0495
|
93 |
+
[ Thu Sep 15 18:05:31 2022 ] Eval epoch: 15
|
94 |
+
[ Thu Sep 15 18:05:52 2022 ] Mean test loss of 258 batches: 2.295565605163574.
|
95 |
+
[ Thu Sep 15 18:05:52 2022 ] Top1: 44.93%
|
96 |
+
[ Thu Sep 15 18:05:53 2022 ] Top5: 81.57%
|
97 |
+
[ Thu Sep 15 18:05:53 2022 ] Training epoch: 16
|
98 |
+
[ Thu Sep 15 18:06:17 2022 ] Batch(54/123) done. Loss: 0.7355 lr:0.100000 network_time: 0.0494
|
99 |
+
[ Thu Sep 15 18:06:42 2022 ] Eval epoch: 16
|
100 |
+
[ Thu Sep 15 18:07:04 2022 ] Mean test loss of 258 batches: 2.1258904933929443.
|
101 |
+
[ Thu Sep 15 18:07:04 2022 ] Top1: 49.40%
|
102 |
+
[ Thu Sep 15 18:07:04 2022 ] Top5: 83.77%
|
103 |
+
[ Thu Sep 15 18:07:04 2022 ] Training epoch: 17
|
104 |
+
[ Thu Sep 15 18:07:19 2022 ] Batch(31/123) done. Loss: 0.6526 lr:0.100000 network_time: 0.0500
|
105 |
+
[ Thu Sep 15 18:07:53 2022 ] Eval epoch: 17
|
106 |
+
[ Thu Sep 15 18:08:15 2022 ] Mean test loss of 258 batches: 2.0040574073791504.
|
107 |
+
[ Thu Sep 15 18:08:15 2022 ] Top1: 50.99%
|
108 |
+
[ Thu Sep 15 18:08:15 2022 ] Top5: 84.38%
|
109 |
+
[ Thu Sep 15 18:08:15 2022 ] Training epoch: 18
|
110 |
+
[ Thu Sep 15 18:08:22 2022 ] Batch(8/123) done. Loss: 0.4405 lr:0.100000 network_time: 0.0521
|
111 |
+
[ Thu Sep 15 18:08:59 2022 ] Batch(108/123) done. Loss: 0.3498 lr:0.100000 network_time: 0.0497
|
112 |
+
[ Thu Sep 15 18:09:05 2022 ] Eval epoch: 18
|
113 |
+
[ Thu Sep 15 18:09:26 2022 ] Mean test loss of 258 batches: 2.170915365219116.
|
114 |
+
[ Thu Sep 15 18:09:26 2022 ] Top1: 51.73%
|
115 |
+
[ Thu Sep 15 18:09:26 2022 ] Top5: 83.59%
|
116 |
+
[ Thu Sep 15 18:09:26 2022 ] Training epoch: 19
|
117 |
+
[ Thu Sep 15 18:10:02 2022 ] Batch(85/123) done. Loss: 0.4577 lr:0.100000 network_time: 0.0501
|
118 |
+
[ Thu Sep 15 18:10:16 2022 ] Eval epoch: 19
|
119 |
+
[ Thu Sep 15 18:10:37 2022 ] Mean test loss of 258 batches: 2.4165236949920654.
|
120 |
+
[ Thu Sep 15 18:10:38 2022 ] Top1: 48.97%
|
121 |
+
[ Thu Sep 15 18:10:38 2022 ] Top5: 81.39%
|
122 |
+
[ Thu Sep 15 18:10:38 2022 ] Training epoch: 20
|
123 |
+
[ Thu Sep 15 18:11:04 2022 ] Batch(62/123) done. Loss: 0.4567 lr:0.100000 network_time: 0.0480
|
124 |
+
[ Thu Sep 15 18:11:27 2022 ] Eval epoch: 20
|
125 |
+
[ Thu Sep 15 18:11:49 2022 ] Mean test loss of 258 batches: 2.2029035091400146.
|
126 |
+
[ Thu Sep 15 18:11:49 2022 ] Top1: 48.95%
|
127 |
+
[ Thu Sep 15 18:11:49 2022 ] Top5: 83.41%
|
128 |
+
[ Thu Sep 15 18:11:49 2022 ] Training epoch: 21
|
129 |
+
[ Thu Sep 15 18:12:07 2022 ] Batch(39/123) done. Loss: 0.5271 lr:0.100000 network_time: 0.0502
|
130 |
+
[ Thu Sep 15 18:12:38 2022 ] Eval epoch: 21
|
131 |
+
[ Thu Sep 15 18:13:00 2022 ] Mean test loss of 258 batches: 2.533735990524292.
|
132 |
+
[ Thu Sep 15 18:13:00 2022 ] Top1: 45.28%
|
133 |
+
[ Thu Sep 15 18:13:01 2022 ] Top5: 79.87%
|
134 |
+
[ Thu Sep 15 18:13:01 2022 ] Training epoch: 22
|
135 |
+
[ Thu Sep 15 18:13:11 2022 ] Batch(16/123) done. Loss: 0.3980 lr:0.100000 network_time: 0.0473
|
136 |
+
[ Thu Sep 15 18:13:48 2022 ] Batch(116/123) done. Loss: 0.5138 lr:0.100000 network_time: 0.0502
|
137 |
+
[ Thu Sep 15 18:13:50 2022 ] Eval epoch: 22
|
138 |
+
[ Thu Sep 15 18:14:12 2022 ] Mean test loss of 258 batches: 2.2566044330596924.
|
139 |
+
[ Thu Sep 15 18:14:12 2022 ] Top1: 49.99%
|
140 |
+
[ Thu Sep 15 18:14:12 2022 ] Top5: 83.68%
|
141 |
+
[ Thu Sep 15 18:14:12 2022 ] Training epoch: 23
|
142 |
+
[ Thu Sep 15 18:14:50 2022 ] Batch(93/123) done. Loss: 0.8055 lr:0.100000 network_time: 0.0482
|
143 |
+
[ Thu Sep 15 18:15:01 2022 ] Eval epoch: 23
|
144 |
+
[ Thu Sep 15 18:15:22 2022 ] Mean test loss of 258 batches: 2.1785130500793457.
|
145 |
+
[ Thu Sep 15 18:15:22 2022 ] Top1: 51.98%
|
146 |
+
[ Thu Sep 15 18:15:23 2022 ] Top5: 83.66%
|
147 |
+
[ Thu Sep 15 18:15:23 2022 ] Training epoch: 24
|
148 |
+
[ Thu Sep 15 18:15:52 2022 ] Batch(70/123) done. Loss: 0.3882 lr:0.100000 network_time: 0.0521
|
149 |
+
[ Thu Sep 15 18:16:12 2022 ] Eval epoch: 24
|
150 |
+
[ Thu Sep 15 18:16:34 2022 ] Mean test loss of 258 batches: 2.931326389312744.
|
151 |
+
[ Thu Sep 15 18:16:34 2022 ] Top1: 44.62%
|
152 |
+
[ Thu Sep 15 18:16:34 2022 ] Top5: 76.93%
|
153 |
+
[ Thu Sep 15 18:16:34 2022 ] Training epoch: 25
|
154 |
+
[ Thu Sep 15 18:16:55 2022 ] Batch(47/123) done. Loss: 0.4080 lr:0.100000 network_time: 0.0516
|
155 |
+
[ Thu Sep 15 18:17:23 2022 ] Eval epoch: 25
|
156 |
+
[ Thu Sep 15 18:17:45 2022 ] Mean test loss of 258 batches: 1.9534658193588257.
|
157 |
+
[ Thu Sep 15 18:17:45 2022 ] Top1: 54.25%
|
158 |
+
[ Thu Sep 15 18:17:45 2022 ] Top5: 84.85%
|
159 |
+
[ Thu Sep 15 18:17:45 2022 ] Training epoch: 26
|
160 |
+
[ Thu Sep 15 18:17:58 2022 ] Batch(24/123) done. Loss: 0.4425 lr:0.100000 network_time: 0.0469
|
161 |
+
[ Thu Sep 15 18:18:34 2022 ] Eval epoch: 26
|
162 |
+
[ Thu Sep 15 18:18:56 2022 ] Mean test loss of 258 batches: 2.3278818130493164.
|
163 |
+
[ Thu Sep 15 18:18:56 2022 ] Top1: 50.68%
|
164 |
+
[ Thu Sep 15 18:18:57 2022 ] Top5: 83.35%
|
165 |
+
[ Thu Sep 15 18:18:57 2022 ] Training epoch: 27
|
166 |
+
[ Thu Sep 15 18:19:01 2022 ] Batch(1/123) done. Loss: 0.2602 lr:0.100000 network_time: 0.0477
|
167 |
+
[ Thu Sep 15 18:19:38 2022 ] Batch(101/123) done. Loss: 0.4489 lr:0.100000 network_time: 0.0506
|
168 |
+
[ Thu Sep 15 18:19:46 2022 ] Eval epoch: 27
|
169 |
+
[ Thu Sep 15 18:20:08 2022 ] Mean test loss of 258 batches: 1.912603735923767.
|
170 |
+
[ Thu Sep 15 18:20:08 2022 ] Top1: 54.53%
|
171 |
+
[ Thu Sep 15 18:20:08 2022 ] Top5: 85.32%
|
172 |
+
[ Thu Sep 15 18:20:08 2022 ] Training epoch: 28
|
173 |
+
[ Thu Sep 15 18:20:41 2022 ] Batch(78/123) done. Loss: 0.5833 lr:0.100000 network_time: 0.0513
|
174 |
+
[ Thu Sep 15 18:20:57 2022 ] Eval epoch: 28
|
175 |
+
[ Thu Sep 15 18:21:19 2022 ] Mean test loss of 258 batches: 2.167754650115967.
|
176 |
+
[ Thu Sep 15 18:21:19 2022 ] Top1: 55.58%
|
177 |
+
[ Thu Sep 15 18:21:19 2022 ] Top5: 86.30%
|
178 |
+
[ Thu Sep 15 18:21:19 2022 ] Training epoch: 29
|
179 |
+
[ Thu Sep 15 18:21:44 2022 ] Batch(55/123) done. Loss: 0.3940 lr:0.100000 network_time: 0.0516
|
180 |
+
[ Thu Sep 15 18:22:09 2022 ] Eval epoch: 29
|
181 |
+
[ Thu Sep 15 18:22:30 2022 ] Mean test loss of 258 batches: 2.0642311573028564.
|
182 |
+
[ Thu Sep 15 18:22:31 2022 ] Top1: 55.52%
|
183 |
+
[ Thu Sep 15 18:22:31 2022 ] Top5: 86.89%
|
184 |
+
[ Thu Sep 15 18:22:31 2022 ] Training epoch: 30
|
185 |
+
[ Thu Sep 15 18:22:47 2022 ] Batch(32/123) done. Loss: 0.4275 lr:0.100000 network_time: 0.0494
|
186 |
+
[ Thu Sep 15 18:23:20 2022 ] Eval epoch: 30
|
187 |
+
[ Thu Sep 15 18:23:42 2022 ] Mean test loss of 258 batches: 1.9236493110656738.
|
188 |
+
[ Thu Sep 15 18:23:42 2022 ] Top1: 55.09%
|
189 |
+
[ Thu Sep 15 18:23:42 2022 ] Top5: 84.92%
|
190 |
+
[ Thu Sep 15 18:23:42 2022 ] Training epoch: 31
|
191 |
+
[ Thu Sep 15 18:23:50 2022 ] Batch(9/123) done. Loss: 0.2980 lr:0.100000 network_time: 0.0496
|
192 |
+
[ Thu Sep 15 18:24:27 2022 ] Batch(109/123) done. Loss: 0.3614 lr:0.100000 network_time: 0.0495
|
193 |
+
[ Thu Sep 15 18:24:32 2022 ] Eval epoch: 31
|
194 |
+
[ Thu Sep 15 18:24:54 2022 ] Mean test loss of 258 batches: 2.2241408824920654.
|
195 |
+
[ Thu Sep 15 18:24:54 2022 ] Top1: 52.15%
|
196 |
+
[ Thu Sep 15 18:24:54 2022 ] Top5: 85.18%
|
197 |
+
[ Thu Sep 15 18:24:54 2022 ] Training epoch: 32
|
198 |
+
[ Thu Sep 15 18:25:30 2022 ] Batch(86/123) done. Loss: 0.4021 lr:0.100000 network_time: 0.0503
|
199 |
+
[ Thu Sep 15 18:25:43 2022 ] Eval epoch: 32
|
200 |
+
[ Thu Sep 15 18:26:05 2022 ] Mean test loss of 258 batches: 1.9539873600006104.
|
201 |
+
[ Thu Sep 15 18:26:05 2022 ] Top1: 51.09%
|
202 |
+
[ Thu Sep 15 18:26:05 2022 ] Top5: 84.44%
|
203 |
+
[ Thu Sep 15 18:26:05 2022 ] Training epoch: 33
|
204 |
+
[ Thu Sep 15 18:26:32 2022 ] Batch(63/123) done. Loss: 0.3629 lr:0.100000 network_time: 0.0688
|
205 |
+
[ Thu Sep 15 18:26:54 2022 ] Eval epoch: 33
|
206 |
+
[ Thu Sep 15 18:27:16 2022 ] Mean test loss of 258 batches: 2.223938465118408.
|
207 |
+
[ Thu Sep 15 18:27:16 2022 ] Top1: 53.82%
|
208 |
+
[ Thu Sep 15 18:27:17 2022 ] Top5: 84.55%
|
209 |
+
[ Thu Sep 15 18:27:17 2022 ] Training epoch: 34
|
210 |
+
[ Thu Sep 15 18:27:35 2022 ] Batch(40/123) done. Loss: 0.3019 lr:0.100000 network_time: 0.0506
|
211 |
+
[ Thu Sep 15 18:28:06 2022 ] Eval epoch: 34
|
212 |
+
[ Thu Sep 15 18:28:28 2022 ] Mean test loss of 258 batches: 2.304352283477783.
|
213 |
+
[ Thu Sep 15 18:28:28 2022 ] Top1: 52.24%
|
214 |
+
[ Thu Sep 15 18:28:28 2022 ] Top5: 83.38%
|
215 |
+
[ Thu Sep 15 18:28:28 2022 ] Training epoch: 35
|
216 |
+
[ Thu Sep 15 18:28:38 2022 ] Batch(17/123) done. Loss: 0.2968 lr:0.100000 network_time: 0.0554
|
217 |
+
[ Thu Sep 15 18:29:15 2022 ] Batch(117/123) done. Loss: 0.3346 lr:0.100000 network_time: 0.0500
|
218 |
+
[ Thu Sep 15 18:29:17 2022 ] Eval epoch: 35
|
219 |
+
[ Thu Sep 15 18:29:39 2022 ] Mean test loss of 258 batches: 2.392214298248291.
|
220 |
+
[ Thu Sep 15 18:29:40 2022 ] Top1: 52.00%
|
221 |
+
[ Thu Sep 15 18:29:40 2022 ] Top5: 82.93%
|
222 |
+
[ Thu Sep 15 18:29:40 2022 ] Training epoch: 36
|
223 |
+
[ Thu Sep 15 18:30:18 2022 ] Batch(94/123) done. Loss: 0.2313 lr:0.100000 network_time: 0.0524
|
224 |
+
[ Thu Sep 15 18:30:29 2022 ] Eval epoch: 36
|
225 |
+
[ Thu Sep 15 18:30:51 2022 ] Mean test loss of 258 batches: 2.248171806335449.
|
226 |
+
[ Thu Sep 15 18:30:51 2022 ] Top1: 52.39%
|
227 |
+
[ Thu Sep 15 18:30:51 2022 ] Top5: 84.59%
|
228 |
+
[ Thu Sep 15 18:30:51 2022 ] Training epoch: 37
|
229 |
+
[ Thu Sep 15 18:31:21 2022 ] Batch(71/123) done. Loss: 0.2396 lr:0.100000 network_time: 0.0512
|
230 |
+
[ Thu Sep 15 18:31:40 2022 ] Eval epoch: 37
|
231 |
+
[ Thu Sep 15 18:32:02 2022 ] Mean test loss of 258 batches: 2.4701759815216064.
|
232 |
+
[ Thu Sep 15 18:32:02 2022 ] Top1: 52.17%
|
233 |
+
[ Thu Sep 15 18:32:02 2022 ] Top5: 85.15%
|
234 |
+
[ Thu Sep 15 18:32:02 2022 ] Training epoch: 38
|
235 |
+
[ Thu Sep 15 18:32:24 2022 ] Batch(48/123) done. Loss: 0.1601 lr:0.100000 network_time: 0.0497
|
236 |
+
[ Thu Sep 15 18:32:52 2022 ] Eval epoch: 38
|
237 |
+
[ Thu Sep 15 18:33:13 2022 ] Mean test loss of 258 batches: 2.625194549560547.
|
238 |
+
[ Thu Sep 15 18:33:13 2022 ] Top1: 49.11%
|
239 |
+
[ Thu Sep 15 18:33:13 2022 ] Top5: 82.32%
|
240 |
+
[ Thu Sep 15 18:33:13 2022 ] Training epoch: 39
|
241 |
+
[ Thu Sep 15 18:33:26 2022 ] Batch(25/123) done. Loss: 0.2385 lr:0.100000 network_time: 0.0491
|
242 |
+
[ Thu Sep 15 18:34:02 2022 ] Eval epoch: 39
|
243 |
+
[ Thu Sep 15 18:34:24 2022 ] Mean test loss of 258 batches: 2.2160768508911133.
|
244 |
+
[ Thu Sep 15 18:34:24 2022 ] Top1: 52.51%
|
245 |
+
[ Thu Sep 15 18:34:24 2022 ] Top5: 85.21%
|
246 |
+
[ Thu Sep 15 18:34:24 2022 ] Training epoch: 40
|
247 |
+
[ Thu Sep 15 18:34:29 2022 ] Batch(2/123) done. Loss: 0.2694 lr:0.100000 network_time: 0.0741
|
248 |
+
[ Thu Sep 15 18:35:05 2022 ] Batch(102/123) done. Loss: 0.4774 lr:0.100000 network_time: 0.0531
|
249 |
+
[ Thu Sep 15 18:35:13 2022 ] Eval epoch: 40
|
250 |
+
[ Thu Sep 15 18:35:35 2022 ] Mean test loss of 258 batches: 2.8346052169799805.
|
251 |
+
[ Thu Sep 15 18:35:35 2022 ] Top1: 45.68%
|
252 |
+
[ Thu Sep 15 18:35:35 2022 ] Top5: 77.05%
|
253 |
+
[ Thu Sep 15 18:35:35 2022 ] Training epoch: 41
|
254 |
+
[ Thu Sep 15 18:36:08 2022 ] Batch(79/123) done. Loss: 0.2311 lr:0.100000 network_time: 0.0525
|
255 |
+
[ Thu Sep 15 18:36:24 2022 ] Eval epoch: 41
|
256 |
+
[ Thu Sep 15 18:36:47 2022 ] Mean test loss of 258 batches: 2.6487550735473633.
|
257 |
+
[ Thu Sep 15 18:36:47 2022 ] Top1: 48.83%
|
258 |
+
[ Thu Sep 15 18:36:47 2022 ] Top5: 81.41%
|
259 |
+
[ Thu Sep 15 18:36:47 2022 ] Training epoch: 42
|
260 |
+
[ Thu Sep 15 18:37:11 2022 ] Batch(56/123) done. Loss: 0.1981 lr:0.100000 network_time: 0.0571
|
261 |
+
[ Thu Sep 15 18:37:36 2022 ] Eval epoch: 42
|
262 |
+
[ Thu Sep 15 18:37:58 2022 ] Mean test loss of 258 batches: 2.2918591499328613.
|
263 |
+
[ Thu Sep 15 18:37:58 2022 ] Top1: 51.79%
|
264 |
+
[ Thu Sep 15 18:37:58 2022 ] Top5: 82.48%
|
265 |
+
[ Thu Sep 15 18:37:58 2022 ] Training epoch: 43
|
266 |
+
[ Thu Sep 15 18:38:14 2022 ] Batch(33/123) done. Loss: 0.2031 lr:0.100000 network_time: 0.0490
|
267 |
+
[ Thu Sep 15 18:38:47 2022 ] Eval epoch: 43
|
268 |
+
[ Thu Sep 15 18:39:09 2022 ] Mean test loss of 258 batches: 2.716893196105957.
|
269 |
+
[ Thu Sep 15 18:39:09 2022 ] Top1: 49.04%
|
270 |
+
[ Thu Sep 15 18:39:09 2022 ] Top5: 82.11%
|
271 |
+
[ Thu Sep 15 18:39:09 2022 ] Training epoch: 44
|
272 |
+
[ Thu Sep 15 18:39:16 2022 ] Batch(10/123) done. Loss: 0.2014 lr:0.100000 network_time: 0.0465
|
273 |
+
[ Thu Sep 15 18:39:53 2022 ] Batch(110/123) done. Loss: 0.2128 lr:0.100000 network_time: 0.0488
|
274 |
+
[ Thu Sep 15 18:39:58 2022 ] Eval epoch: 44
|
275 |
+
[ Thu Sep 15 18:40:20 2022 ] Mean test loss of 258 batches: 2.1684532165527344.
|
276 |
+
[ Thu Sep 15 18:40:20 2022 ] Top1: 55.17%
|
277 |
+
[ Thu Sep 15 18:40:20 2022 ] Top5: 86.61%
|
278 |
+
[ Thu Sep 15 18:40:20 2022 ] Training epoch: 45
|
279 |
+
[ Thu Sep 15 18:40:55 2022 ] Batch(87/123) done. Loss: 0.1993 lr:0.100000 network_time: 0.0519
|
280 |
+
[ Thu Sep 15 18:41:09 2022 ] Eval epoch: 45
|
281 |
+
[ Thu Sep 15 18:41:31 2022 ] Mean test loss of 258 batches: 2.9825515747070312.
|
282 |
+
[ Thu Sep 15 18:41:31 2022 ] Top1: 47.93%
|
283 |
+
[ Thu Sep 15 18:41:31 2022 ] Top5: 80.66%
|
284 |
+
[ Thu Sep 15 18:41:31 2022 ] Training epoch: 46
|
285 |
+
[ Thu Sep 15 18:41:58 2022 ] Batch(64/123) done. Loss: 0.2144 lr:0.100000 network_time: 0.0504
|
286 |
+
[ Thu Sep 15 18:42:20 2022 ] Eval epoch: 46
|
287 |
+
[ Thu Sep 15 18:42:42 2022 ] Mean test loss of 258 batches: 2.1467137336730957.
|
288 |
+
[ Thu Sep 15 18:42:42 2022 ] Top1: 54.75%
|
289 |
+
[ Thu Sep 15 18:42:42 2022 ] Top5: 85.50%
|
290 |
+
[ Thu Sep 15 18:42:42 2022 ] Training epoch: 47
|
291 |
+
[ Thu Sep 15 18:43:01 2022 ] Batch(41/123) done. Loss: 0.3797 lr:0.100000 network_time: 0.0513
|
292 |
+
[ Thu Sep 15 18:43:31 2022 ] Eval epoch: 47
|
293 |
+
[ Thu Sep 15 18:43:53 2022 ] Mean test loss of 258 batches: 2.668498992919922.
|
294 |
+
[ Thu Sep 15 18:43:53 2022 ] Top1: 49.12%
|
295 |
+
[ Thu Sep 15 18:43:53 2022 ] Top5: 82.49%
|
296 |
+
[ Thu Sep 15 18:43:54 2022 ] Training epoch: 48
|
297 |
+
[ Thu Sep 15 18:44:04 2022 ] Batch(18/123) done. Loss: 0.1254 lr:0.100000 network_time: 0.0476
|
298 |
+
[ Thu Sep 15 18:44:41 2022 ] Batch(118/123) done. Loss: 0.2008 lr:0.100000 network_time: 0.0497
|
299 |
+
[ Thu Sep 15 18:44:42 2022 ] Eval epoch: 48
|
300 |
+
[ Thu Sep 15 18:45:04 2022 ] Mean test loss of 258 batches: 2.8411271572113037.
|
301 |
+
[ Thu Sep 15 18:45:04 2022 ] Top1: 48.40%
|
302 |
+
[ Thu Sep 15 18:45:05 2022 ] Top5: 79.99%
|
303 |
+
[ Thu Sep 15 18:45:05 2022 ] Training epoch: 49
|
304 |
+
[ Thu Sep 15 18:45:43 2022 ] Batch(95/123) done. Loss: 0.3122 lr:0.100000 network_time: 0.0526
|
305 |
+
[ Thu Sep 15 18:45:53 2022 ] Eval epoch: 49
|
306 |
+
[ Thu Sep 15 18:46:16 2022 ] Mean test loss of 258 batches: 2.817328929901123.
|
307 |
+
[ Thu Sep 15 18:46:16 2022 ] Top1: 49.04%
|
308 |
+
[ Thu Sep 15 18:46:16 2022 ] Top5: 82.11%
|
309 |
+
[ Thu Sep 15 18:46:16 2022 ] Training epoch: 50
|
310 |
+
[ Thu Sep 15 18:46:47 2022 ] Batch(72/123) done. Loss: 0.2220 lr:0.100000 network_time: 0.0502
|
311 |
+
[ Thu Sep 15 18:47:05 2022 ] Eval epoch: 50
|
312 |
+
[ Thu Sep 15 18:47:28 2022 ] Mean test loss of 258 batches: 2.002220869064331.
|
313 |
+
[ Thu Sep 15 18:47:28 2022 ] Top1: 56.75%
|
314 |
+
[ Thu Sep 15 18:47:28 2022 ] Top5: 88.09%
|
315 |
+
[ Thu Sep 15 18:47:28 2022 ] Training epoch: 51
|
316 |
+
[ Thu Sep 15 18:47:50 2022 ] Batch(49/123) done. Loss: 0.2155 lr:0.100000 network_time: 0.0476
|
317 |
+
[ Thu Sep 15 18:48:17 2022 ] Eval epoch: 51
|
318 |
+
[ Thu Sep 15 18:48:40 2022 ] Mean test loss of 258 batches: 2.272024154663086.
|
319 |
+
[ Thu Sep 15 18:48:40 2022 ] Top1: 53.65%
|
320 |
+
[ Thu Sep 15 18:48:40 2022 ] Top5: 83.74%
|
321 |
+
[ Thu Sep 15 18:48:40 2022 ] Training epoch: 52
|
322 |
+
[ Thu Sep 15 18:48:54 2022 ] Batch(26/123) done. Loss: 0.2241 lr:0.100000 network_time: 0.0483
|
323 |
+
[ Thu Sep 15 18:49:29 2022 ] Eval epoch: 52
|
324 |
+
[ Thu Sep 15 18:49:52 2022 ] Mean test loss of 258 batches: 2.388519763946533.
|
325 |
+
[ Thu Sep 15 18:49:52 2022 ] Top1: 54.24%
|
326 |
+
[ Thu Sep 15 18:49:52 2022 ] Top5: 84.73%
|
327 |
+
[ Thu Sep 15 18:49:52 2022 ] Training epoch: 53
|
328 |
+
[ Thu Sep 15 18:49:57 2022 ] Batch(3/123) done. Loss: 0.2244 lr:0.100000 network_time: 0.0548
|
329 |
+
[ Thu Sep 15 18:50:34 2022 ] Batch(103/123) done. Loss: 0.3865 lr:0.100000 network_time: 0.0536
|
330 |
+
[ Thu Sep 15 18:50:41 2022 ] Eval epoch: 53
|
331 |
+
[ Thu Sep 15 18:51:03 2022 ] Mean test loss of 258 batches: 2.6002821922302246.
|
332 |
+
[ Thu Sep 15 18:51:03 2022 ] Top1: 51.43%
|
333 |
+
[ Thu Sep 15 18:51:03 2022 ] Top5: 81.96%
|
334 |
+
[ Thu Sep 15 18:51:03 2022 ] Training epoch: 54
|
335 |
+
[ Thu Sep 15 18:51:37 2022 ] Batch(80/123) done. Loss: 0.3344 lr:0.100000 network_time: 0.0506
|
336 |
+
[ Thu Sep 15 18:51:52 2022 ] Eval epoch: 54
|
337 |
+
[ Thu Sep 15 18:52:14 2022 ] Mean test loss of 258 batches: 2.0189566612243652.
|
338 |
+
[ Thu Sep 15 18:52:15 2022 ] Top1: 57.08%
|
339 |
+
[ Thu Sep 15 18:52:15 2022 ] Top5: 87.01%
|
340 |
+
[ Thu Sep 15 18:52:15 2022 ] Training epoch: 55
|
341 |
+
[ Thu Sep 15 18:52:40 2022 ] Batch(57/123) done. Loss: 0.2622 lr:0.100000 network_time: 0.0501
|
342 |
+
[ Thu Sep 15 18:53:04 2022 ] Eval epoch: 55
|
343 |
+
[ Thu Sep 15 18:53:26 2022 ] Mean test loss of 258 batches: 2.4324235916137695.
|
344 |
+
[ Thu Sep 15 18:53:26 2022 ] Top1: 52.70%
|
345 |
+
[ Thu Sep 15 18:53:26 2022 ] Top5: 84.04%
|
346 |
+
[ Thu Sep 15 18:53:26 2022 ] Training epoch: 56
|
347 |
+
[ Thu Sep 15 18:53:43 2022 ] Batch(34/123) done. Loss: 0.1660 lr:0.100000 network_time: 0.0509
|
348 |
+
[ Thu Sep 15 18:54:15 2022 ] Eval epoch: 56
|
349 |
+
[ Thu Sep 15 18:54:38 2022 ] Mean test loss of 258 batches: 2.0325913429260254.
|
350 |
+
[ Thu Sep 15 18:54:38 2022 ] Top1: 55.20%
|
351 |
+
[ Thu Sep 15 18:54:38 2022 ] Top5: 85.80%
|
352 |
+
[ Thu Sep 15 18:54:38 2022 ] Training epoch: 57
|
353 |
+
[ Thu Sep 15 18:54:46 2022 ] Batch(11/123) done. Loss: 0.1341 lr:0.100000 network_time: 0.0484
|
354 |
+
[ Thu Sep 15 18:55:22 2022 ] Batch(111/123) done. Loss: 0.1991 lr:0.100000 network_time: 0.0486
|
355 |
+
[ Thu Sep 15 18:55:27 2022 ] Eval epoch: 57
|
356 |
+
[ Thu Sep 15 18:55:49 2022 ] Mean test loss of 258 batches: 2.4592440128326416.
|
357 |
+
[ Thu Sep 15 18:55:49 2022 ] Top1: 52.16%
|
358 |
+
[ Thu Sep 15 18:55:49 2022 ] Top5: 85.21%
|
359 |
+
[ Thu Sep 15 18:55:49 2022 ] Training epoch: 58
|
360 |
+
[ Thu Sep 15 18:56:26 2022 ] Batch(88/123) done. Loss: 0.2833 lr:0.100000 network_time: 0.0509
|
361 |
+
[ Thu Sep 15 18:56:39 2022 ] Eval epoch: 58
|
362 |
+
[ Thu Sep 15 18:57:01 2022 ] Mean test loss of 258 batches: 2.467912197113037.
|
363 |
+
[ Thu Sep 15 18:57:01 2022 ] Top1: 51.36%
|
364 |
+
[ Thu Sep 15 18:57:01 2022 ] Top5: 83.87%
|
365 |
+
[ Thu Sep 15 18:57:01 2022 ] Training epoch: 59
|
366 |
+
[ Thu Sep 15 18:57:29 2022 ] Batch(65/123) done. Loss: 0.1076 lr:0.100000 network_time: 0.0481
|
367 |
+
[ Thu Sep 15 18:57:50 2022 ] Eval epoch: 59
|
368 |
+
[ Thu Sep 15 18:58:12 2022 ] Mean test loss of 258 batches: 2.4239609241485596.
|
369 |
+
[ Thu Sep 15 18:58:12 2022 ] Top1: 53.31%
|
370 |
+
[ Thu Sep 15 18:58:12 2022 ] Top5: 84.36%
|
371 |
+
[ Thu Sep 15 18:58:12 2022 ] Training epoch: 60
|
372 |
+
[ Thu Sep 15 18:58:31 2022 ] Batch(42/123) done. Loss: 0.1055 lr:0.100000 network_time: 0.0495
|
373 |
+
[ Thu Sep 15 18:59:01 2022 ] Eval epoch: 60
|
374 |
+
[ Thu Sep 15 18:59:23 2022 ] Mean test loss of 258 batches: 3.575775146484375.
|
375 |
+
[ Thu Sep 15 18:59:23 2022 ] Top1: 43.85%
|
376 |
+
[ Thu Sep 15 18:59:23 2022 ] Top5: 77.35%
|
377 |
+
[ Thu Sep 15 18:59:23 2022 ] Training epoch: 61
|
378 |
+
[ Thu Sep 15 18:59:34 2022 ] Batch(19/123) done. Loss: 0.0923 lr:0.010000 network_time: 0.0500
|
379 |
+
[ Thu Sep 15 19:00:11 2022 ] Batch(119/123) done. Loss: 0.2071 lr:0.010000 network_time: 0.0513
|
380 |
+
[ Thu Sep 15 19:00:13 2022 ] Eval epoch: 61
|
381 |
+
[ Thu Sep 15 19:00:35 2022 ] Mean test loss of 258 batches: 1.877470850944519.
|
382 |
+
[ Thu Sep 15 19:00:35 2022 ] Top1: 60.21%
|
383 |
+
[ Thu Sep 15 19:00:35 2022 ] Top5: 88.57%
|
384 |
+
[ Thu Sep 15 19:00:35 2022 ] Training epoch: 62
|
385 |
+
[ Thu Sep 15 19:01:14 2022 ] Batch(96/123) done. Loss: 0.0809 lr:0.010000 network_time: 0.0479
|
386 |
+
[ Thu Sep 15 19:01:24 2022 ] Eval epoch: 62
|
387 |
+
[ Thu Sep 15 19:01:46 2022 ] Mean test loss of 258 batches: 1.7835830450057983.
|
388 |
+
[ Thu Sep 15 19:01:46 2022 ] Top1: 61.78%
|
389 |
+
[ Thu Sep 15 19:01:46 2022 ] Top5: 89.26%
|
390 |
+
[ Thu Sep 15 19:01:46 2022 ] Training epoch: 63
|
391 |
+
[ Thu Sep 15 19:02:17 2022 ] Batch(73/123) done. Loss: 0.0213 lr:0.010000 network_time: 0.0486
|
392 |
+
[ Thu Sep 15 19:02:35 2022 ] Eval epoch: 63
|
393 |
+
[ Thu Sep 15 19:02:57 2022 ] Mean test loss of 258 batches: 1.9798433780670166.
|
394 |
+
[ Thu Sep 15 19:02:57 2022 ] Top1: 60.31%
|
395 |
+
[ Thu Sep 15 19:02:57 2022 ] Top5: 88.11%
|
396 |
+
[ Thu Sep 15 19:02:57 2022 ] Training epoch: 64
|
397 |
+
[ Thu Sep 15 19:03:19 2022 ] Batch(50/123) done. Loss: 0.0367 lr:0.010000 network_time: 0.0499
|
398 |
+
[ Thu Sep 15 19:03:46 2022 ] Eval epoch: 64
|
399 |
+
[ Thu Sep 15 19:04:08 2022 ] Mean test loss of 258 batches: 1.7843399047851562.
|
400 |
+
[ Thu Sep 15 19:04:08 2022 ] Top1: 63.04%
|
401 |
+
[ Thu Sep 15 19:04:08 2022 ] Top5: 89.64%
|
402 |
+
[ Thu Sep 15 19:04:08 2022 ] Training epoch: 65
|
403 |
+
[ Thu Sep 15 19:04:22 2022 ] Batch(27/123) done. Loss: 0.0191 lr:0.010000 network_time: 0.0488
|
404 |
+
[ Thu Sep 15 19:04:57 2022 ] Eval epoch: 65
|
405 |
+
[ Thu Sep 15 19:05:19 2022 ] Mean test loss of 258 batches: 1.744349718093872.
|
406 |
+
[ Thu Sep 15 19:05:19 2022 ] Top1: 63.47%
|
407 |
+
[ Thu Sep 15 19:05:19 2022 ] Top5: 89.96%
|
408 |
+
[ Thu Sep 15 19:05:19 2022 ] Training epoch: 66
|
409 |
+
[ Thu Sep 15 19:05:24 2022 ] Batch(4/123) done. Loss: 0.0174 lr:0.010000 network_time: 0.0475
|
410 |
+
[ Thu Sep 15 19:06:01 2022 ] Batch(104/123) done. Loss: 0.0277 lr:0.010000 network_time: 0.0517
|
411 |
+
[ Thu Sep 15 19:06:08 2022 ] Eval epoch: 66
|
412 |
+
[ Thu Sep 15 19:06:30 2022 ] Mean test loss of 258 batches: 1.8125786781311035.
|
413 |
+
[ Thu Sep 15 19:06:31 2022 ] Top1: 62.75%
|
414 |
+
[ Thu Sep 15 19:06:31 2022 ] Top5: 89.50%
|
415 |
+
[ Thu Sep 15 19:06:31 2022 ] Training epoch: 67
|
416 |
+
[ Thu Sep 15 19:07:05 2022 ] Batch(81/123) done. Loss: 0.0325 lr:0.010000 network_time: 0.0499
|
417 |
+
[ Thu Sep 15 19:07:20 2022 ] Eval epoch: 67
|
418 |
+
[ Thu Sep 15 19:07:42 2022 ] Mean test loss of 258 batches: 1.9440727233886719.
|
419 |
+
[ Thu Sep 15 19:07:42 2022 ] Top1: 60.93%
|
420 |
+
[ Thu Sep 15 19:07:42 2022 ] Top5: 88.65%
|
421 |
+
[ Thu Sep 15 19:07:43 2022 ] Training epoch: 68
|
422 |
+
[ Thu Sep 15 19:08:08 2022 ] Batch(58/123) done. Loss: 0.0422 lr:0.010000 network_time: 0.0535
|
423 |
+
[ Thu Sep 15 19:08:32 2022 ] Eval epoch: 68
|
424 |
+
[ Thu Sep 15 19:08:55 2022 ] Mean test loss of 258 batches: 1.741814136505127.
|
425 |
+
[ Thu Sep 15 19:08:55 2022 ] Top1: 63.69%
|
426 |
+
[ Thu Sep 15 19:08:55 2022 ] Top5: 89.97%
|
427 |
+
[ Thu Sep 15 19:08:55 2022 ] Training epoch: 69
|
428 |
+
[ Thu Sep 15 19:09:12 2022 ] Batch(35/123) done. Loss: 0.0118 lr:0.010000 network_time: 0.0488
|
429 |
+
[ Thu Sep 15 19:09:44 2022 ] Eval epoch: 69
|
430 |
+
[ Thu Sep 15 19:10:06 2022 ] Mean test loss of 258 batches: 1.7398862838745117.
|
431 |
+
[ Thu Sep 15 19:10:06 2022 ] Top1: 63.49%
|
432 |
+
[ Thu Sep 15 19:10:06 2022 ] Top5: 90.01%
|
433 |
+
[ Thu Sep 15 19:10:06 2022 ] Training epoch: 70
|
434 |
+
[ Thu Sep 15 19:10:15 2022 ] Batch(12/123) done. Loss: 0.0105 lr:0.010000 network_time: 0.0503
|
435 |
+
[ Thu Sep 15 19:10:52 2022 ] Batch(112/123) done. Loss: 0.0089 lr:0.010000 network_time: 0.0495
|
436 |
+
[ Thu Sep 15 19:10:56 2022 ] Eval epoch: 70
|
437 |
+
[ Thu Sep 15 19:11:18 2022 ] Mean test loss of 258 batches: 1.9365839958190918.
|
438 |
+
[ Thu Sep 15 19:11:18 2022 ] Top1: 60.96%
|
439 |
+
[ Thu Sep 15 19:11:18 2022 ] Top5: 88.48%
|
440 |
+
[ Thu Sep 15 19:11:18 2022 ] Training epoch: 71
|
441 |
+
[ Thu Sep 15 19:11:55 2022 ] Batch(89/123) done. Loss: 0.0112 lr:0.010000 network_time: 0.0486
|
442 |
+
[ Thu Sep 15 19:12:07 2022 ] Eval epoch: 71
|
443 |
+
[ Thu Sep 15 19:12:29 2022 ] Mean test loss of 258 batches: 1.9486991167068481.
|
444 |
+
[ Thu Sep 15 19:12:29 2022 ] Top1: 61.18%
|
445 |
+
[ Thu Sep 15 19:12:29 2022 ] Top5: 88.75%
|
446 |
+
[ Thu Sep 15 19:12:30 2022 ] Training epoch: 72
|
447 |
+
[ Thu Sep 15 19:12:57 2022 ] Batch(66/123) done. Loss: 0.0345 lr:0.010000 network_time: 0.0501
|
448 |
+
[ Thu Sep 15 19:13:18 2022 ] Eval epoch: 72
|
449 |
+
[ Thu Sep 15 19:13:40 2022 ] Mean test loss of 258 batches: 1.7845265865325928.
|
450 |
+
[ Thu Sep 15 19:13:41 2022 ] Top1: 63.67%
|
451 |
+
[ Thu Sep 15 19:13:41 2022 ] Top5: 89.93%
|
452 |
+
[ Thu Sep 15 19:13:41 2022 ] Training epoch: 73
|
453 |
+
[ Thu Sep 15 19:14:01 2022 ] Batch(43/123) done. Loss: 0.0063 lr:0.010000 network_time: 0.0545
|
454 |
+
[ Thu Sep 15 19:14:30 2022 ] Eval epoch: 73
|
455 |
+
[ Thu Sep 15 19:14:52 2022 ] Mean test loss of 258 batches: 1.789925217628479.
|
456 |
+
[ Thu Sep 15 19:14:52 2022 ] Top1: 63.49%
|
457 |
+
[ Thu Sep 15 19:14:52 2022 ] Top5: 89.93%
|
458 |
+
[ Thu Sep 15 19:14:52 2022 ] Training epoch: 74
|
459 |
+
[ Thu Sep 15 19:15:04 2022 ] Batch(20/123) done. Loss: 0.0044 lr:0.010000 network_time: 0.0546
|
460 |
+
[ Thu Sep 15 19:15:41 2022 ] Batch(120/123) done. Loss: 0.0185 lr:0.010000 network_time: 0.0510
|
461 |
+
[ Thu Sep 15 19:15:42 2022 ] Eval epoch: 74
|
462 |
+
[ Thu Sep 15 19:16:04 2022 ] Mean test loss of 258 batches: 2.539682388305664.
|
463 |
+
[ Thu Sep 15 19:16:04 2022 ] Top1: 55.62%
|
464 |
+
[ Thu Sep 15 19:16:04 2022 ] Top5: 83.94%
|
465 |
+
[ Thu Sep 15 19:16:04 2022 ] Training epoch: 75
|
466 |
+
[ Thu Sep 15 19:16:44 2022 ] Batch(97/123) done. Loss: 0.0110 lr:0.010000 network_time: 0.0490
|
467 |
+
[ Thu Sep 15 19:16:53 2022 ] Eval epoch: 75
|
468 |
+
[ Thu Sep 15 19:17:16 2022 ] Mean test loss of 258 batches: 1.8047730922698975.
|
469 |
+
[ Thu Sep 15 19:17:16 2022 ] Top1: 63.53%
|
470 |
+
[ Thu Sep 15 19:17:16 2022 ] Top5: 90.11%
|
471 |
+
[ Thu Sep 15 19:17:16 2022 ] Training epoch: 76
|
472 |
+
[ Thu Sep 15 19:17:47 2022 ] Batch(74/123) done. Loss: 0.0177 lr:0.010000 network_time: 0.0472
|
473 |
+
[ Thu Sep 15 19:18:05 2022 ] Eval epoch: 76
|
474 |
+
[ Thu Sep 15 19:18:27 2022 ] Mean test loss of 258 batches: 1.815438985824585.
|
475 |
+
[ Thu Sep 15 19:18:27 2022 ] Top1: 63.13%
|
476 |
+
[ Thu Sep 15 19:18:27 2022 ] Top5: 89.87%
|
477 |
+
[ Thu Sep 15 19:18:27 2022 ] Training epoch: 77
|
478 |
+
[ Thu Sep 15 19:18:50 2022 ] Batch(51/123) done. Loss: 0.0060 lr:0.010000 network_time: 0.0566
|
479 |
+
[ Thu Sep 15 19:19:16 2022 ] Eval epoch: 77
|
480 |
+
[ Thu Sep 15 19:19:38 2022 ] Mean test loss of 258 batches: 1.7667587995529175.
|
481 |
+
[ Thu Sep 15 19:19:38 2022 ] Top1: 63.53%
|
482 |
+
[ Thu Sep 15 19:19:38 2022 ] Top5: 90.14%
|
483 |
+
[ Thu Sep 15 19:19:38 2022 ] Training epoch: 78
|
484 |
+
[ Thu Sep 15 19:19:53 2022 ] Batch(28/123) done. Loss: 0.0132 lr:0.010000 network_time: 0.0503
|
485 |
+
[ Thu Sep 15 19:20:28 2022 ] Eval epoch: 78
|
486 |
+
[ Thu Sep 15 19:20:50 2022 ] Mean test loss of 258 batches: 1.8042775392532349.
|
487 |
+
[ Thu Sep 15 19:20:50 2022 ] Top1: 63.43%
|
488 |
+
[ Thu Sep 15 19:20:50 2022 ] Top5: 90.12%
|
489 |
+
[ Thu Sep 15 19:20:50 2022 ] Training epoch: 79
|
490 |
+
[ Thu Sep 15 19:20:56 2022 ] Batch(5/123) done. Loss: 0.0055 lr:0.010000 network_time: 0.0501
|
491 |
+
[ Thu Sep 15 19:21:33 2022 ] Batch(105/123) done. Loss: 0.0050 lr:0.010000 network_time: 0.0499
|
492 |
+
[ Thu Sep 15 19:21:39 2022 ] Eval epoch: 79
|
493 |
+
[ Thu Sep 15 19:22:02 2022 ] Mean test loss of 258 batches: 1.7913448810577393.
|
494 |
+
[ Thu Sep 15 19:22:02 2022 ] Top1: 63.30%
|
495 |
+
[ Thu Sep 15 19:22:02 2022 ] Top5: 89.98%
|
496 |
+
[ Thu Sep 15 19:22:02 2022 ] Training epoch: 80
|
497 |
+
[ Thu Sep 15 19:22:36 2022 ] Batch(82/123) done. Loss: 0.0145 lr:0.010000 network_time: 0.0501
|
498 |
+
[ Thu Sep 15 19:22:51 2022 ] Eval epoch: 80
|
499 |
+
[ Thu Sep 15 19:23:13 2022 ] Mean test loss of 258 batches: 1.7956622838974.
|
500 |
+
[ Thu Sep 15 19:23:13 2022 ] Top1: 63.67%
|
501 |
+
[ Thu Sep 15 19:23:13 2022 ] Top5: 90.21%
|
502 |
+
[ Thu Sep 15 19:23:13 2022 ] Training epoch: 81
|
503 |
+
[ Thu Sep 15 19:23:39 2022 ] Batch(59/123) done. Loss: 0.0074 lr:0.001000 network_time: 0.0484
|
504 |
+
[ Thu Sep 15 19:24:03 2022 ] Eval epoch: 81
|
505 |
+
[ Thu Sep 15 19:24:24 2022 ] Mean test loss of 258 batches: 1.8657962083816528.
|
506 |
+
[ Thu Sep 15 19:24:24 2022 ] Top1: 62.61%
|
507 |
+
[ Thu Sep 15 19:24:24 2022 ] Top5: 89.59%
|
508 |
+
[ Thu Sep 15 19:24:24 2022 ] Training epoch: 82
|
509 |
+
[ Thu Sep 15 19:24:42 2022 ] Batch(36/123) done. Loss: 0.0165 lr:0.001000 network_time: 0.0491
|
510 |
+
[ Thu Sep 15 19:25:14 2022 ] Eval epoch: 82
|
511 |
+
[ Thu Sep 15 19:25:36 2022 ] Mean test loss of 258 batches: 1.816205620765686.
|
512 |
+
[ Thu Sep 15 19:25:36 2022 ] Top1: 63.49%
|
513 |
+
[ Thu Sep 15 19:25:36 2022 ] Top5: 89.88%
|
514 |
+
[ Thu Sep 15 19:25:36 2022 ] Training epoch: 83
|
515 |
+
[ Thu Sep 15 19:25:45 2022 ] Batch(13/123) done. Loss: 0.0259 lr:0.001000 network_time: 0.0535
|
516 |
+
[ Thu Sep 15 19:26:21 2022 ] Batch(113/123) done. Loss: 0.0102 lr:0.001000 network_time: 0.0512
|
517 |
+
[ Thu Sep 15 19:26:25 2022 ] Eval epoch: 83
|
518 |
+
[ Thu Sep 15 19:26:47 2022 ] Mean test loss of 258 batches: 1.8096046447753906.
|
519 |
+
[ Thu Sep 15 19:26:47 2022 ] Top1: 63.41%
|
520 |
+
[ Thu Sep 15 19:26:47 2022 ] Top5: 90.00%
|
521 |
+
[ Thu Sep 15 19:26:47 2022 ] Training epoch: 84
|
522 |
+
[ Thu Sep 15 19:27:24 2022 ] Batch(90/123) done. Loss: 0.0099 lr:0.001000 network_time: 0.0497
|
523 |
+
[ Thu Sep 15 19:27:36 2022 ] Eval epoch: 84
|
524 |
+
[ Thu Sep 15 19:27:58 2022 ] Mean test loss of 258 batches: 1.8829015493392944.
|
525 |
+
[ Thu Sep 15 19:27:58 2022 ] Top1: 62.32%
|
526 |
+
[ Thu Sep 15 19:27:58 2022 ] Top5: 89.57%
|
527 |
+
[ Thu Sep 15 19:27:59 2022 ] Training epoch: 85
|
528 |
+
[ Thu Sep 15 19:28:27 2022 ] Batch(67/123) done. Loss: 0.0425 lr:0.001000 network_time: 0.0476
|
529 |
+
[ Thu Sep 15 19:28:48 2022 ] Eval epoch: 85
|
530 |
+
[ Thu Sep 15 19:29:09 2022 ] Mean test loss of 258 batches: 1.8470373153686523.
|
531 |
+
[ Thu Sep 15 19:29:10 2022 ] Top1: 63.13%
|
532 |
+
[ Thu Sep 15 19:29:10 2022 ] Top5: 89.90%
|
533 |
+
[ Thu Sep 15 19:29:10 2022 ] Training epoch: 86
|
534 |
+
[ Thu Sep 15 19:29:30 2022 ] Batch(44/123) done. Loss: 0.0200 lr:0.001000 network_time: 0.0479
|
535 |
+
[ Thu Sep 15 19:29:59 2022 ] Eval epoch: 86
|
536 |
+
[ Thu Sep 15 19:30:21 2022 ] Mean test loss of 258 batches: 1.75849187374115.
|
537 |
+
[ Thu Sep 15 19:30:21 2022 ] Top1: 64.07%
|
538 |
+
[ Thu Sep 15 19:30:21 2022 ] Top5: 90.30%
|
539 |
+
[ Thu Sep 15 19:30:21 2022 ] Training epoch: 87
|
540 |
+
[ Thu Sep 15 19:30:33 2022 ] Batch(21/123) done. Loss: 0.0124 lr:0.001000 network_time: 0.0509
|
541 |
+
[ Thu Sep 15 19:31:10 2022 ] Batch(121/123) done. Loss: 0.0037 lr:0.001000 network_time: 0.0508
|
542 |
+
[ Thu Sep 15 19:31:10 2022 ] Eval epoch: 87
|
543 |
+
[ Thu Sep 15 19:31:32 2022 ] Mean test loss of 258 batches: 1.8853404521942139.
|
544 |
+
[ Thu Sep 15 19:31:32 2022 ] Top1: 62.67%
|
545 |
+
[ Thu Sep 15 19:31:32 2022 ] Top5: 89.62%
|
546 |
+
[ Thu Sep 15 19:31:33 2022 ] Training epoch: 88
|
547 |
+
[ Thu Sep 15 19:32:13 2022 ] Batch(98/123) done. Loss: 0.0058 lr:0.001000 network_time: 0.0507
|
548 |
+
[ Thu Sep 15 19:32:22 2022 ] Eval epoch: 88
|
549 |
+
[ Thu Sep 15 19:32:44 2022 ] Mean test loss of 258 batches: 1.8328523635864258.
|
550 |
+
[ Thu Sep 15 19:32:44 2022 ] Top1: 63.30%
|
551 |
+
[ Thu Sep 15 19:32:44 2022 ] Top5: 89.90%
|
552 |
+
[ Thu Sep 15 19:32:44 2022 ] Training epoch: 89
|
553 |
+
[ Thu Sep 15 19:33:16 2022 ] Batch(75/123) done. Loss: 0.0281 lr:0.001000 network_time: 0.0507
|
554 |
+
[ Thu Sep 15 19:33:33 2022 ] Eval epoch: 89
|
555 |
+
[ Thu Sep 15 19:33:55 2022 ] Mean test loss of 258 batches: 1.786879539489746.
|
556 |
+
[ Thu Sep 15 19:33:55 2022 ] Top1: 63.64%
|
557 |
+
[ Thu Sep 15 19:33:55 2022 ] Top5: 90.19%
|
558 |
+
[ Thu Sep 15 19:33:55 2022 ] Training epoch: 90
|
559 |
+
[ Thu Sep 15 19:34:18 2022 ] Batch(52/123) done. Loss: 0.0072 lr:0.001000 network_time: 0.0499
|
560 |
+
[ Thu Sep 15 19:34:44 2022 ] Eval epoch: 90
|
561 |
+
[ Thu Sep 15 19:35:06 2022 ] Mean test loss of 258 batches: 1.8092989921569824.
|
562 |
+
[ Thu Sep 15 19:35:06 2022 ] Top1: 63.61%
|
563 |
+
[ Thu Sep 15 19:35:06 2022 ] Top5: 89.99%
|
564 |
+
[ Thu Sep 15 19:35:07 2022 ] Training epoch: 91
|
565 |
+
[ Thu Sep 15 19:35:21 2022 ] Batch(29/123) done. Loss: 0.0100 lr:0.001000 network_time: 0.0501
|
566 |
+
[ Thu Sep 15 19:35:56 2022 ] Eval epoch: 91
|
567 |
+
[ Thu Sep 15 19:36:18 2022 ] Mean test loss of 258 batches: 1.7964448928833008.
|
568 |
+
[ Thu Sep 15 19:36:18 2022 ] Top1: 63.43%
|
569 |
+
[ Thu Sep 15 19:36:18 2022 ] Top5: 90.09%
|
570 |
+
[ Thu Sep 15 19:36:18 2022 ] Training epoch: 92
|
571 |
+
[ Thu Sep 15 19:36:24 2022 ] Batch(6/123) done. Loss: 0.0078 lr:0.001000 network_time: 0.0484
|
572 |
+
[ Thu Sep 15 19:37:01 2022 ] Batch(106/123) done. Loss: 0.0191 lr:0.001000 network_time: 0.0503
|
573 |
+
[ Thu Sep 15 19:37:07 2022 ] Eval epoch: 92
|
574 |
+
[ Thu Sep 15 19:37:29 2022 ] Mean test loss of 258 batches: 1.8964364528656006.
|
575 |
+
[ Thu Sep 15 19:37:29 2022 ] Top1: 62.33%
|
576 |
+
[ Thu Sep 15 19:37:29 2022 ] Top5: 89.44%
|
577 |
+
[ Thu Sep 15 19:37:29 2022 ] Training epoch: 93
|
578 |
+
[ Thu Sep 15 19:38:04 2022 ] Batch(83/123) done. Loss: 0.0090 lr:0.001000 network_time: 0.0504
|
579 |
+
[ Thu Sep 15 19:38:18 2022 ] Eval epoch: 93
|
580 |
+
[ Thu Sep 15 19:38:40 2022 ] Mean test loss of 258 batches: 1.8207327127456665.
|
581 |
+
[ Thu Sep 15 19:38:40 2022 ] Top1: 63.50%
|
582 |
+
[ Thu Sep 15 19:38:40 2022 ] Top5: 90.06%
|
583 |
+
[ Thu Sep 15 19:38:40 2022 ] Training epoch: 94
|
584 |
+
[ Thu Sep 15 19:39:07 2022 ] Batch(60/123) done. Loss: 0.0136 lr:0.001000 network_time: 0.0513
|
585 |
+
[ Thu Sep 15 19:39:30 2022 ] Eval epoch: 94
|
586 |
+
[ Thu Sep 15 19:39:51 2022 ] Mean test loss of 258 batches: 1.8205301761627197.
|
587 |
+
[ Thu Sep 15 19:39:52 2022 ] Top1: 63.17%
|
588 |
+
[ Thu Sep 15 19:39:52 2022 ] Top5: 89.72%
|
589 |
+
[ Thu Sep 15 19:39:52 2022 ] Training epoch: 95
|
590 |
+
[ Thu Sep 15 19:40:09 2022 ] Batch(37/123) done. Loss: 0.0293 lr:0.001000 network_time: 0.0525
|
591 |
+
[ Thu Sep 15 19:40:41 2022 ] Eval epoch: 95
|
592 |
+
[ Thu Sep 15 19:41:03 2022 ] Mean test loss of 258 batches: 1.797655701637268.
|
593 |
+
[ Thu Sep 15 19:41:03 2022 ] Top1: 63.70%
|
594 |
+
[ Thu Sep 15 19:41:03 2022 ] Top5: 89.80%
|
595 |
+
[ Thu Sep 15 19:41:03 2022 ] Training epoch: 96
|
596 |
+
[ Thu Sep 15 19:41:12 2022 ] Batch(14/123) done. Loss: 0.0108 lr:0.001000 network_time: 0.0514
|
597 |
+
[ Thu Sep 15 19:41:49 2022 ] Batch(114/123) done. Loss: 0.0097 lr:0.001000 network_time: 0.0488
|
598 |
+
[ Thu Sep 15 19:41:52 2022 ] Eval epoch: 96
|
599 |
+
[ Thu Sep 15 19:42:14 2022 ] Mean test loss of 258 batches: 1.812503695487976.
|
600 |
+
[ Thu Sep 15 19:42:14 2022 ] Top1: 63.56%
|
601 |
+
[ Thu Sep 15 19:42:14 2022 ] Top5: 90.00%
|
602 |
+
[ Thu Sep 15 19:42:14 2022 ] Training epoch: 97
|
603 |
+
[ Thu Sep 15 19:42:52 2022 ] Batch(91/123) done. Loss: 0.0153 lr:0.001000 network_time: 0.0531
|
604 |
+
[ Thu Sep 15 19:43:03 2022 ] Eval epoch: 97
|
605 |
+
[ Thu Sep 15 19:43:25 2022 ] Mean test loss of 258 batches: 2.090479850769043.
|
606 |
+
[ Thu Sep 15 19:43:25 2022 ] Top1: 59.76%
|
607 |
+
[ Thu Sep 15 19:43:25 2022 ] Top5: 87.82%
|
608 |
+
[ Thu Sep 15 19:43:26 2022 ] Training epoch: 98
|
609 |
+
[ Thu Sep 15 19:43:54 2022 ] Batch(68/123) done. Loss: 0.0160 lr:0.001000 network_time: 0.0525
|
610 |
+
[ Thu Sep 15 19:44:15 2022 ] Eval epoch: 98
|
611 |
+
[ Thu Sep 15 19:44:36 2022 ] Mean test loss of 258 batches: 1.7830455303192139.
|
612 |
+
[ Thu Sep 15 19:44:36 2022 ] Top1: 63.97%
|
613 |
+
[ Thu Sep 15 19:44:37 2022 ] Top5: 90.38%
|
614 |
+
[ Thu Sep 15 19:44:37 2022 ] Training epoch: 99
|
615 |
+
[ Thu Sep 15 19:44:57 2022 ] Batch(45/123) done. Loss: 0.0050 lr:0.001000 network_time: 0.0537
|
616 |
+
[ Thu Sep 15 19:45:25 2022 ] Eval epoch: 99
|
617 |
+
[ Thu Sep 15 19:45:47 2022 ] Mean test loss of 258 batches: 1.8485912084579468.
|
618 |
+
[ Thu Sep 15 19:45:47 2022 ] Top1: 63.38%
|
619 |
+
[ Thu Sep 15 19:45:47 2022 ] Top5: 89.60%
|
620 |
+
[ Thu Sep 15 19:45:47 2022 ] Training epoch: 100
|
621 |
+
[ Thu Sep 15 19:46:00 2022 ] Batch(22/123) done. Loss: 0.0056 lr:0.001000 network_time: 0.0519
|
622 |
+
[ Thu Sep 15 19:46:36 2022 ] Batch(122/123) done. Loss: 0.0069 lr:0.001000 network_time: 0.0516
|
623 |
+
[ Thu Sep 15 19:46:37 2022 ] Eval epoch: 100
|
624 |
+
[ Thu Sep 15 19:46:59 2022 ] Mean test loss of 258 batches: 1.8104979991912842.
|
625 |
+
[ Thu Sep 15 19:46:59 2022 ] Top1: 63.95%
|
626 |
+
[ Thu Sep 15 19:46:59 2022 ] Top5: 90.19%
|
627 |
+
[ Thu Sep 15 19:46:59 2022 ] Training epoch: 101
|
628 |
+
[ Thu Sep 15 19:47:39 2022 ] Batch(99/123) done. Loss: 0.0266 lr:0.000100 network_time: 0.0471
|
629 |
+
[ Thu Sep 15 19:47:48 2022 ] Eval epoch: 101
|
630 |
+
[ Thu Sep 15 19:48:10 2022 ] Mean test loss of 258 batches: 2.072659730911255.
|
631 |
+
[ Thu Sep 15 19:48:10 2022 ] Top1: 60.56%
|
632 |
+
[ Thu Sep 15 19:48:10 2022 ] Top5: 88.27%
|
633 |
+
[ Thu Sep 15 19:48:10 2022 ] Training epoch: 102
|
634 |
+
[ Thu Sep 15 19:48:42 2022 ] Batch(76/123) done. Loss: 0.0156 lr:0.000100 network_time: 0.0511
|
635 |
+
[ Thu Sep 15 19:48:59 2022 ] Eval epoch: 102
|
636 |
+
[ Thu Sep 15 19:49:21 2022 ] Mean test loss of 258 batches: 1.7830250263214111.
|
637 |
+
[ Thu Sep 15 19:49:21 2022 ] Top1: 63.90%
|
638 |
+
[ Thu Sep 15 19:49:21 2022 ] Top5: 90.25%
|
639 |
+
[ Thu Sep 15 19:49:21 2022 ] Training epoch: 103
|
640 |
+
[ Thu Sep 15 19:49:45 2022 ] Batch(53/123) done. Loss: 0.0099 lr:0.000100 network_time: 0.0513
|
641 |
+
[ Thu Sep 15 19:50:11 2022 ] Eval epoch: 103
|
642 |
+
[ Thu Sep 15 19:50:33 2022 ] Mean test loss of 258 batches: 1.8229682445526123.
|
643 |
+
[ Thu Sep 15 19:50:33 2022 ] Top1: 63.18%
|
644 |
+
[ Thu Sep 15 19:50:33 2022 ] Top5: 89.80%
|
645 |
+
[ Thu Sep 15 19:50:33 2022 ] Training epoch: 104
|
646 |
+
[ Thu Sep 15 19:50:48 2022 ] Batch(30/123) done. Loss: 0.0051 lr:0.000100 network_time: 0.0522
|
647 |
+
[ Thu Sep 15 19:51:22 2022 ] Eval epoch: 104
|
648 |
+
[ Thu Sep 15 19:51:43 2022 ] Mean test loss of 258 batches: 1.7732776403427124.
|
649 |
+
[ Thu Sep 15 19:51:43 2022 ] Top1: 63.84%
|
650 |
+
[ Thu Sep 15 19:51:43 2022 ] Top5: 90.27%
|
651 |
+
[ Thu Sep 15 19:51:44 2022 ] Training epoch: 105
|
652 |
+
[ Thu Sep 15 19:51:50 2022 ] Batch(7/123) done. Loss: 0.0063 lr:0.000100 network_time: 0.0545
|
653 |
+
[ Thu Sep 15 19:52:27 2022 ] Batch(107/123) done. Loss: 0.0102 lr:0.000100 network_time: 0.0489
|
654 |
+
[ Thu Sep 15 19:52:33 2022 ] Eval epoch: 105
|
655 |
+
[ Thu Sep 15 19:52:55 2022 ] Mean test loss of 258 batches: 1.8950495719909668.
|
656 |
+
[ Thu Sep 15 19:52:55 2022 ] Top1: 63.23%
|
657 |
+
[ Thu Sep 15 19:52:55 2022 ] Top5: 89.54%
|
658 |
+
[ Thu Sep 15 19:52:55 2022 ] Training epoch: 106
|
659 |
+
[ Thu Sep 15 19:53:30 2022 ] Batch(84/123) done. Loss: 0.0049 lr:0.000100 network_time: 0.0528
|
660 |
+
[ Thu Sep 15 19:53:44 2022 ] Eval epoch: 106
|
661 |
+
[ Thu Sep 15 19:54:06 2022 ] Mean test loss of 258 batches: 1.841883659362793.
|
662 |
+
[ Thu Sep 15 19:54:06 2022 ] Top1: 62.84%
|
663 |
+
[ Thu Sep 15 19:54:06 2022 ] Top5: 89.73%
|
664 |
+
[ Thu Sep 15 19:54:06 2022 ] Training epoch: 107
|
665 |
+
[ Thu Sep 15 19:54:33 2022 ] Batch(61/123) done. Loss: 0.0210 lr:0.000100 network_time: 0.0536
|
666 |
+
[ Thu Sep 15 19:54:55 2022 ] Eval epoch: 107
|
667 |
+
[ Thu Sep 15 19:55:17 2022 ] Mean test loss of 258 batches: 1.8099277019500732.
|
668 |
+
[ Thu Sep 15 19:55:17 2022 ] Top1: 63.50%
|
669 |
+
[ Thu Sep 15 19:55:18 2022 ] Top5: 90.20%
|
670 |
+
[ Thu Sep 15 19:55:18 2022 ] Training epoch: 108
|
671 |
+
[ Thu Sep 15 19:55:36 2022 ] Batch(38/123) done. Loss: 0.0105 lr:0.000100 network_time: 0.0517
|
672 |
+
[ Thu Sep 15 19:56:07 2022 ] Eval epoch: 108
|
673 |
+
[ Thu Sep 15 19:56:29 2022 ] Mean test loss of 258 batches: 1.7447724342346191.
|
674 |
+
[ Thu Sep 15 19:56:29 2022 ] Top1: 64.22%
|
675 |
+
[ Thu Sep 15 19:56:29 2022 ] Top5: 90.49%
|
676 |
+
[ Thu Sep 15 19:56:29 2022 ] Training epoch: 109
|
677 |
+
[ Thu Sep 15 19:56:39 2022 ] Batch(15/123) done. Loss: 0.0234 lr:0.000100 network_time: 0.0460
|
678 |
+
[ Thu Sep 15 19:57:15 2022 ] Batch(115/123) done. Loss: 0.0054 lr:0.000100 network_time: 0.0537
|
679 |
+
[ Thu Sep 15 19:57:18 2022 ] Eval epoch: 109
|
680 |
+
[ Thu Sep 15 19:57:40 2022 ] Mean test loss of 258 batches: 1.908057451248169.
|
681 |
+
[ Thu Sep 15 19:57:40 2022 ] Top1: 62.76%
|
682 |
+
[ Thu Sep 15 19:57:40 2022 ] Top5: 89.36%
|
683 |
+
[ Thu Sep 15 19:57:40 2022 ] Training epoch: 110
|
684 |
+
[ Thu Sep 15 19:58:18 2022 ] Batch(92/123) done. Loss: 0.0211 lr:0.000100 network_time: 0.0511
|
685 |
+
[ Thu Sep 15 19:58:29 2022 ] Eval epoch: 110
|
686 |
+
[ Thu Sep 15 19:58:51 2022 ] Mean test loss of 258 batches: 1.8803648948669434.
|
687 |
+
[ Thu Sep 15 19:58:51 2022 ] Top1: 62.55%
|
688 |
+
[ Thu Sep 15 19:58:51 2022 ] Top5: 89.43%
|
689 |
+
[ Thu Sep 15 19:58:51 2022 ] Training epoch: 111
|
690 |
+
[ Thu Sep 15 19:59:21 2022 ] Batch(69/123) done. Loss: 0.0044 lr:0.000100 network_time: 0.0523
|
691 |
+
[ Thu Sep 15 19:59:41 2022 ] Eval epoch: 111
|
692 |
+
[ Thu Sep 15 20:00:02 2022 ] Mean test loss of 258 batches: 1.7714176177978516.
|
693 |
+
[ Thu Sep 15 20:00:02 2022 ] Top1: 64.00%
|
694 |
+
[ Thu Sep 15 20:00:02 2022 ] Top5: 90.25%
|
695 |
+
[ Thu Sep 15 20:00:03 2022 ] Training epoch: 112
|
696 |
+
[ Thu Sep 15 20:00:23 2022 ] Batch(46/123) done. Loss: 0.0086 lr:0.000100 network_time: 0.0493
|
697 |
+
[ Thu Sep 15 20:00:52 2022 ] Eval epoch: 112
|
698 |
+
[ Thu Sep 15 20:01:13 2022 ] Mean test loss of 258 batches: 1.7842161655426025.
|
699 |
+
[ Thu Sep 15 20:01:14 2022 ] Top1: 63.52%
|
700 |
+
[ Thu Sep 15 20:01:14 2022 ] Top5: 90.15%
|
701 |
+
[ Thu Sep 15 20:01:14 2022 ] Training epoch: 113
|
702 |
+
[ Thu Sep 15 20:01:26 2022 ] Batch(23/123) done. Loss: 0.0056 lr:0.000100 network_time: 0.0471
|
703 |
+
[ Thu Sep 15 20:02:03 2022 ] Eval epoch: 113
|
704 |
+
[ Thu Sep 15 20:02:25 2022 ] Mean test loss of 258 batches: 1.7943865060806274.
|
705 |
+
[ Thu Sep 15 20:02:25 2022 ] Top1: 63.93%
|
706 |
+
[ Thu Sep 15 20:02:25 2022 ] Top5: 90.07%
|
707 |
+
[ Thu Sep 15 20:02:25 2022 ] Training epoch: 114
|
708 |
+
[ Thu Sep 15 20:02:29 2022 ] Batch(0/123) done. Loss: 0.0093 lr:0.000100 network_time: 0.0932
|
709 |
+
[ Thu Sep 15 20:03:06 2022 ] Batch(100/123) done. Loss: 0.0032 lr:0.000100 network_time: 0.0536
|
710 |
+
[ Thu Sep 15 20:03:14 2022 ] Eval epoch: 114
|
711 |
+
[ Thu Sep 15 20:03:36 2022 ] Mean test loss of 258 batches: 1.8065061569213867.
|
712 |
+
[ Thu Sep 15 20:03:36 2022 ] Top1: 63.38%
|
713 |
+
[ Thu Sep 15 20:03:36 2022 ] Top5: 89.91%
|
714 |
+
[ Thu Sep 15 20:03:36 2022 ] Training epoch: 115
|
715 |
+
[ Thu Sep 15 20:04:08 2022 ] Batch(77/123) done. Loss: 0.0055 lr:0.000100 network_time: 0.0531
|
716 |
+
[ Thu Sep 15 20:04:25 2022 ] Eval epoch: 115
|
717 |
+
[ Thu Sep 15 20:04:47 2022 ] Mean test loss of 258 batches: 1.8034496307373047.
|
718 |
+
[ Thu Sep 15 20:04:47 2022 ] Top1: 63.55%
|
719 |
+
[ Thu Sep 15 20:04:47 2022 ] Top5: 90.01%
|
720 |
+
[ Thu Sep 15 20:04:47 2022 ] Training epoch: 116
|
721 |
+
[ Thu Sep 15 20:05:11 2022 ] Batch(54/123) done. Loss: 0.0097 lr:0.000100 network_time: 0.0483
|
722 |
+
[ Thu Sep 15 20:05:36 2022 ] Eval epoch: 116
|
723 |
+
[ Thu Sep 15 20:05:58 2022 ] Mean test loss of 258 batches: 1.792580008506775.
|
724 |
+
[ Thu Sep 15 20:05:59 2022 ] Top1: 63.86%
|
725 |
+
[ Thu Sep 15 20:05:59 2022 ] Top5: 90.25%
|
726 |
+
[ Thu Sep 15 20:05:59 2022 ] Training epoch: 117
|
727 |
+
[ Thu Sep 15 20:06:14 2022 ] Batch(31/123) done. Loss: 0.0100 lr:0.000100 network_time: 0.0495
|
728 |
+
[ Thu Sep 15 20:06:48 2022 ] Eval epoch: 117
|
729 |
+
[ Thu Sep 15 20:07:11 2022 ] Mean test loss of 258 batches: 1.8426971435546875.
|
730 |
+
[ Thu Sep 15 20:07:11 2022 ] Top1: 63.03%
|
731 |
+
[ Thu Sep 15 20:07:11 2022 ] Top5: 89.89%
|
732 |
+
[ Thu Sep 15 20:07:11 2022 ] Training epoch: 118
|
733 |
+
[ Thu Sep 15 20:07:18 2022 ] Batch(8/123) done. Loss: 0.0055 lr:0.000100 network_time: 0.0495
|
734 |
+
[ Thu Sep 15 20:07:55 2022 ] Batch(108/123) done. Loss: 0.0075 lr:0.000100 network_time: 0.0490
|
735 |
+
[ Thu Sep 15 20:08:00 2022 ] Eval epoch: 118
|
736 |
+
[ Thu Sep 15 20:08:22 2022 ] Mean test loss of 258 batches: 1.9181476831436157.
|
737 |
+
[ Thu Sep 15 20:08:23 2022 ] Top1: 61.90%
|
738 |
+
[ Thu Sep 15 20:08:23 2022 ] Top5: 89.36%
|
739 |
+
[ Thu Sep 15 20:08:23 2022 ] Training epoch: 119
|
740 |
+
[ Thu Sep 15 20:08:58 2022 ] Batch(85/123) done. Loss: 0.0073 lr:0.000100 network_time: 0.0516
|
741 |
+
[ Thu Sep 15 20:09:12 2022 ] Eval epoch: 119
|
742 |
+
[ Thu Sep 15 20:09:34 2022 ] Mean test loss of 258 batches: 1.851119875907898.
|
743 |
+
[ Thu Sep 15 20:09:34 2022 ] Top1: 63.08%
|
744 |
+
[ Thu Sep 15 20:09:34 2022 ] Top5: 89.56%
|
745 |
+
[ Thu Sep 15 20:09:34 2022 ] Training epoch: 120
|
746 |
+
[ Thu Sep 15 20:10:01 2022 ] Batch(62/123) done. Loss: 0.0060 lr:0.000100 network_time: 0.0499
|
747 |
+
[ Thu Sep 15 20:10:24 2022 ] Eval epoch: 120
|
748 |
+
[ Thu Sep 15 20:10:46 2022 ] Mean test loss of 258 batches: 1.8299061059951782.
|
749 |
+
[ Thu Sep 15 20:10:46 2022 ] Top1: 63.41%
|
750 |
+
[ Thu Sep 15 20:10:46 2022 ] Top5: 89.90%
|
751 |
+
[ Thu Sep 15 20:10:46 2022 ] Training epoch: 121
|
752 |
+
[ Thu Sep 15 20:11:04 2022 ] Batch(39/123) done. Loss: 0.0065 lr:0.000100 network_time: 0.0485
|
753 |
+
[ Thu Sep 15 20:11:35 2022 ] Eval epoch: 121
|
754 |
+
[ Thu Sep 15 20:11:57 2022 ] Mean test loss of 258 batches: 1.870434284210205.
|
755 |
+
[ Thu Sep 15 20:11:57 2022 ] Top1: 62.78%
|
756 |
+
[ Thu Sep 15 20:11:57 2022 ] Top5: 89.54%
|
757 |
+
[ Thu Sep 15 20:11:57 2022 ] Training epoch: 122
|
758 |
+
[ Thu Sep 15 20:12:07 2022 ] Batch(16/123) done. Loss: 0.0136 lr:0.000100 network_time: 0.0467
|
759 |
+
[ Thu Sep 15 20:12:44 2022 ] Batch(116/123) done. Loss: 0.0066 lr:0.000100 network_time: 0.0548
|
760 |
+
[ Thu Sep 15 20:12:46 2022 ] Eval epoch: 122
|
761 |
+
[ Thu Sep 15 20:13:08 2022 ] Mean test loss of 258 batches: 1.8513699769973755.
|
762 |
+
[ Thu Sep 15 20:13:08 2022 ] Top1: 63.33%
|
763 |
+
[ Thu Sep 15 20:13:08 2022 ] Top5: 89.77%
|
764 |
+
[ Thu Sep 15 20:13:08 2022 ] Training epoch: 123
|
765 |
+
[ Thu Sep 15 20:13:47 2022 ] Batch(93/123) done. Loss: 0.0063 lr:0.000100 network_time: 0.0520
|
766 |
+
[ Thu Sep 15 20:13:58 2022 ] Eval epoch: 123
|
767 |
+
[ Thu Sep 15 20:14:20 2022 ] Mean test loss of 258 batches: 1.815142035484314.
|
768 |
+
[ Thu Sep 15 20:14:20 2022 ] Top1: 63.26%
|
769 |
+
[ Thu Sep 15 20:14:20 2022 ] Top5: 89.87%
|
770 |
+
[ Thu Sep 15 20:14:20 2022 ] Training epoch: 124
|
771 |
+
[ Thu Sep 15 20:14:50 2022 ] Batch(70/123) done. Loss: 0.0084 lr:0.000100 network_time: 0.0505
|
772 |
+
[ Thu Sep 15 20:15:09 2022 ] Eval epoch: 124
|
773 |
+
[ Thu Sep 15 20:15:32 2022 ] Mean test loss of 258 batches: 1.8830796480178833.
|
774 |
+
[ Thu Sep 15 20:15:32 2022 ] Top1: 62.94%
|
775 |
+
[ Thu Sep 15 20:15:32 2022 ] Top5: 89.45%
|
776 |
+
[ Thu Sep 15 20:15:32 2022 ] Training epoch: 125
|
777 |
+
[ Thu Sep 15 20:15:53 2022 ] Batch(47/123) done. Loss: 0.0085 lr:0.000100 network_time: 0.0505
|
778 |
+
[ Thu Sep 15 20:16:21 2022 ] Eval epoch: 125
|
779 |
+
[ Thu Sep 15 20:16:44 2022 ] Mean test loss of 258 batches: 1.7838399410247803.
|
780 |
+
[ Thu Sep 15 20:16:44 2022 ] Top1: 64.08%
|
781 |
+
[ Thu Sep 15 20:16:44 2022 ] Top5: 90.30%
|
782 |
+
[ Thu Sep 15 20:16:44 2022 ] Training epoch: 126
|
783 |
+
[ Thu Sep 15 20:16:56 2022 ] Batch(24/123) done. Loss: 0.0177 lr:0.000100 network_time: 0.0495
|
784 |
+
[ Thu Sep 15 20:17:33 2022 ] Eval epoch: 126
|
785 |
+
[ Thu Sep 15 20:17:55 2022 ] Mean test loss of 258 batches: 1.8182704448699951.
|
786 |
+
[ Thu Sep 15 20:17:55 2022 ] Top1: 63.30%
|
787 |
+
[ Thu Sep 15 20:17:55 2022 ] Top5: 90.08%
|
788 |
+
[ Thu Sep 15 20:17:55 2022 ] Training epoch: 127
|
789 |
+
[ Thu Sep 15 20:17:59 2022 ] Batch(1/123) done. Loss: 0.0223 lr:0.000100 network_time: 0.0490
|
790 |
+
[ Thu Sep 15 20:18:36 2022 ] Batch(101/123) done. Loss: 0.0044 lr:0.000100 network_time: 0.0500
|
791 |
+
[ Thu Sep 15 20:18:44 2022 ] Eval epoch: 127
|
792 |
+
[ Thu Sep 15 20:19:06 2022 ] Mean test loss of 258 batches: 1.8703221082687378.
|
793 |
+
[ Thu Sep 15 20:19:06 2022 ] Top1: 62.72%
|
794 |
+
[ Thu Sep 15 20:19:06 2022 ] Top5: 89.54%
|
795 |
+
[ Thu Sep 15 20:19:06 2022 ] Training epoch: 128
|
796 |
+
[ Thu Sep 15 20:19:39 2022 ] Batch(78/123) done. Loss: 0.0040 lr:0.000100 network_time: 0.0493
|
797 |
+
[ Thu Sep 15 20:19:55 2022 ] Eval epoch: 128
|
798 |
+
[ Thu Sep 15 20:20:17 2022 ] Mean test loss of 258 batches: 1.8690118789672852.
|
799 |
+
[ Thu Sep 15 20:20:18 2022 ] Top1: 62.58%
|
800 |
+
[ Thu Sep 15 20:20:18 2022 ] Top5: 89.51%
|
801 |
+
[ Thu Sep 15 20:20:18 2022 ] Training epoch: 129
|
802 |
+
[ Thu Sep 15 20:20:42 2022 ] Batch(55/123) done. Loss: 0.0102 lr:0.000100 network_time: 0.0490
|
803 |
+
[ Thu Sep 15 20:21:07 2022 ] Eval epoch: 129
|
804 |
+
[ Thu Sep 15 20:21:29 2022 ] Mean test loss of 258 batches: 1.8351080417633057.
|
805 |
+
[ Thu Sep 15 20:21:29 2022 ] Top1: 63.52%
|
806 |
+
[ Thu Sep 15 20:21:29 2022 ] Top5: 89.91%
|
807 |
+
[ Thu Sep 15 20:21:29 2022 ] Training epoch: 130
|
808 |
+
[ Thu Sep 15 20:21:45 2022 ] Batch(32/123) done. Loss: 0.0063 lr:0.000100 network_time: 0.0524
|
809 |
+
[ Thu Sep 15 20:22:18 2022 ] Eval epoch: 130
|
810 |
+
[ Thu Sep 15 20:22:40 2022 ] Mean test loss of 258 batches: 1.9370732307434082.
|
811 |
+
[ Thu Sep 15 20:22:41 2022 ] Top1: 62.17%
|
812 |
+
[ Thu Sep 15 20:22:41 2022 ] Top5: 89.35%
|
813 |
+
[ Thu Sep 15 20:22:41 2022 ] Training epoch: 131
|
814 |
+
[ Thu Sep 15 20:22:48 2022 ] Batch(9/123) done. Loss: 0.0051 lr:0.000100 network_time: 0.0560
|
815 |
+
[ Thu Sep 15 20:23:25 2022 ] Batch(109/123) done. Loss: 0.0128 lr:0.000100 network_time: 0.0560
|
816 |
+
[ Thu Sep 15 20:23:30 2022 ] Eval epoch: 131
|
817 |
+
[ Thu Sep 15 20:23:53 2022 ] Mean test loss of 258 batches: 1.851426124572754.
|
818 |
+
[ Thu Sep 15 20:23:53 2022 ] Top1: 63.35%
|
819 |
+
[ Thu Sep 15 20:23:53 2022 ] Top5: 89.80%
|
820 |
+
[ Thu Sep 15 20:23:53 2022 ] Training epoch: 132
|
821 |
+
[ Thu Sep 15 20:24:28 2022 ] Batch(86/123) done. Loss: 0.0055 lr:0.000100 network_time: 0.0470
|
822 |
+
[ Thu Sep 15 20:24:42 2022 ] Eval epoch: 132
|
823 |
+
[ Thu Sep 15 20:25:04 2022 ] Mean test loss of 258 batches: 1.8273863792419434.
|
824 |
+
[ Thu Sep 15 20:25:04 2022 ] Top1: 63.27%
|
825 |
+
[ Thu Sep 15 20:25:04 2022 ] Top5: 89.86%
|
826 |
+
[ Thu Sep 15 20:25:05 2022 ] Training epoch: 133
|
827 |
+
[ Thu Sep 15 20:25:32 2022 ] Batch(63/123) done. Loss: 0.0160 lr:0.000100 network_time: 0.0491
|
828 |
+
[ Thu Sep 15 20:25:53 2022 ] Eval epoch: 133
|
829 |
+
[ Thu Sep 15 20:26:16 2022 ] Mean test loss of 258 batches: 1.9667322635650635.
|
830 |
+
[ Thu Sep 15 20:26:16 2022 ] Top1: 61.92%
|
831 |
+
[ Thu Sep 15 20:26:16 2022 ] Top5: 88.80%
|
832 |
+
[ Thu Sep 15 20:26:16 2022 ] Training epoch: 134
|
833 |
+
[ Thu Sep 15 20:26:35 2022 ] Batch(40/123) done. Loss: 0.0103 lr:0.000100 network_time: 0.0457
|
834 |
+
[ Thu Sep 15 20:27:06 2022 ] Eval epoch: 134
|
835 |
+
[ Thu Sep 15 20:27:28 2022 ] Mean test loss of 258 batches: 1.7689836025238037.
|
836 |
+
[ Thu Sep 15 20:27:28 2022 ] Top1: 63.86%
|
837 |
+
[ Thu Sep 15 20:27:28 2022 ] Top5: 90.31%
|
838 |
+
[ Thu Sep 15 20:27:28 2022 ] Training epoch: 135
|
839 |
+
[ Thu Sep 15 20:27:38 2022 ] Batch(17/123) done. Loss: 0.0054 lr:0.000100 network_time: 0.0543
|
840 |
+
[ Thu Sep 15 20:28:15 2022 ] Batch(117/123) done. Loss: 0.0125 lr:0.000100 network_time: 0.0534
|
841 |
+
[ Thu Sep 15 20:28:17 2022 ] Eval epoch: 135
|
842 |
+
[ Thu Sep 15 20:28:39 2022 ] Mean test loss of 258 batches: 1.8875691890716553.
|
843 |
+
[ Thu Sep 15 20:28:39 2022 ] Top1: 62.49%
|
844 |
+
[ Thu Sep 15 20:28:39 2022 ] Top5: 89.44%
|
845 |
+
[ Thu Sep 15 20:28:39 2022 ] Training epoch: 136
|
846 |
+
[ Thu Sep 15 20:29:18 2022 ] Batch(94/123) done. Loss: 0.0068 lr:0.000100 network_time: 0.0499
|
847 |
+
[ Thu Sep 15 20:29:29 2022 ] Eval epoch: 136
|
848 |
+
[ Thu Sep 15 20:29:51 2022 ] Mean test loss of 258 batches: 2.03627610206604.
|
849 |
+
[ Thu Sep 15 20:29:51 2022 ] Top1: 60.84%
|
850 |
+
[ Thu Sep 15 20:29:51 2022 ] Top5: 88.41%
|
851 |
+
[ Thu Sep 15 20:29:51 2022 ] Training epoch: 137
|
852 |
+
[ Thu Sep 15 20:30:21 2022 ] Batch(71/123) done. Loss: 0.0097 lr:0.000100 network_time: 0.0516
|
853 |
+
[ Thu Sep 15 20:30:41 2022 ] Eval epoch: 137
|
854 |
+
[ Thu Sep 15 20:31:03 2022 ] Mean test loss of 258 batches: 1.8615801334381104.
|
855 |
+
[ Thu Sep 15 20:31:03 2022 ] Top1: 62.60%
|
856 |
+
[ Thu Sep 15 20:31:03 2022 ] Top5: 89.79%
|
857 |
+
[ Thu Sep 15 20:31:03 2022 ] Training epoch: 138
|
858 |
+
[ Thu Sep 15 20:31:24 2022 ] Batch(48/123) done. Loss: 0.0286 lr:0.000100 network_time: 0.0510
|
859 |
+
[ Thu Sep 15 20:31:52 2022 ] Eval epoch: 138
|
860 |
+
[ Thu Sep 15 20:32:14 2022 ] Mean test loss of 258 batches: 1.9517872333526611.
|
861 |
+
[ Thu Sep 15 20:32:15 2022 ] Top1: 61.99%
|
862 |
+
[ Thu Sep 15 20:32:15 2022 ] Top5: 89.02%
|
863 |
+
[ Thu Sep 15 20:32:15 2022 ] Training epoch: 139
|
864 |
+
[ Thu Sep 15 20:32:28 2022 ] Batch(25/123) done. Loss: 0.0040 lr:0.000100 network_time: 0.0492
|
865 |
+
[ Thu Sep 15 20:33:04 2022 ] Eval epoch: 139
|
866 |
+
[ Thu Sep 15 20:33:26 2022 ] Mean test loss of 258 batches: 1.9645498991012573.
|
867 |
+
[ Thu Sep 15 20:33:26 2022 ] Top1: 62.20%
|
868 |
+
[ Thu Sep 15 20:33:26 2022 ] Top5: 88.99%
|
869 |
+
[ Thu Sep 15 20:33:26 2022 ] Training epoch: 140
|
870 |
+
[ Thu Sep 15 20:33:31 2022 ] Batch(2/123) done. Loss: 0.0057 lr:0.000100 network_time: 0.0496
|
871 |
+
[ Thu Sep 15 20:34:07 2022 ] Batch(102/123) done. Loss: 0.0084 lr:0.000100 network_time: 0.0479
|
872 |
+
[ Thu Sep 15 20:34:15 2022 ] Eval epoch: 140
|
873 |
+
[ Thu Sep 15 20:34:37 2022 ] Mean test loss of 258 batches: 1.9595528841018677.
|
874 |
+
[ Thu Sep 15 20:34:37 2022 ] Top1: 61.40%
|
875 |
+
[ Thu Sep 15 20:34:37 2022 ] Top5: 88.99%
|
ckpt/Others/Shift-GCN/ntu60_xsub/ntu_ShiftGCN_bone_xsub/shift_gcn.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torch.autograd import Variable
|
5 |
+
import numpy as np
|
6 |
+
import math
|
7 |
+
|
8 |
+
import sys
|
9 |
+
sys.path.append("./model/Temporal_shift/")
|
10 |
+
|
11 |
+
from cuda.shift import Shift
|
12 |
+
|
13 |
+
|
14 |
+
def import_class(name):
|
15 |
+
components = name.split('.')
|
16 |
+
mod = __import__(components[0])
|
17 |
+
for comp in components[1:]:
|
18 |
+
mod = getattr(mod, comp)
|
19 |
+
return mod
|
20 |
+
|
21 |
+
def conv_init(conv):
|
22 |
+
nn.init.kaiming_normal(conv.weight, mode='fan_out')
|
23 |
+
nn.init.constant(conv.bias, 0)
|
24 |
+
|
25 |
+
|
26 |
+
def bn_init(bn, scale):
|
27 |
+
nn.init.constant(bn.weight, scale)
|
28 |
+
nn.init.constant(bn.bias, 0)
|
29 |
+
|
30 |
+
|
31 |
+
class tcn(nn.Module):
|
32 |
+
def __init__(self, in_channels, out_channels, kernel_size=9, stride=1):
|
33 |
+
super(tcn, self).__init__()
|
34 |
+
pad = int((kernel_size - 1) / 2)
|
35 |
+
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=(kernel_size, 1), padding=(pad, 0),
|
36 |
+
stride=(stride, 1))
|
37 |
+
|
38 |
+
self.bn = nn.BatchNorm2d(out_channels)
|
39 |
+
self.relu = nn.ReLU()
|
40 |
+
conv_init(self.conv)
|
41 |
+
bn_init(self.bn, 1)
|
42 |
+
|
43 |
+
def forward(self, x):
|
44 |
+
x = self.bn(self.conv(x))
|
45 |
+
return x
|
46 |
+
|
47 |
+
|
48 |
+
class Shift_tcn(nn.Module):
|
49 |
+
def __init__(self, in_channels, out_channels, kernel_size=9, stride=1):
|
50 |
+
super(Shift_tcn, self).__init__()
|
51 |
+
|
52 |
+
self.in_channels = in_channels
|
53 |
+
self.out_channels = out_channels
|
54 |
+
|
55 |
+
self.bn = nn.BatchNorm2d(in_channels)
|
56 |
+
self.bn2 = nn.BatchNorm2d(in_channels)
|
57 |
+
bn_init(self.bn2, 1)
|
58 |
+
self.relu = nn.ReLU(inplace=True)
|
59 |
+
self.shift_in = Shift(channel=in_channels, stride=1, init_scale=1)
|
60 |
+
self.shift_out = Shift(channel=out_channels, stride=stride, init_scale=1)
|
61 |
+
|
62 |
+
self.temporal_linear = nn.Conv2d(in_channels, out_channels, 1)
|
63 |
+
nn.init.kaiming_normal(self.temporal_linear.weight, mode='fan_out')
|
64 |
+
|
65 |
+
def forward(self, x):
|
66 |
+
x = self.bn(x)
|
67 |
+
# shift1
|
68 |
+
x = self.shift_in(x)
|
69 |
+
x = self.temporal_linear(x)
|
70 |
+
x = self.relu(x)
|
71 |
+
# shift2
|
72 |
+
x = self.shift_out(x)
|
73 |
+
x = self.bn2(x)
|
74 |
+
return x
|
75 |
+
|
76 |
+
|
77 |
+
class Shift_gcn(nn.Module):
|
78 |
+
def __init__(self, in_channels, out_channels, A, coff_embedding=4, num_subset=3):
|
79 |
+
super(Shift_gcn, self).__init__()
|
80 |
+
self.in_channels = in_channels
|
81 |
+
self.out_channels = out_channels
|
82 |
+
if in_channels != out_channels:
|
83 |
+
self.down = nn.Sequential(
|
84 |
+
nn.Conv2d(in_channels, out_channels, 1),
|
85 |
+
nn.BatchNorm2d(out_channels)
|
86 |
+
)
|
87 |
+
else:
|
88 |
+
self.down = lambda x: x
|
89 |
+
|
90 |
+
self.Linear_weight = nn.Parameter(torch.zeros(in_channels, out_channels, requires_grad=True, device='cuda'), requires_grad=True)
|
91 |
+
nn.init.normal_(self.Linear_weight, 0,math.sqrt(1.0/out_channels))
|
92 |
+
|
93 |
+
self.Linear_bias = nn.Parameter(torch.zeros(1,1,out_channels,requires_grad=True,device='cuda'),requires_grad=True)
|
94 |
+
nn.init.constant(self.Linear_bias, 0)
|
95 |
+
|
96 |
+
self.Feature_Mask = nn.Parameter(torch.ones(1,25,in_channels, requires_grad=True,device='cuda'),requires_grad=True)
|
97 |
+
nn.init.constant(self.Feature_Mask, 0)
|
98 |
+
|
99 |
+
self.bn = nn.BatchNorm1d(25*out_channels)
|
100 |
+
self.relu = nn.ReLU()
|
101 |
+
|
102 |
+
for m in self.modules():
|
103 |
+
if isinstance(m, nn.Conv2d):
|
104 |
+
conv_init(m)
|
105 |
+
elif isinstance(m, nn.BatchNorm2d):
|
106 |
+
bn_init(m, 1)
|
107 |
+
|
108 |
+
index_array = np.empty(25*in_channels).astype(np.int)
|
109 |
+
for i in range(25):
|
110 |
+
for j in range(in_channels):
|
111 |
+
index_array[i*in_channels + j] = (i*in_channels + j + j*in_channels)%(in_channels*25)
|
112 |
+
self.shift_in = nn.Parameter(torch.from_numpy(index_array),requires_grad=False)
|
113 |
+
|
114 |
+
index_array = np.empty(25*out_channels).astype(np.int)
|
115 |
+
for i in range(25):
|
116 |
+
for j in range(out_channels):
|
117 |
+
index_array[i*out_channels + j] = (i*out_channels + j - j*out_channels)%(out_channels*25)
|
118 |
+
self.shift_out = nn.Parameter(torch.from_numpy(index_array),requires_grad=False)
|
119 |
+
|
120 |
+
|
121 |
+
def forward(self, x0):
|
122 |
+
n, c, t, v = x0.size()
|
123 |
+
x = x0.permute(0,2,3,1).contiguous()
|
124 |
+
|
125 |
+
# shift1
|
126 |
+
x = x.view(n*t,v*c)
|
127 |
+
x = torch.index_select(x, 1, self.shift_in)
|
128 |
+
x = x.view(n*t,v,c)
|
129 |
+
x = x * (torch.tanh(self.Feature_Mask)+1)
|
130 |
+
|
131 |
+
x = torch.einsum('nwc,cd->nwd', (x, self.Linear_weight)).contiguous() # nt,v,c
|
132 |
+
x = x + self.Linear_bias
|
133 |
+
|
134 |
+
# shift2
|
135 |
+
x = x.view(n*t,-1)
|
136 |
+
x = torch.index_select(x, 1, self.shift_out)
|
137 |
+
x = self.bn(x)
|
138 |
+
x = x.view(n,t,v,self.out_channels).permute(0,3,1,2) # n,c,t,v
|
139 |
+
|
140 |
+
x = x + self.down(x0)
|
141 |
+
x = self.relu(x)
|
142 |
+
return x
|
143 |
+
|
144 |
+
|
145 |
+
class TCN_GCN_unit(nn.Module):
|
146 |
+
def __init__(self, in_channels, out_channels, A, stride=1, residual=True):
|
147 |
+
super(TCN_GCN_unit, self).__init__()
|
148 |
+
self.gcn1 = Shift_gcn(in_channels, out_channels, A)
|
149 |
+
self.tcn1 = Shift_tcn(out_channels, out_channels, stride=stride)
|
150 |
+
self.relu = nn.ReLU()
|
151 |
+
|
152 |
+
if not residual:
|
153 |
+
self.residual = lambda x: 0
|
154 |
+
|
155 |
+
elif (in_channels == out_channels) and (stride == 1):
|
156 |
+
self.residual = lambda x: x
|
157 |
+
else:
|
158 |
+
self.residual = tcn(in_channels, out_channels, kernel_size=1, stride=stride)
|
159 |
+
|
160 |
+
def forward(self, x):
|
161 |
+
x = self.tcn1(self.gcn1(x)) + self.residual(x)
|
162 |
+
return self.relu(x)
|
163 |
+
|
164 |
+
|
165 |
+
class Model(nn.Module):
|
166 |
+
def __init__(self, num_class=60, num_point=25, num_person=2, graph=None, graph_args=dict(), in_channels=3):
|
167 |
+
super(Model, self).__init__()
|
168 |
+
|
169 |
+
if graph is None:
|
170 |
+
raise ValueError()
|
171 |
+
else:
|
172 |
+
Graph = import_class(graph)
|
173 |
+
self.graph = Graph(**graph_args)
|
174 |
+
|
175 |
+
A = self.graph.A
|
176 |
+
self.data_bn = nn.BatchNorm1d(num_person * in_channels * num_point)
|
177 |
+
|
178 |
+
self.l1 = TCN_GCN_unit(3, 64, A, residual=False)
|
179 |
+
self.l2 = TCN_GCN_unit(64, 64, A)
|
180 |
+
self.l3 = TCN_GCN_unit(64, 64, A)
|
181 |
+
self.l4 = TCN_GCN_unit(64, 64, A)
|
182 |
+
self.l5 = TCN_GCN_unit(64, 128, A, stride=2)
|
183 |
+
self.l6 = TCN_GCN_unit(128, 128, A)
|
184 |
+
self.l7 = TCN_GCN_unit(128, 128, A)
|
185 |
+
self.l8 = TCN_GCN_unit(128, 256, A, stride=2)
|
186 |
+
self.l9 = TCN_GCN_unit(256, 256, A)
|
187 |
+
self.l10 = TCN_GCN_unit(256, 256, A)
|
188 |
+
|
189 |
+
self.fc = nn.Linear(256, num_class)
|
190 |
+
nn.init.normal(self.fc.weight, 0, math.sqrt(2. / num_class))
|
191 |
+
bn_init(self.data_bn, 1)
|
192 |
+
|
193 |
+
def forward(self, x):
|
194 |
+
N, C, T, V, M = x.size()
|
195 |
+
|
196 |
+
x = x.permute(0, 4, 3, 1, 2).contiguous().view(N, M * V * C, T)
|
197 |
+
x = self.data_bn(x)
|
198 |
+
x = x.view(N, M, V, C, T).permute(0, 1, 3, 4, 2).contiguous().view(N * M, C, T, V)
|
199 |
+
|
200 |
+
x = self.l1(x)
|
201 |
+
x = self.l2(x)
|
202 |
+
x = self.l3(x)
|
203 |
+
x = self.l4(x)
|
204 |
+
x = self.l5(x)
|
205 |
+
x = self.l6(x)
|
206 |
+
x = self.l7(x)
|
207 |
+
x = self.l8(x)
|
208 |
+
x = self.l9(x)
|
209 |
+
x = self.l10(x)
|
210 |
+
|
211 |
+
# N*M,C,T,V
|
212 |
+
c_new = x.size(1)
|
213 |
+
x = x.view(N, M, c_new, -1)
|
214 |
+
x = x.mean(3).mean(1)
|
215 |
+
|
216 |
+
return self.fc(x)
|
ckpt/Others/Shift-GCN/ntu60_xsub/ntu_ShiftGCN_joint_motion_xsub/config.yaml
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Experiment_name: ntu_ShiftGCN_joint_motion_xsub
|
2 |
+
base_lr: 0.1
|
3 |
+
batch_size: 64
|
4 |
+
config: ./config/nturgbd-cross-subject/train_joint_motion.yaml
|
5 |
+
device:
|
6 |
+
- 6
|
7 |
+
- 7
|
8 |
+
eval_interval: 5
|
9 |
+
feeder: feeders.feeder.Feeder
|
10 |
+
ignore_weights: []
|
11 |
+
log_interval: 100
|
12 |
+
model: model.shift_gcn.Model
|
13 |
+
model_args:
|
14 |
+
graph: graph.ntu_rgb_d.Graph
|
15 |
+
graph_args:
|
16 |
+
labeling_mode: spatial
|
17 |
+
num_class: 60
|
18 |
+
num_person: 2
|
19 |
+
num_point: 25
|
20 |
+
model_saved_name: ./save_models/ntu_ShiftGCN_joint_motion_xsub
|
21 |
+
nesterov: true
|
22 |
+
num_epoch: 140
|
23 |
+
num_worker: 32
|
24 |
+
only_train_epoch: 1
|
25 |
+
only_train_part: true
|
26 |
+
optimizer: SGD
|
27 |
+
phase: train
|
28 |
+
print_log: true
|
29 |
+
save_interval: 2
|
30 |
+
save_score: false
|
31 |
+
seed: 1
|
32 |
+
show_topk:
|
33 |
+
- 1
|
34 |
+
- 5
|
35 |
+
start_epoch: 0
|
36 |
+
step:
|
37 |
+
- 60
|
38 |
+
- 80
|
39 |
+
- 100
|
40 |
+
test_batch_size: 64
|
41 |
+
test_feeder_args:
|
42 |
+
data_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/val_data_joint_motion.npy
|
43 |
+
label_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/val_label.pkl
|
44 |
+
train_feeder_args:
|
45 |
+
data_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/train_data_joint_motion.npy
|
46 |
+
debug: false
|
47 |
+
label_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/train_label.pkl
|
48 |
+
normalization: false
|
49 |
+
random_choose: false
|
50 |
+
random_move: false
|
51 |
+
random_shift: false
|
52 |
+
window_size: -1
|
53 |
+
warm_up_epoch: 0
|
54 |
+
weight_decay: 0.0001
|
55 |
+
weights: null
|
56 |
+
work_dir: ./work_dir/ntu_ShiftGCN_joint_motion_xsub
|
ckpt/Others/Shift-GCN/ntu60_xsub/ntu_ShiftGCN_joint_motion_xsub/eval_results/best_acc.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b69d62a09c755f915c0f11a163f96d8e0008156465c096689f02d91214028ee0
|
3 |
+
size 4979902
|
ckpt/Others/Shift-GCN/ntu60_xsub/ntu_ShiftGCN_joint_motion_xsub/log.txt
ADDED
@@ -0,0 +1,875 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[ Wed Sep 14 13:30:21 2022 ] Parameters:
|
2 |
+
{'work_dir': './work_dir/ntu_ShiftGCN_joint_motion_xsub', 'model_saved_name': './save_models/ntu_ShiftGCN_joint_motion_xsub', 'Experiment_name': 'ntu_ShiftGCN_joint_motion_xsub', 'config': './config/nturgbd-cross-subject/train_joint_motion.yaml', 'phase': 'train', 'save_score': False, 'seed': 1, 'log_interval': 100, 'save_interval': 2, 'eval_interval': 5, 'print_log': True, 'show_topk': [1, 5], 'feeder': 'feeders.feeder.Feeder', 'num_worker': 32, 'train_feeder_args': {'data_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/train_data_joint_motion.npy', 'label_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/train_label.pkl', 'debug': False, 'random_choose': False, 'random_shift': False, 'random_move': False, 'window_size': -1, 'normalization': False}, 'test_feeder_args': {'data_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/val_data_joint_motion.npy', 'label_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/val_label.pkl'}, 'model': 'model.shift_gcn.Model', 'model_args': {'num_class': 60, 'num_point': 25, 'num_person': 2, 'graph': 'graph.ntu_rgb_d.Graph', 'graph_args': {'labeling_mode': 'spatial'}}, 'weights': None, 'ignore_weights': [], 'base_lr': 0.1, 'step': [60, 80, 100], 'device': [6, 7], 'optimizer': 'SGD', 'nesterov': True, 'batch_size': 64, 'test_batch_size': 64, 'start_epoch': 0, 'num_epoch': 140, 'weight_decay': 0.0001, 'only_train_part': True, 'only_train_epoch': 1, 'warm_up_epoch': 0}
|
3 |
+
|
4 |
+
[ Wed Sep 14 13:30:21 2022 ] Training epoch: 1
|
5 |
+
[ Wed Sep 14 13:31:39 2022 ] Batch(99/123) done. Loss: 1.8322 lr:0.100000 network_time: 0.0273
|
6 |
+
[ Wed Sep 14 13:31:56 2022 ] Eval epoch: 1
|
7 |
+
[ Wed Sep 14 13:32:29 2022 ] Mean test loss of 258 batches: 5.421380996704102.
|
8 |
+
[ Wed Sep 14 13:32:29 2022 ] Top1: 16.31%
|
9 |
+
[ Wed Sep 14 13:32:29 2022 ] Top5: 41.85%
|
10 |
+
[ Wed Sep 14 13:32:29 2022 ] Training epoch: 2
|
11 |
+
[ Wed Sep 14 13:33:28 2022 ] Batch(76/123) done. Loss: 1.7521 lr:0.100000 network_time: 0.0322
|
12 |
+
[ Wed Sep 14 13:34:02 2022 ] Eval epoch: 2
|
13 |
+
[ Wed Sep 14 13:34:35 2022 ] Mean test loss of 258 batches: 3.908324956893921.
|
14 |
+
[ Wed Sep 14 13:34:35 2022 ] Top1: 26.00%
|
15 |
+
[ Wed Sep 14 13:34:35 2022 ] Top5: 55.09%
|
16 |
+
[ Wed Sep 14 13:34:35 2022 ] Training epoch: 3
|
17 |
+
[ Wed Sep 14 13:35:17 2022 ] Batch(53/123) done. Loss: 1.3974 lr:0.100000 network_time: 0.0291
|
18 |
+
[ Wed Sep 14 13:36:08 2022 ] Eval epoch: 3
|
19 |
+
[ Wed Sep 14 13:36:41 2022 ] Mean test loss of 258 batches: 3.634312391281128.
|
20 |
+
[ Wed Sep 14 13:36:41 2022 ] Top1: 31.05%
|
21 |
+
[ Wed Sep 14 13:36:41 2022 ] Top5: 64.15%
|
22 |
+
[ Wed Sep 14 13:36:41 2022 ] Training epoch: 4
|
23 |
+
[ Wed Sep 14 13:37:07 2022 ] Batch(30/123) done. Loss: 1.4544 lr:0.100000 network_time: 0.0273
|
24 |
+
[ Wed Sep 14 13:38:14 2022 ] Eval epoch: 4
|
25 |
+
[ Wed Sep 14 13:38:47 2022 ] Mean test loss of 258 batches: 3.0245800018310547.
|
26 |
+
[ Wed Sep 14 13:38:47 2022 ] Top1: 37.07%
|
27 |
+
[ Wed Sep 14 13:38:47 2022 ] Top5: 71.13%
|
28 |
+
[ Wed Sep 14 13:38:47 2022 ] Training epoch: 5
|
29 |
+
[ Wed Sep 14 13:38:56 2022 ] Batch(7/123) done. Loss: 1.3769 lr:0.100000 network_time: 0.0284
|
30 |
+
[ Wed Sep 14 13:40:09 2022 ] Batch(107/123) done. Loss: 0.9981 lr:0.100000 network_time: 0.0323
|
31 |
+
[ Wed Sep 14 13:40:20 2022 ] Eval epoch: 5
|
32 |
+
[ Wed Sep 14 13:40:53 2022 ] Mean test loss of 258 batches: 3.6688332557678223.
|
33 |
+
[ Wed Sep 14 13:40:53 2022 ] Top1: 37.91%
|
34 |
+
[ Wed Sep 14 13:40:53 2022 ] Top5: 72.09%
|
35 |
+
[ Wed Sep 14 13:40:53 2022 ] Training epoch: 6
|
36 |
+
[ Wed Sep 14 13:41:58 2022 ] Batch(84/123) done. Loss: 1.0236 lr:0.100000 network_time: 0.0286
|
37 |
+
[ Wed Sep 14 13:42:26 2022 ] Eval epoch: 6
|
38 |
+
[ Wed Sep 14 13:42:59 2022 ] Mean test loss of 258 batches: 3.80401349067688.
|
39 |
+
[ Wed Sep 14 13:42:59 2022 ] Top1: 35.28%
|
40 |
+
[ Wed Sep 14 13:42:59 2022 ] Top5: 69.93%
|
41 |
+
[ Wed Sep 14 13:42:59 2022 ] Training epoch: 7
|
42 |
+
[ Wed Sep 14 13:43:48 2022 ] Batch(61/123) done. Loss: 0.8047 lr:0.100000 network_time: 0.0289
|
43 |
+
[ Wed Sep 14 13:44:32 2022 ] Eval epoch: 7
|
44 |
+
[ Wed Sep 14 13:45:06 2022 ] Mean test loss of 258 batches: 2.357377290725708.
|
45 |
+
[ Wed Sep 14 13:45:06 2022 ] Top1: 47.07%
|
46 |
+
[ Wed Sep 14 13:45:06 2022 ] Top5: 79.77%
|
47 |
+
[ Wed Sep 14 13:45:06 2022 ] Training epoch: 8
|
48 |
+
[ Wed Sep 14 13:45:37 2022 ] Batch(38/123) done. Loss: 0.9309 lr:0.100000 network_time: 0.0315
|
49 |
+
[ Wed Sep 14 13:46:39 2022 ] Eval epoch: 8
|
50 |
+
[ Wed Sep 14 13:47:12 2022 ] Mean test loss of 258 batches: 2.9091107845306396.
|
51 |
+
[ Wed Sep 14 13:47:12 2022 ] Top1: 44.64%
|
52 |
+
[ Wed Sep 14 13:47:12 2022 ] Top5: 77.13%
|
53 |
+
[ Wed Sep 14 13:47:13 2022 ] Training epoch: 9
|
54 |
+
[ Wed Sep 14 13:47:28 2022 ] Batch(15/123) done. Loss: 0.7382 lr:0.100000 network_time: 0.0265
|
55 |
+
[ Wed Sep 14 13:48:40 2022 ] Batch(115/123) done. Loss: 0.6233 lr:0.100000 network_time: 0.0314
|
56 |
+
[ Wed Sep 14 13:48:46 2022 ] Eval epoch: 9
|
57 |
+
[ Wed Sep 14 13:49:19 2022 ] Mean test loss of 258 batches: 2.300452947616577.
|
58 |
+
[ Wed Sep 14 13:49:19 2022 ] Top1: 49.20%
|
59 |
+
[ Wed Sep 14 13:49:19 2022 ] Top5: 83.79%
|
60 |
+
[ Wed Sep 14 13:49:19 2022 ] Training epoch: 10
|
61 |
+
[ Wed Sep 14 13:50:30 2022 ] Batch(92/123) done. Loss: 0.8082 lr:0.100000 network_time: 0.0325
|
62 |
+
[ Wed Sep 14 13:50:52 2022 ] Eval epoch: 10
|
63 |
+
[ Wed Sep 14 13:51:25 2022 ] Mean test loss of 258 batches: 2.6167848110198975.
|
64 |
+
[ Wed Sep 14 13:51:25 2022 ] Top1: 40.61%
|
65 |
+
[ Wed Sep 14 13:51:25 2022 ] Top5: 75.19%
|
66 |
+
[ Wed Sep 14 13:51:25 2022 ] Training epoch: 11
|
67 |
+
[ Wed Sep 14 13:52:19 2022 ] Batch(69/123) done. Loss: 0.7017 lr:0.100000 network_time: 0.0365
|
68 |
+
[ Wed Sep 14 13:52:58 2022 ] Eval epoch: 11
|
69 |
+
[ Wed Sep 14 13:53:31 2022 ] Mean test loss of 258 batches: 2.6783909797668457.
|
70 |
+
[ Wed Sep 14 13:53:31 2022 ] Top1: 44.78%
|
71 |
+
[ Wed Sep 14 13:53:31 2022 ] Top5: 79.88%
|
72 |
+
[ Wed Sep 14 13:53:31 2022 ] Training epoch: 12
|
73 |
+
[ Wed Sep 14 13:54:09 2022 ] Batch(46/123) done. Loss: 0.6095 lr:0.100000 network_time: 0.0268
|
74 |
+
[ Wed Sep 14 13:55:04 2022 ] Eval epoch: 12
|
75 |
+
[ Wed Sep 14 13:55:38 2022 ] Mean test loss of 258 batches: 3.100949764251709.
|
76 |
+
[ Wed Sep 14 13:55:38 2022 ] Top1: 46.73%
|
77 |
+
[ Wed Sep 14 13:55:38 2022 ] Top5: 81.48%
|
78 |
+
[ Wed Sep 14 13:55:38 2022 ] Training epoch: 13
|
79 |
+
[ Wed Sep 14 13:55:59 2022 ] Batch(23/123) done. Loss: 0.3895 lr:0.100000 network_time: 0.0285
|
80 |
+
[ Wed Sep 14 13:57:11 2022 ] Eval epoch: 13
|
81 |
+
[ Wed Sep 14 13:57:44 2022 ] Mean test loss of 258 batches: 2.872067451477051.
|
82 |
+
[ Wed Sep 14 13:57:44 2022 ] Top1: 42.58%
|
83 |
+
[ Wed Sep 14 13:57:44 2022 ] Top5: 77.13%
|
84 |
+
[ Wed Sep 14 13:57:44 2022 ] Training epoch: 14
|
85 |
+
[ Wed Sep 14 13:57:48 2022 ] Batch(0/123) done. Loss: 0.3612 lr:0.100000 network_time: 0.0457
|
86 |
+
[ Wed Sep 14 13:59:01 2022 ] Batch(100/123) done. Loss: 0.4800 lr:0.100000 network_time: 0.0278
|
87 |
+
[ Wed Sep 14 13:59:17 2022 ] Eval epoch: 14
|
88 |
+
[ Wed Sep 14 13:59:49 2022 ] Mean test loss of 258 batches: 3.2104737758636475.
|
89 |
+
[ Wed Sep 14 13:59:50 2022 ] Top1: 52.74%
|
90 |
+
[ Wed Sep 14 13:59:50 2022 ] Top5: 83.59%
|
91 |
+
[ Wed Sep 14 13:59:50 2022 ] Training epoch: 15
|
92 |
+
[ Wed Sep 14 14:00:49 2022 ] Batch(77/123) done. Loss: 0.5065 lr:0.100000 network_time: 0.0308
|
93 |
+
[ Wed Sep 14 14:01:22 2022 ] Eval epoch: 15
|
94 |
+
[ Wed Sep 14 14:01:55 2022 ] Mean test loss of 258 batches: 2.190570116043091.
|
95 |
+
[ Wed Sep 14 14:01:55 2022 ] Top1: 53.07%
|
96 |
+
[ Wed Sep 14 14:01:55 2022 ] Top5: 85.18%
|
97 |
+
[ Wed Sep 14 14:01:55 2022 ] Training epoch: 16
|
98 |
+
[ Wed Sep 14 14:02:39 2022 ] Batch(54/123) done. Loss: 0.4220 lr:0.100000 network_time: 0.0281
|
99 |
+
[ Wed Sep 14 14:03:28 2022 ] Eval epoch: 16
|
100 |
+
[ Wed Sep 14 14:04:02 2022 ] Mean test loss of 258 batches: 2.1734108924865723.
|
101 |
+
[ Wed Sep 14 14:04:02 2022 ] Top1: 47.49%
|
102 |
+
[ Wed Sep 14 14:04:02 2022 ] Top5: 81.16%
|
103 |
+
[ Wed Sep 14 14:04:02 2022 ] Training epoch: 17
|
104 |
+
[ Wed Sep 14 14:04:28 2022 ] Batch(31/123) done. Loss: 0.5759 lr:0.100000 network_time: 0.0318
|
105 |
+
[ Wed Sep 14 14:05:35 2022 ] Eval epoch: 17
|
106 |
+
[ Wed Sep 14 14:06:08 2022 ] Mean test loss of 258 batches: 3.361882209777832.
|
107 |
+
[ Wed Sep 14 14:06:08 2022 ] Top1: 44.20%
|
108 |
+
[ Wed Sep 14 14:06:08 2022 ] Top5: 79.01%
|
109 |
+
[ Wed Sep 14 14:06:08 2022 ] Training epoch: 18
|
110 |
+
[ Wed Sep 14 14:06:18 2022 ] Batch(8/123) done. Loss: 0.2408 lr:0.100000 network_time: 0.0305
|
111 |
+
[ Wed Sep 14 14:07:30 2022 ] Batch(108/123) done. Loss: 0.3474 lr:0.100000 network_time: 0.0312
|
112 |
+
[ Wed Sep 14 14:07:41 2022 ] Eval epoch: 18
|
113 |
+
[ Wed Sep 14 14:08:14 2022 ] Mean test loss of 258 batches: 1.9666603803634644.
|
114 |
+
[ Wed Sep 14 14:08:14 2022 ] Top1: 53.97%
|
115 |
+
[ Wed Sep 14 14:08:14 2022 ] Top5: 85.68%
|
116 |
+
[ Wed Sep 14 14:08:14 2022 ] Training epoch: 19
|
117 |
+
[ Wed Sep 14 14:09:20 2022 ] Batch(85/123) done. Loss: 0.3814 lr:0.100000 network_time: 0.0276
|
118 |
+
[ Wed Sep 14 14:09:47 2022 ] Eval epoch: 19
|
119 |
+
[ Wed Sep 14 14:10:20 2022 ] Mean test loss of 258 batches: 2.295517921447754.
|
120 |
+
[ Wed Sep 14 14:10:20 2022 ] Top1: 53.63%
|
121 |
+
[ Wed Sep 14 14:10:20 2022 ] Top5: 84.36%
|
122 |
+
[ Wed Sep 14 14:10:20 2022 ] Training epoch: 20
|
123 |
+
[ Wed Sep 14 14:11:09 2022 ] Batch(62/123) done. Loss: 0.2456 lr:0.100000 network_time: 0.0278
|
124 |
+
[ Wed Sep 14 14:11:52 2022 ] Eval epoch: 20
|
125 |
+
[ Wed Sep 14 14:12:25 2022 ] Mean test loss of 258 batches: 2.4664697647094727.
|
126 |
+
[ Wed Sep 14 14:12:25 2022 ] Top1: 47.50%
|
127 |
+
[ Wed Sep 14 14:12:25 2022 ] Top5: 82.88%
|
128 |
+
[ Wed Sep 14 14:12:25 2022 ] Training epoch: 21
|
129 |
+
[ Wed Sep 14 14:12:58 2022 ] Batch(39/123) done. Loss: 0.4303 lr:0.100000 network_time: 0.0276
|
130 |
+
[ Wed Sep 14 14:13:58 2022 ] Eval epoch: 21
|
131 |
+
[ Wed Sep 14 14:14:31 2022 ] Mean test loss of 258 batches: 2.3439109325408936.
|
132 |
+
[ Wed Sep 14 14:14:31 2022 ] Top1: 52.30%
|
133 |
+
[ Wed Sep 14 14:14:32 2022 ] Top5: 86.02%
|
134 |
+
[ Wed Sep 14 14:14:32 2022 ] Training epoch: 22
|
135 |
+
[ Wed Sep 14 14:14:47 2022 ] Batch(16/123) done. Loss: 0.2752 lr:0.100000 network_time: 0.0420
|
136 |
+
[ Wed Sep 14 14:16:00 2022 ] Batch(116/123) done. Loss: 0.2960 lr:0.100000 network_time: 0.0303
|
137 |
+
[ Wed Sep 14 14:16:04 2022 ] Eval epoch: 22
|
138 |
+
[ Wed Sep 14 14:16:37 2022 ] Mean test loss of 258 batches: 2.3402199745178223.
|
139 |
+
[ Wed Sep 14 14:16:38 2022 ] Top1: 49.31%
|
140 |
+
[ Wed Sep 14 14:16:38 2022 ] Top5: 82.39%
|
141 |
+
[ Wed Sep 14 14:16:38 2022 ] Training epoch: 23
|
142 |
+
[ Wed Sep 14 14:17:49 2022 ] Batch(93/123) done. Loss: 0.5902 lr:0.100000 network_time: 0.0383
|
143 |
+
[ Wed Sep 14 14:18:11 2022 ] Eval epoch: 23
|
144 |
+
[ Wed Sep 14 14:18:44 2022 ] Mean test loss of 258 batches: 3.4021964073181152.
|
145 |
+
[ Wed Sep 14 14:18:44 2022 ] Top1: 44.00%
|
146 |
+
[ Wed Sep 14 14:18:44 2022 ] Top5: 78.38%
|
147 |
+
[ Wed Sep 14 14:18:44 2022 ] Training epoch: 24
|
148 |
+
[ Wed Sep 14 14:19:39 2022 ] Batch(70/123) done. Loss: 0.2657 lr:0.100000 network_time: 0.0348
|
149 |
+
[ Wed Sep 14 14:20:17 2022 ] Eval epoch: 24
|
150 |
+
[ Wed Sep 14 14:20:50 2022 ] Mean test loss of 258 batches: 2.8668456077575684.
|
151 |
+
[ Wed Sep 14 14:20:50 2022 ] Top1: 48.26%
|
152 |
+
[ Wed Sep 14 14:20:50 2022 ] Top5: 82.93%
|
153 |
+
[ Wed Sep 14 14:20:50 2022 ] Training epoch: 25
|
154 |
+
[ Wed Sep 14 14:21:28 2022 ] Batch(47/123) done. Loss: 0.3772 lr:0.100000 network_time: 0.0304
|
155 |
+
[ Wed Sep 14 14:22:23 2022 ] Eval epoch: 25
|
156 |
+
[ Wed Sep 14 14:22:56 2022 ] Mean test loss of 258 batches: 3.23077130317688.
|
157 |
+
[ Wed Sep 14 14:22:56 2022 ] Top1: 46.24%
|
158 |
+
[ Wed Sep 14 14:22:56 2022 ] Top5: 78.16%
|
159 |
+
[ Wed Sep 14 14:22:56 2022 ] Training epoch: 26
|
160 |
+
[ Wed Sep 14 14:23:17 2022 ] Batch(24/123) done. Loss: 0.3657 lr:0.100000 network_time: 0.0288
|
161 |
+
[ Wed Sep 14 14:24:29 2022 ] Eval epoch: 26
|
162 |
+
[ Wed Sep 14 14:25:02 2022 ] Mean test loss of 258 batches: 2.7416818141937256.
|
163 |
+
[ Wed Sep 14 14:25:02 2022 ] Top1: 51.59%
|
164 |
+
[ Wed Sep 14 14:25:03 2022 ] Top5: 82.94%
|
165 |
+
[ Wed Sep 14 14:25:03 2022 ] Training epoch: 27
|
166 |
+
[ Wed Sep 14 14:25:07 2022 ] Batch(1/123) done. Loss: 0.1882 lr:0.100000 network_time: 0.0299
|
167 |
+
[ Wed Sep 14 14:26:20 2022 ] Batch(101/123) done. Loss: 0.2472 lr:0.100000 network_time: 0.0290
|
168 |
+
[ Wed Sep 14 14:26:36 2022 ] Eval epoch: 27
|
169 |
+
[ Wed Sep 14 14:27:08 2022 ] Mean test loss of 258 batches: 2.7824652194976807.
|
170 |
+
[ Wed Sep 14 14:27:09 2022 ] Top1: 46.99%
|
171 |
+
[ Wed Sep 14 14:27:09 2022 ] Top5: 80.48%
|
172 |
+
[ Wed Sep 14 14:27:09 2022 ] Training epoch: 28
|
173 |
+
[ Wed Sep 14 14:28:09 2022 ] Batch(78/123) done. Loss: 0.4206 lr:0.100000 network_time: 0.0333
|
174 |
+
[ Wed Sep 14 14:28:41 2022 ] Eval epoch: 28
|
175 |
+
[ Wed Sep 14 14:29:14 2022 ] Mean test loss of 258 batches: 2.5910394191741943.
|
176 |
+
[ Wed Sep 14 14:29:14 2022 ] Top1: 52.99%
|
177 |
+
[ Wed Sep 14 14:29:14 2022 ] Top5: 84.35%
|
178 |
+
[ Wed Sep 14 14:29:14 2022 ] Training epoch: 29
|
179 |
+
[ Wed Sep 14 14:29:58 2022 ] Batch(55/123) done. Loss: 0.4513 lr:0.100000 network_time: 0.0272
|
180 |
+
[ Wed Sep 14 14:30:47 2022 ] Eval epoch: 29
|
181 |
+
[ Wed Sep 14 14:31:19 2022 ] Mean test loss of 258 batches: 3.8707644939422607.
|
182 |
+
[ Wed Sep 14 14:31:19 2022 ] Top1: 42.49%
|
183 |
+
[ Wed Sep 14 14:31:19 2022 ] Top5: 75.29%
|
184 |
+
[ Wed Sep 14 14:31:19 2022 ] Training epoch: 30
|
185 |
+
[ Wed Sep 14 14:31:46 2022 ] Batch(32/123) done. Loss: 0.2088 lr:0.100000 network_time: 0.0335
|
186 |
+
[ Wed Sep 14 14:32:52 2022 ] Eval epoch: 30
|
187 |
+
[ Wed Sep 14 14:33:25 2022 ] Mean test loss of 258 batches: 2.0434672832489014.
|
188 |
+
[ Wed Sep 14 14:33:25 2022 ] Top1: 53.36%
|
189 |
+
[ Wed Sep 14 14:33:25 2022 ] Top5: 85.15%
|
190 |
+
[ Wed Sep 14 14:33:25 2022 ] Training epoch: 31
|
191 |
+
[ Wed Sep 14 14:33:36 2022 ] Batch(9/123) done. Loss: 0.1743 lr:0.100000 network_time: 0.0293
|
192 |
+
[ Wed Sep 14 14:34:48 2022 ] Batch(109/123) done. Loss: 0.1601 lr:0.100000 network_time: 0.0328
|
193 |
+
[ Wed Sep 14 14:34:58 2022 ] Eval epoch: 31
|
194 |
+
[ Wed Sep 14 14:35:30 2022 ] Mean test loss of 258 batches: 2.6095051765441895.
|
195 |
+
[ Wed Sep 14 14:35:31 2022 ] Top1: 52.76%
|
196 |
+
[ Wed Sep 14 14:35:31 2022 ] Top5: 83.31%
|
197 |
+
[ Wed Sep 14 14:35:31 2022 ] Training epoch: 32
|
198 |
+
[ Wed Sep 14 14:36:37 2022 ] Batch(86/123) done. Loss: 0.2414 lr:0.100000 network_time: 0.0278
|
199 |
+
[ Wed Sep 14 14:37:03 2022 ] Eval epoch: 32
|
200 |
+
[ Wed Sep 14 14:37:36 2022 ] Mean test loss of 258 batches: 2.538578510284424.
|
201 |
+
[ Wed Sep 14 14:37:36 2022 ] Top1: 53.28%
|
202 |
+
[ Wed Sep 14 14:37:36 2022 ] Top5: 85.77%
|
203 |
+
[ Wed Sep 14 14:37:36 2022 ] Training epoch: 33
|
204 |
+
[ Wed Sep 14 14:38:26 2022 ] Batch(63/123) done. Loss: 0.3211 lr:0.100000 network_time: 0.0277
|
205 |
+
[ Wed Sep 14 14:39:09 2022 ] Eval epoch: 33
|
206 |
+
[ Wed Sep 14 14:39:41 2022 ] Mean test loss of 258 batches: 2.6285548210144043.
|
207 |
+
[ Wed Sep 14 14:39:41 2022 ] Top1: 52.92%
|
208 |
+
[ Wed Sep 14 14:39:42 2022 ] Top5: 84.96%
|
209 |
+
[ Wed Sep 14 14:39:42 2022 ] Training epoch: 34
|
210 |
+
[ Wed Sep 14 14:40:15 2022 ] Batch(40/123) done. Loss: 0.1880 lr:0.100000 network_time: 0.0280
|
211 |
+
[ Wed Sep 14 14:41:14 2022 ] Eval epoch: 34
|
212 |
+
[ Wed Sep 14 14:41:47 2022 ] Mean test loss of 258 batches: 2.0833334922790527.
|
213 |
+
[ Wed Sep 14 14:41:47 2022 ] Top1: 53.60%
|
214 |
+
[ Wed Sep 14 14:41:47 2022 ] Top5: 86.80%
|
215 |
+
[ Wed Sep 14 14:41:47 2022 ] Training epoch: 35
|
216 |
+
[ Wed Sep 14 14:42:03 2022 ] Batch(17/123) done. Loss: 0.1468 lr:0.100000 network_time: 0.0350
|
217 |
+
[ Wed Sep 14 14:43:16 2022 ] Batch(117/123) done. Loss: 0.2022 lr:0.100000 network_time: 0.0279
|
218 |
+
[ Wed Sep 14 14:43:20 2022 ] Eval epoch: 35
|
219 |
+
[ Wed Sep 14 14:43:52 2022 ] Mean test loss of 258 batches: 2.6050968170166016.
|
220 |
+
[ Wed Sep 14 14:43:52 2022 ] Top1: 49.00%
|
221 |
+
[ Wed Sep 14 14:43:53 2022 ] Top5: 81.38%
|
222 |
+
[ Wed Sep 14 14:43:53 2022 ] Training epoch: 36
|
223 |
+
[ Wed Sep 14 14:45:05 2022 ] Batch(94/123) done. Loss: 0.3228 lr:0.100000 network_time: 0.0292
|
224 |
+
[ Wed Sep 14 14:45:25 2022 ] Eval epoch: 36
|
225 |
+
[ Wed Sep 14 14:45:58 2022 ] Mean test loss of 258 batches: 2.1508259773254395.
|
226 |
+
[ Wed Sep 14 14:45:58 2022 ] Top1: 56.06%
|
227 |
+
[ Wed Sep 14 14:45:58 2022 ] Top5: 84.73%
|
228 |
+
[ Wed Sep 14 14:45:58 2022 ] Training epoch: 37
|
229 |
+
[ Wed Sep 14 14:46:54 2022 ] Batch(71/123) done. Loss: 0.5055 lr:0.100000 network_time: 0.0277
|
230 |
+
[ Wed Sep 14 14:47:31 2022 ] Eval epoch: 37
|
231 |
+
[ Wed Sep 14 14:48:04 2022 ] Mean test loss of 258 batches: 2.3189916610717773.
|
232 |
+
[ Wed Sep 14 14:48:04 2022 ] Top1: 55.84%
|
233 |
+
[ Wed Sep 14 14:48:04 2022 ] Top5: 84.73%
|
234 |
+
[ Wed Sep 14 14:48:04 2022 ] Training epoch: 38
|
235 |
+
[ Wed Sep 14 14:48:43 2022 ] Batch(48/123) done. Loss: 0.2248 lr:0.100000 network_time: 0.0281
|
236 |
+
[ Wed Sep 14 14:49:37 2022 ] Eval epoch: 38
|
237 |
+
[ Wed Sep 14 14:50:10 2022 ] Mean test loss of 258 batches: 3.328526496887207.
|
238 |
+
[ Wed Sep 14 14:50:10 2022 ] Top1: 40.93%
|
239 |
+
[ Wed Sep 14 14:50:10 2022 ] Top5: 77.16%
|
240 |
+
[ Wed Sep 14 14:50:10 2022 ] Training epoch: 39
|
241 |
+
[ Wed Sep 14 14:50:32 2022 ] Batch(25/123) done. Loss: 0.1325 lr:0.100000 network_time: 0.0321
|
242 |
+
[ Wed Sep 14 14:51:42 2022 ] Eval epoch: 39
|
243 |
+
[ Wed Sep 14 14:52:15 2022 ] Mean test loss of 258 batches: 3.4714365005493164.
|
244 |
+
[ Wed Sep 14 14:52:15 2022 ] Top1: 44.80%
|
245 |
+
[ Wed Sep 14 14:52:15 2022 ] Top5: 79.50%
|
246 |
+
[ Wed Sep 14 14:52:15 2022 ] Training epoch: 40
|
247 |
+
[ Wed Sep 14 14:52:20 2022 ] Batch(2/123) done. Loss: 0.2373 lr:0.100000 network_time: 0.0266
|
248 |
+
[ Wed Sep 14 14:53:33 2022 ] Batch(102/123) done. Loss: 0.2601 lr:0.100000 network_time: 0.0275
|
249 |
+
[ Wed Sep 14 14:53:48 2022 ] Eval epoch: 40
|
250 |
+
[ Wed Sep 14 14:54:20 2022 ] Mean test loss of 258 batches: 2.6973369121551514.
|
251 |
+
[ Wed Sep 14 14:54:20 2022 ] Top1: 50.18%
|
252 |
+
[ Wed Sep 14 14:54:21 2022 ] Top5: 82.68%
|
253 |
+
[ Wed Sep 14 14:54:21 2022 ] Training epoch: 41
|
254 |
+
[ Wed Sep 14 14:55:22 2022 ] Batch(79/123) done. Loss: 0.3010 lr:0.100000 network_time: 0.0268
|
255 |
+
[ Wed Sep 14 14:55:53 2022 ] Eval epoch: 41
|
256 |
+
[ Wed Sep 14 14:56:26 2022 ] Mean test loss of 258 batches: 2.5908446311950684.
|
257 |
+
[ Wed Sep 14 14:56:26 2022 ] Top1: 51.38%
|
258 |
+
[ Wed Sep 14 14:56:26 2022 ] Top5: 84.08%
|
259 |
+
[ Wed Sep 14 14:56:26 2022 ] Training epoch: 42
|
260 |
+
[ Wed Sep 14 14:57:11 2022 ] Batch(56/123) done. Loss: 0.3432 lr:0.100000 network_time: 0.0267
|
261 |
+
[ Wed Sep 14 14:57:59 2022 ] Eval epoch: 42
|
262 |
+
[ Wed Sep 14 14:58:32 2022 ] Mean test loss of 258 batches: 2.8294875621795654.
|
263 |
+
[ Wed Sep 14 14:58:32 2022 ] Top1: 52.04%
|
264 |
+
[ Wed Sep 14 14:58:32 2022 ] Top5: 83.27%
|
265 |
+
[ Wed Sep 14 14:58:32 2022 ] Training epoch: 43
|
266 |
+
[ Wed Sep 14 14:59:00 2022 ] Batch(33/123) done. Loss: 0.0792 lr:0.100000 network_time: 0.0264
|
267 |
+
[ Wed Sep 14 15:00:04 2022 ] Eval epoch: 43
|
268 |
+
[ Wed Sep 14 15:00:37 2022 ] Mean test loss of 258 batches: 2.162405252456665.
|
269 |
+
[ Wed Sep 14 15:00:37 2022 ] Top1: 55.95%
|
270 |
+
[ Wed Sep 14 15:00:37 2022 ] Top5: 86.15%
|
271 |
+
[ Wed Sep 14 15:00:37 2022 ] Training epoch: 44
|
272 |
+
[ Wed Sep 14 15:00:48 2022 ] Batch(10/123) done. Loss: 0.1217 lr:0.100000 network_time: 0.0304
|
273 |
+
[ Wed Sep 14 15:02:01 2022 ] Batch(110/123) done. Loss: 0.1810 lr:0.100000 network_time: 0.0331
|
274 |
+
[ Wed Sep 14 15:02:10 2022 ] Eval epoch: 44
|
275 |
+
[ Wed Sep 14 15:02:42 2022 ] Mean test loss of 258 batches: 2.7251181602478027.
|
276 |
+
[ Wed Sep 14 15:02:43 2022 ] Top1: 51.24%
|
277 |
+
[ Wed Sep 14 15:02:43 2022 ] Top5: 83.48%
|
278 |
+
[ Wed Sep 14 15:02:43 2022 ] Training epoch: 45
|
279 |
+
[ Wed Sep 14 15:03:49 2022 ] Batch(87/123) done. Loss: 0.1741 lr:0.100000 network_time: 0.0263
|
280 |
+
[ Wed Sep 14 15:04:15 2022 ] Eval epoch: 45
|
281 |
+
[ Wed Sep 14 15:04:48 2022 ] Mean test loss of 258 batches: 2.7098324298858643.
|
282 |
+
[ Wed Sep 14 15:04:48 2022 ] Top1: 51.33%
|
283 |
+
[ Wed Sep 14 15:04:48 2022 ] Top5: 82.89%
|
284 |
+
[ Wed Sep 14 15:04:48 2022 ] Training epoch: 46
|
285 |
+
[ Wed Sep 14 15:05:38 2022 ] Batch(64/123) done. Loss: 0.1355 lr:0.100000 network_time: 0.0331
|
286 |
+
[ Wed Sep 14 15:06:20 2022 ] Eval epoch: 46
|
287 |
+
[ Wed Sep 14 15:06:53 2022 ] Mean test loss of 258 batches: 2.519627332687378.
|
288 |
+
[ Wed Sep 14 15:06:53 2022 ] Top1: 54.52%
|
289 |
+
[ Wed Sep 14 15:06:53 2022 ] Top5: 84.55%
|
290 |
+
[ Wed Sep 14 15:06:53 2022 ] Training epoch: 47
|
291 |
+
[ Wed Sep 14 15:07:27 2022 ] Batch(41/123) done. Loss: 0.3258 lr:0.100000 network_time: 0.0264
|
292 |
+
[ Wed Sep 14 15:08:26 2022 ] Eval epoch: 47
|
293 |
+
[ Wed Sep 14 15:08:59 2022 ] Mean test loss of 258 batches: 2.6793875694274902.
|
294 |
+
[ Wed Sep 14 15:08:59 2022 ] Top1: 49.95%
|
295 |
+
[ Wed Sep 14 15:08:59 2022 ] Top5: 81.57%
|
296 |
+
[ Wed Sep 14 15:08:59 2022 ] Training epoch: 48
|
297 |
+
[ Wed Sep 14 15:09:16 2022 ] Batch(18/123) done. Loss: 0.1776 lr:0.100000 network_time: 0.0327
|
298 |
+
[ Wed Sep 14 15:10:28 2022 ] Batch(118/123) done. Loss: 0.1763 lr:0.100000 network_time: 0.0273
|
299 |
+
[ Wed Sep 14 15:10:31 2022 ] Eval epoch: 48
|
300 |
+
[ Wed Sep 14 15:11:04 2022 ] Mean test loss of 258 batches: 2.500056505203247.
|
301 |
+
[ Wed Sep 14 15:11:04 2022 ] Top1: 53.82%
|
302 |
+
[ Wed Sep 14 15:11:04 2022 ] Top5: 79.20%
|
303 |
+
[ Wed Sep 14 15:11:05 2022 ] Training epoch: 49
|
304 |
+
[ Wed Sep 14 15:12:17 2022 ] Batch(95/123) done. Loss: 0.1675 lr:0.100000 network_time: 0.0305
|
305 |
+
[ Wed Sep 14 15:12:37 2022 ] Eval epoch: 49
|
306 |
+
[ Wed Sep 14 15:13:10 2022 ] Mean test loss of 258 batches: 2.3841023445129395.
|
307 |
+
[ Wed Sep 14 15:13:10 2022 ] Top1: 55.69%
|
308 |
+
[ Wed Sep 14 15:13:10 2022 ] Top5: 85.04%
|
309 |
+
[ Wed Sep 14 15:13:10 2022 ] Training epoch: 50
|
310 |
+
[ Wed Sep 14 15:14:06 2022 ] Batch(72/123) done. Loss: 0.2073 lr:0.100000 network_time: 0.0268
|
311 |
+
[ Wed Sep 14 15:14:43 2022 ] Eval epoch: 50
|
312 |
+
[ Wed Sep 14 15:15:16 2022 ] Mean test loss of 258 batches: 2.200166702270508.
|
313 |
+
[ Wed Sep 14 15:15:16 2022 ] Top1: 53.15%
|
314 |
+
[ Wed Sep 14 15:15:16 2022 ] Top5: 85.08%
|
315 |
+
[ Wed Sep 14 15:15:16 2022 ] Training epoch: 51
|
316 |
+
[ Wed Sep 14 15:15:55 2022 ] Batch(49/123) done. Loss: 0.2201 lr:0.100000 network_time: 0.0314
|
317 |
+
[ Wed Sep 14 15:16:48 2022 ] Eval epoch: 51
|
318 |
+
[ Wed Sep 14 15:17:21 2022 ] Mean test loss of 258 batches: 2.511787176132202.
|
319 |
+
[ Wed Sep 14 15:17:21 2022 ] Top1: 54.19%
|
320 |
+
[ Wed Sep 14 15:17:21 2022 ] Top5: 86.07%
|
321 |
+
[ Wed Sep 14 15:17:21 2022 ] Training epoch: 52
|
322 |
+
[ Wed Sep 14 15:17:44 2022 ] Batch(26/123) done. Loss: 0.2281 lr:0.100000 network_time: 0.0261
|
323 |
+
[ Wed Sep 14 15:18:54 2022 ] Eval epoch: 52
|
324 |
+
[ Wed Sep 14 15:19:26 2022 ] Mean test loss of 258 batches: 2.6677470207214355.
|
325 |
+
[ Wed Sep 14 15:19:26 2022 ] Top1: 52.61%
|
326 |
+
[ Wed Sep 14 15:19:26 2022 ] Top5: 83.11%
|
327 |
+
[ Wed Sep 14 15:19:26 2022 ] Training epoch: 53
|
328 |
+
[ Wed Sep 14 15:19:32 2022 ] Batch(3/123) done. Loss: 0.0533 lr:0.100000 network_time: 0.0331
|
329 |
+
[ Wed Sep 14 15:20:45 2022 ] Batch(103/123) done. Loss: 0.1253 lr:0.100000 network_time: 0.0315
|
330 |
+
[ Wed Sep 14 15:20:59 2022 ] Eval epoch: 53
|
331 |
+
[ Wed Sep 14 15:21:31 2022 ] Mean test loss of 258 batches: 2.311555862426758.
|
332 |
+
[ Wed Sep 14 15:21:31 2022 ] Top1: 51.09%
|
333 |
+
[ Wed Sep 14 15:21:31 2022 ] Top5: 84.42%
|
334 |
+
[ Wed Sep 14 15:21:32 2022 ] Training epoch: 54
|
335 |
+
[ Wed Sep 14 15:22:33 2022 ] Batch(80/123) done. Loss: 0.3264 lr:0.100000 network_time: 0.0266
|
336 |
+
[ Wed Sep 14 15:23:04 2022 ] Eval epoch: 54
|
337 |
+
[ Wed Sep 14 15:23:37 2022 ] Mean test loss of 258 batches: 1.9971171617507935.
|
338 |
+
[ Wed Sep 14 15:23:37 2022 ] Top1: 58.15%
|
339 |
+
[ Wed Sep 14 15:23:37 2022 ] Top5: 87.86%
|
340 |
+
[ Wed Sep 14 15:23:37 2022 ] Training epoch: 55
|
341 |
+
[ Wed Sep 14 15:24:23 2022 ] Batch(57/123) done. Loss: 0.1479 lr:0.100000 network_time: 0.0307
|
342 |
+
[ Wed Sep 14 15:25:10 2022 ] Eval epoch: 55
|
343 |
+
[ Wed Sep 14 15:25:43 2022 ] Mean test loss of 258 batches: 2.5352351665496826.
|
344 |
+
[ Wed Sep 14 15:25:43 2022 ] Top1: 51.66%
|
345 |
+
[ Wed Sep 14 15:25:43 2022 ] Top5: 83.76%
|
346 |
+
[ Wed Sep 14 15:25:43 2022 ] Training epoch: 56
|
347 |
+
[ Wed Sep 14 15:26:12 2022 ] Batch(34/123) done. Loss: 0.0831 lr:0.100000 network_time: 0.0305
|
348 |
+
[ Wed Sep 14 15:27:16 2022 ] Eval epoch: 56
|
349 |
+
[ Wed Sep 14 15:27:48 2022 ] Mean test loss of 258 batches: 3.105311632156372.
|
350 |
+
[ Wed Sep 14 15:27:48 2022 ] Top1: 46.59%
|
351 |
+
[ Wed Sep 14 15:27:48 2022 ] Top5: 78.11%
|
352 |
+
[ Wed Sep 14 15:27:48 2022 ] Training epoch: 57
|
353 |
+
[ Wed Sep 14 15:28:00 2022 ] Batch(11/123) done. Loss: 0.2058 lr:0.100000 network_time: 0.0274
|
354 |
+
[ Wed Sep 14 15:29:13 2022 ] Batch(111/123) done. Loss: 0.0805 lr:0.100000 network_time: 0.0269
|
355 |
+
[ Wed Sep 14 15:29:21 2022 ] Eval epoch: 57
|
356 |
+
[ Wed Sep 14 15:29:53 2022 ] Mean test loss of 258 batches: 2.3883368968963623.
|
357 |
+
[ Wed Sep 14 15:29:53 2022 ] Top1: 55.04%
|
358 |
+
[ Wed Sep 14 15:29:53 2022 ] Top5: 84.45%
|
359 |
+
[ Wed Sep 14 15:29:53 2022 ] Training epoch: 58
|
360 |
+
[ Wed Sep 14 15:31:01 2022 ] Batch(88/123) done. Loss: 0.1361 lr:0.100000 network_time: 0.0269
|
361 |
+
[ Wed Sep 14 15:31:26 2022 ] Eval epoch: 58
|
362 |
+
[ Wed Sep 14 15:31:59 2022 ] Mean test loss of 258 batches: 2.499546527862549.
|
363 |
+
[ Wed Sep 14 15:31:59 2022 ] Top1: 50.06%
|
364 |
+
[ Wed Sep 14 15:31:59 2022 ] Top5: 81.28%
|
365 |
+
[ Wed Sep 14 15:31:59 2022 ] Training epoch: 59
|
366 |
+
[ Wed Sep 14 15:32:50 2022 ] Batch(65/123) done. Loss: 0.1671 lr:0.100000 network_time: 0.0313
|
367 |
+
[ Wed Sep 14 15:33:32 2022 ] Eval epoch: 59
|
368 |
+
[ Wed Sep 14 15:34:04 2022 ] Mean test loss of 258 batches: 2.3240156173706055.
|
369 |
+
[ Wed Sep 14 15:34:04 2022 ] Top1: 55.70%
|
370 |
+
[ Wed Sep 14 15:34:05 2022 ] Top5: 86.14%
|
371 |
+
[ Wed Sep 14 15:34:05 2022 ] Training epoch: 60
|
372 |
+
[ Wed Sep 14 15:34:39 2022 ] Batch(42/123) done. Loss: 0.1858 lr:0.100000 network_time: 0.0314
|
373 |
+
[ Wed Sep 14 15:35:37 2022 ] Eval epoch: 60
|
374 |
+
[ Wed Sep 14 15:36:10 2022 ] Mean test loss of 258 batches: 3.158168315887451.
|
375 |
+
[ Wed Sep 14 15:36:10 2022 ] Top1: 45.92%
|
376 |
+
[ Wed Sep 14 15:36:10 2022 ] Top5: 78.06%
|
377 |
+
[ Wed Sep 14 15:36:10 2022 ] Training epoch: 61
|
378 |
+
[ Wed Sep 14 15:36:28 2022 ] Batch(19/123) done. Loss: 0.0107 lr:0.010000 network_time: 0.0306
|
379 |
+
[ Wed Sep 14 15:37:40 2022 ] Batch(119/123) done. Loss: 0.0232 lr:0.010000 network_time: 0.0257
|
380 |
+
[ Wed Sep 14 15:37:43 2022 ] Eval epoch: 61
|
381 |
+
[ Wed Sep 14 15:38:15 2022 ] Mean test loss of 258 batches: 1.911889910697937.
|
382 |
+
[ Wed Sep 14 15:38:15 2022 ] Top1: 62.90%
|
383 |
+
[ Wed Sep 14 15:38:15 2022 ] Top5: 89.40%
|
384 |
+
[ Wed Sep 14 15:38:15 2022 ] Training epoch: 62
|
385 |
+
[ Wed Sep 14 15:39:29 2022 ] Batch(96/123) done. Loss: 0.0245 lr:0.010000 network_time: 0.0267
|
386 |
+
[ Wed Sep 14 15:39:48 2022 ] Eval epoch: 62
|
387 |
+
[ Wed Sep 14 15:40:20 2022 ] Mean test loss of 258 batches: 2.0928752422332764.
|
388 |
+
[ Wed Sep 14 15:40:20 2022 ] Top1: 62.90%
|
389 |
+
[ Wed Sep 14 15:40:21 2022 ] Top5: 89.33%
|
390 |
+
[ Wed Sep 14 15:40:21 2022 ] Training epoch: 63
|
391 |
+
[ Wed Sep 14 15:41:17 2022 ] Batch(73/123) done. Loss: 0.0077 lr:0.010000 network_time: 0.0316
|
392 |
+
[ Wed Sep 14 15:41:53 2022 ] Eval epoch: 63
|
393 |
+
[ Wed Sep 14 15:42:27 2022 ] Mean test loss of 258 batches: 2.0350732803344727.
|
394 |
+
[ Wed Sep 14 15:42:27 2022 ] Top1: 63.79%
|
395 |
+
[ Wed Sep 14 15:42:27 2022 ] Top5: 89.59%
|
396 |
+
[ Wed Sep 14 15:42:27 2022 ] Training epoch: 64
|
397 |
+
[ Wed Sep 14 15:43:07 2022 ] Batch(50/123) done. Loss: 0.0201 lr:0.010000 network_time: 0.0264
|
398 |
+
[ Wed Sep 14 15:43:59 2022 ] Eval epoch: 64
|
399 |
+
[ Wed Sep 14 15:44:32 2022 ] Mean test loss of 258 batches: 1.8492361307144165.
|
400 |
+
[ Wed Sep 14 15:44:32 2022 ] Top1: 64.04%
|
401 |
+
[ Wed Sep 14 15:44:32 2022 ] Top5: 90.05%
|
402 |
+
[ Wed Sep 14 15:44:32 2022 ] Training epoch: 65
|
403 |
+
[ Wed Sep 14 15:44:55 2022 ] Batch(27/123) done. Loss: 0.0059 lr:0.010000 network_time: 0.0258
|
404 |
+
[ Wed Sep 14 15:46:04 2022 ] Eval epoch: 65
|
405 |
+
[ Wed Sep 14 15:46:37 2022 ] Mean test loss of 258 batches: 1.795392632484436.
|
406 |
+
[ Wed Sep 14 15:46:37 2022 ] Top1: 63.41%
|
407 |
+
[ Wed Sep 14 15:46:37 2022 ] Top5: 90.03%
|
408 |
+
[ Wed Sep 14 15:46:37 2022 ] Training epoch: 66
|
409 |
+
[ Wed Sep 14 15:46:44 2022 ] Batch(4/123) done. Loss: 0.0055 lr:0.010000 network_time: 0.0255
|
410 |
+
[ Wed Sep 14 15:47:56 2022 ] Batch(104/123) done. Loss: 0.0576 lr:0.010000 network_time: 0.0271
|
411 |
+
[ Wed Sep 14 15:48:10 2022 ] Eval epoch: 66
|
412 |
+
[ Wed Sep 14 15:48:42 2022 ] Mean test loss of 258 batches: 1.9341166019439697.
|
413 |
+
[ Wed Sep 14 15:48:42 2022 ] Top1: 64.14%
|
414 |
+
[ Wed Sep 14 15:48:42 2022 ] Top5: 89.90%
|
415 |
+
[ Wed Sep 14 15:48:42 2022 ] Training epoch: 67
|
416 |
+
[ Wed Sep 14 15:49:45 2022 ] Batch(81/123) done. Loss: 0.0215 lr:0.010000 network_time: 0.0269
|
417 |
+
[ Wed Sep 14 15:50:15 2022 ] Eval epoch: 67
|
418 |
+
[ Wed Sep 14 15:50:48 2022 ] Mean test loss of 258 batches: 2.1112568378448486.
|
419 |
+
[ Wed Sep 14 15:50:48 2022 ] Top1: 61.59%
|
420 |
+
[ Wed Sep 14 15:50:48 2022 ] Top5: 88.41%
|
421 |
+
[ Wed Sep 14 15:50:48 2022 ] Training epoch: 68
|
422 |
+
[ Wed Sep 14 15:51:34 2022 ] Batch(58/123) done. Loss: 0.0064 lr:0.010000 network_time: 0.0294
|
423 |
+
[ Wed Sep 14 15:52:20 2022 ] Eval epoch: 68
|
424 |
+
[ Wed Sep 14 15:52:53 2022 ] Mean test loss of 258 batches: 1.7816262245178223.
|
425 |
+
[ Wed Sep 14 15:52:53 2022 ] Top1: 64.25%
|
426 |
+
[ Wed Sep 14 15:52:53 2022 ] Top5: 90.30%
|
427 |
+
[ Wed Sep 14 15:52:53 2022 ] Training epoch: 69
|
428 |
+
[ Wed Sep 14 15:53:22 2022 ] Batch(35/123) done. Loss: 0.0043 lr:0.010000 network_time: 0.0313
|
429 |
+
[ Wed Sep 14 15:54:26 2022 ] Eval epoch: 69
|
430 |
+
[ Wed Sep 14 15:54:58 2022 ] Mean test loss of 258 batches: 1.813872218132019.
|
431 |
+
[ Wed Sep 14 15:54:58 2022 ] Top1: 62.75%
|
432 |
+
[ Wed Sep 14 15:54:58 2022 ] Top5: 89.63%
|
433 |
+
[ Wed Sep 14 15:54:59 2022 ] Training epoch: 70
|
434 |
+
[ Wed Sep 14 15:55:11 2022 ] Batch(12/123) done. Loss: 0.0021 lr:0.010000 network_time: 0.0276
|
435 |
+
[ Wed Sep 14 15:56:24 2022 ] Batch(112/123) done. Loss: 0.0146 lr:0.010000 network_time: 0.0307
|
436 |
+
[ Wed Sep 14 15:56:31 2022 ] Eval epoch: 70
|
437 |
+
[ Wed Sep 14 15:57:04 2022 ] Mean test loss of 258 batches: 1.836743712425232.
|
438 |
+
[ Wed Sep 14 15:57:04 2022 ] Top1: 64.22%
|
439 |
+
[ Wed Sep 14 15:57:04 2022 ] Top5: 90.13%
|
440 |
+
[ Wed Sep 14 15:57:04 2022 ] Training epoch: 71
|
441 |
+
[ Wed Sep 14 15:58:12 2022 ] Batch(89/123) done. Loss: 0.0099 lr:0.010000 network_time: 0.0314
|
442 |
+
[ Wed Sep 14 15:58:37 2022 ] Eval epoch: 71
|
443 |
+
[ Wed Sep 14 15:59:09 2022 ] Mean test loss of 258 batches: 1.9741806983947754.
|
444 |
+
[ Wed Sep 14 15:59:09 2022 ] Top1: 64.31%
|
445 |
+
[ Wed Sep 14 15:59:10 2022 ] Top5: 89.92%
|
446 |
+
[ Wed Sep 14 15:59:10 2022 ] Training epoch: 72
|
447 |
+
[ Wed Sep 14 16:00:01 2022 ] Batch(66/123) done. Loss: 0.0041 lr:0.010000 network_time: 0.0271
|
448 |
+
[ Wed Sep 14 16:00:42 2022 ] Eval epoch: 72
|
449 |
+
[ Wed Sep 14 16:01:15 2022 ] Mean test loss of 258 batches: 1.8784939050674438.
|
450 |
+
[ Wed Sep 14 16:01:15 2022 ] Top1: 62.79%
|
451 |
+
[ Wed Sep 14 16:01:15 2022 ] Top5: 89.43%
|
452 |
+
[ Wed Sep 14 16:01:15 2022 ] Training epoch: 73
|
453 |
+
[ Wed Sep 14 16:01:50 2022 ] Batch(43/123) done. Loss: 0.0081 lr:0.010000 network_time: 0.0291
|
454 |
+
[ Wed Sep 14 16:02:48 2022 ] Eval epoch: 73
|
455 |
+
[ Wed Sep 14 16:03:21 2022 ] Mean test loss of 258 batches: 1.9898936748504639.
|
456 |
+
[ Wed Sep 14 16:03:21 2022 ] Top1: 60.02%
|
457 |
+
[ Wed Sep 14 16:03:21 2022 ] Top5: 88.44%
|
458 |
+
[ Wed Sep 14 16:03:21 2022 ] Training epoch: 74
|
459 |
+
[ Wed Sep 14 16:03:39 2022 ] Batch(20/123) done. Loss: 0.0023 lr:0.010000 network_time: 0.0536
|
460 |
+
[ Wed Sep 14 16:04:52 2022 ] Batch(120/123) done. Loss: 0.0129 lr:0.010000 network_time: 0.0269
|
461 |
+
[ Wed Sep 14 16:04:54 2022 ] Eval epoch: 74
|
462 |
+
[ Wed Sep 14 16:05:26 2022 ] Mean test loss of 258 batches: 1.978050947189331.
|
463 |
+
[ Wed Sep 14 16:05:26 2022 ] Top1: 63.94%
|
464 |
+
[ Wed Sep 14 16:05:26 2022 ] Top5: 89.74%
|
465 |
+
[ Wed Sep 14 16:05:27 2022 ] Training epoch: 75
|
466 |
+
[ Wed Sep 14 16:06:41 2022 ] Batch(97/123) done. Loss: 0.0034 lr:0.010000 network_time: 0.0278
|
467 |
+
[ Wed Sep 14 16:06:59 2022 ] Eval epoch: 75
|
468 |
+
[ Wed Sep 14 16:07:32 2022 ] Mean test loss of 258 batches: 1.8710790872573853.
|
469 |
+
[ Wed Sep 14 16:07:32 2022 ] Top1: 64.35%
|
470 |
+
[ Wed Sep 14 16:07:32 2022 ] Top5: 90.26%
|
471 |
+
[ Wed Sep 14 16:07:32 2022 ] Training epoch: 76
|
472 |
+
[ Wed Sep 14 16:08:30 2022 ] Batch(74/123) done. Loss: 0.0054 lr:0.010000 network_time: 0.0272
|
473 |
+
[ Wed Sep 14 16:09:05 2022 ] Eval epoch: 76
|
474 |
+
[ Wed Sep 14 16:09:37 2022 ] Mean test loss of 258 batches: 1.8576815128326416.
|
475 |
+
[ Wed Sep 14 16:09:37 2022 ] Top1: 63.73%
|
476 |
+
[ Wed Sep 14 16:09:37 2022 ] Top5: 89.97%
|
477 |
+
[ Wed Sep 14 16:09:37 2022 ] Training epoch: 77
|
478 |
+
[ Wed Sep 14 16:10:18 2022 ] Batch(51/123) done. Loss: 0.0042 lr:0.010000 network_time: 0.0267
|
479 |
+
[ Wed Sep 14 16:11:09 2022 ] Eval epoch: 77
|
480 |
+
[ Wed Sep 14 16:11:42 2022 ] Mean test loss of 258 batches: 2.003507375717163.
|
481 |
+
[ Wed Sep 14 16:11:42 2022 ] Top1: 59.48%
|
482 |
+
[ Wed Sep 14 16:11:43 2022 ] Top5: 88.16%
|
483 |
+
[ Wed Sep 14 16:11:43 2022 ] Training epoch: 78
|
484 |
+
[ Wed Sep 14 16:12:07 2022 ] Batch(28/123) done. Loss: 0.0060 lr:0.010000 network_time: 0.0274
|
485 |
+
[ Wed Sep 14 16:13:15 2022 ] Eval epoch: 78
|
486 |
+
[ Wed Sep 14 16:13:48 2022 ] Mean test loss of 258 batches: 1.820636510848999.
|
487 |
+
[ Wed Sep 14 16:13:48 2022 ] Top1: 64.49%
|
488 |
+
[ Wed Sep 14 16:13:48 2022 ] Top5: 90.28%
|
489 |
+
[ Wed Sep 14 16:13:48 2022 ] Training epoch: 79
|
490 |
+
[ Wed Sep 14 16:13:56 2022 ] Batch(5/123) done. Loss: 0.0029 lr:0.010000 network_time: 0.0282
|
491 |
+
[ Wed Sep 14 16:15:08 2022 ] Batch(105/123) done. Loss: 0.0084 lr:0.010000 network_time: 0.0319
|
492 |
+
[ Wed Sep 14 16:15:21 2022 ] Eval epoch: 79
|
493 |
+
[ Wed Sep 14 16:15:54 2022 ] Mean test loss of 258 batches: 1.90288507938385.
|
494 |
+
[ Wed Sep 14 16:15:54 2022 ] Top1: 62.17%
|
495 |
+
[ Wed Sep 14 16:15:54 2022 ] Top5: 89.42%
|
496 |
+
[ Wed Sep 14 16:15:54 2022 ] Training epoch: 80
|
497 |
+
[ Wed Sep 14 16:16:57 2022 ] Batch(82/123) done. Loss: 0.0056 lr:0.010000 network_time: 0.0267
|
498 |
+
[ Wed Sep 14 16:17:26 2022 ] Eval epoch: 80
|
499 |
+
[ Wed Sep 14 16:17:59 2022 ] Mean test loss of 258 batches: 1.7706035375595093.
|
500 |
+
[ Wed Sep 14 16:17:59 2022 ] Top1: 64.63%
|
501 |
+
[ Wed Sep 14 16:17:59 2022 ] Top5: 90.46%
|
502 |
+
[ Wed Sep 14 16:17:59 2022 ] Training epoch: 81
|
503 |
+
[ Wed Sep 14 16:18:46 2022 ] Batch(59/123) done. Loss: 0.0040 lr:0.001000 network_time: 0.0296
|
504 |
+
[ Wed Sep 14 16:19:32 2022 ] Eval epoch: 81
|
505 |
+
[ Wed Sep 14 16:20:04 2022 ] Mean test loss of 258 batches: 1.8429886102676392.
|
506 |
+
[ Wed Sep 14 16:20:04 2022 ] Top1: 64.60%
|
507 |
+
[ Wed Sep 14 16:20:04 2022 ] Top5: 90.33%
|
508 |
+
[ Wed Sep 14 16:20:04 2022 ] Training epoch: 82
|
509 |
+
[ Wed Sep 14 16:20:34 2022 ] Batch(36/123) done. Loss: 0.0052 lr:0.001000 network_time: 0.0295
|
510 |
+
[ Wed Sep 14 16:21:37 2022 ] Eval epoch: 82
|
511 |
+
[ Wed Sep 14 16:22:10 2022 ] Mean test loss of 258 batches: 1.933942198753357.
|
512 |
+
[ Wed Sep 14 16:22:10 2022 ] Top1: 63.77%
|
513 |
+
[ Wed Sep 14 16:22:10 2022 ] Top5: 89.74%
|
514 |
+
[ Wed Sep 14 16:22:10 2022 ] Training epoch: 83
|
515 |
+
[ Wed Sep 14 16:22:23 2022 ] Batch(13/123) done. Loss: 0.0026 lr:0.001000 network_time: 0.0325
|
516 |
+
[ Wed Sep 14 16:23:36 2022 ] Batch(113/123) done. Loss: 0.0026 lr:0.001000 network_time: 0.0279
|
517 |
+
[ Wed Sep 14 16:23:43 2022 ] Eval epoch: 83
|
518 |
+
[ Wed Sep 14 16:24:15 2022 ] Mean test loss of 258 batches: 1.7652544975280762.
|
519 |
+
[ Wed Sep 14 16:24:15 2022 ] Top1: 64.11%
|
520 |
+
[ Wed Sep 14 16:24:15 2022 ] Top5: 90.29%
|
521 |
+
[ Wed Sep 14 16:24:16 2022 ] Training epoch: 84
|
522 |
+
[ Wed Sep 14 16:25:25 2022 ] Batch(90/123) done. Loss: 0.0038 lr:0.001000 network_time: 0.0314
|
523 |
+
[ Wed Sep 14 16:25:48 2022 ] Eval epoch: 84
|
524 |
+
[ Wed Sep 14 16:26:21 2022 ] Mean test loss of 258 batches: 1.8277084827423096.
|
525 |
+
[ Wed Sep 14 16:26:21 2022 ] Top1: 63.18%
|
526 |
+
[ Wed Sep 14 16:26:21 2022 ] Top5: 89.96%
|
527 |
+
[ Wed Sep 14 16:26:21 2022 ] Training epoch: 85
|
528 |
+
[ Wed Sep 14 16:27:13 2022 ] Batch(67/123) done. Loss: 0.0028 lr:0.001000 network_time: 0.0271
|
529 |
+
[ Wed Sep 14 16:27:54 2022 ] Eval epoch: 85
|
530 |
+
[ Wed Sep 14 16:28:26 2022 ] Mean test loss of 258 batches: 1.7809817790985107.
|
531 |
+
[ Wed Sep 14 16:28:26 2022 ] Top1: 64.47%
|
532 |
+
[ Wed Sep 14 16:28:27 2022 ] Top5: 90.45%
|
533 |
+
[ Wed Sep 14 16:28:27 2022 ] Training epoch: 86
|
534 |
+
[ Wed Sep 14 16:29:02 2022 ] Batch(44/123) done. Loss: 0.0091 lr:0.001000 network_time: 0.0278
|
535 |
+
[ Wed Sep 14 16:29:59 2022 ] Eval epoch: 86
|
536 |
+
[ Wed Sep 14 16:30:32 2022 ] Mean test loss of 258 batches: 1.8707036972045898.
|
537 |
+
[ Wed Sep 14 16:30:32 2022 ] Top1: 62.34%
|
538 |
+
[ Wed Sep 14 16:30:32 2022 ] Top5: 89.38%
|
539 |
+
[ Wed Sep 14 16:30:32 2022 ] Training epoch: 87
|
540 |
+
[ Wed Sep 14 16:30:52 2022 ] Batch(21/123) done. Loss: 0.0035 lr:0.001000 network_time: 0.0260
|
541 |
+
[ Wed Sep 14 16:32:04 2022 ] Batch(121/123) done. Loss: 0.0062 lr:0.001000 network_time: 0.0307
|
542 |
+
[ Wed Sep 14 16:32:05 2022 ] Eval epoch: 87
|
543 |
+
[ Wed Sep 14 16:32:38 2022 ] Mean test loss of 258 batches: 1.8078993558883667.
|
544 |
+
[ Wed Sep 14 16:32:38 2022 ] Top1: 64.64%
|
545 |
+
[ Wed Sep 14 16:32:38 2022 ] Top5: 90.34%
|
546 |
+
[ Wed Sep 14 16:32:38 2022 ] Training epoch: 88
|
547 |
+
[ Wed Sep 14 16:33:53 2022 ] Batch(98/123) done. Loss: 0.0088 lr:0.001000 network_time: 0.0265
|
548 |
+
[ Wed Sep 14 16:34:11 2022 ] Eval epoch: 88
|
549 |
+
[ Wed Sep 14 16:34:44 2022 ] Mean test loss of 258 batches: 1.7731508016586304.
|
550 |
+
[ Wed Sep 14 16:34:44 2022 ] Top1: 64.29%
|
551 |
+
[ Wed Sep 14 16:34:44 2022 ] Top5: 90.33%
|
552 |
+
[ Wed Sep 14 16:34:44 2022 ] Training epoch: 89
|
553 |
+
[ Wed Sep 14 16:35:42 2022 ] Batch(75/123) done. Loss: 0.0014 lr:0.001000 network_time: 0.0288
|
554 |
+
[ Wed Sep 14 16:36:16 2022 ] Eval epoch: 89
|
555 |
+
[ Wed Sep 14 16:36:49 2022 ] Mean test loss of 258 batches: 1.8627841472625732.
|
556 |
+
[ Wed Sep 14 16:36:49 2022 ] Top1: 62.02%
|
557 |
+
[ Wed Sep 14 16:36:49 2022 ] Top5: 89.46%
|
558 |
+
[ Wed Sep 14 16:36:49 2022 ] Training epoch: 90
|
559 |
+
[ Wed Sep 14 16:37:31 2022 ] Batch(52/123) done. Loss: 0.0049 lr:0.001000 network_time: 0.0316
|
560 |
+
[ Wed Sep 14 16:38:22 2022 ] Eval epoch: 90
|
561 |
+
[ Wed Sep 14 16:38:55 2022 ] Mean test loss of 258 batches: 1.824079990386963.
|
562 |
+
[ Wed Sep 14 16:38:55 2022 ] Top1: 64.66%
|
563 |
+
[ Wed Sep 14 16:38:55 2022 ] Top5: 90.42%
|
564 |
+
[ Wed Sep 14 16:38:55 2022 ] Training epoch: 91
|
565 |
+
[ Wed Sep 14 16:39:20 2022 ] Batch(29/123) done. Loss: 0.0035 lr:0.001000 network_time: 0.0309
|
566 |
+
[ Wed Sep 14 16:40:28 2022 ] Eval epoch: 91
|
567 |
+
[ Wed Sep 14 16:41:01 2022 ] Mean test loss of 258 batches: 1.771101474761963.
|
568 |
+
[ Wed Sep 14 16:41:01 2022 ] Top1: 64.53%
|
569 |
+
[ Wed Sep 14 16:41:01 2022 ] Top5: 90.39%
|
570 |
+
[ Wed Sep 14 16:41:01 2022 ] Training epoch: 92
|
571 |
+
[ Wed Sep 14 16:41:09 2022 ] Batch(6/123) done. Loss: 0.0039 lr:0.001000 network_time: 0.0326
|
572 |
+
[ Wed Sep 14 16:42:22 2022 ] Batch(106/123) done. Loss: 0.0112 lr:0.001000 network_time: 0.0315
|
573 |
+
[ Wed Sep 14 16:42:33 2022 ] Eval epoch: 92
|
574 |
+
[ Wed Sep 14 16:43:06 2022 ] Mean test loss of 258 batches: 1.9300997257232666.
|
575 |
+
[ Wed Sep 14 16:43:06 2022 ] Top1: 64.31%
|
576 |
+
[ Wed Sep 14 16:43:06 2022 ] Top5: 90.14%
|
577 |
+
[ Wed Sep 14 16:43:06 2022 ] Training epoch: 93
|
578 |
+
[ Wed Sep 14 16:44:10 2022 ] Batch(83/123) done. Loss: 0.0053 lr:0.001000 network_time: 0.0368
|
579 |
+
[ Wed Sep 14 16:44:39 2022 ] Eval epoch: 93
|
580 |
+
[ Wed Sep 14 16:45:12 2022 ] Mean test loss of 258 batches: 1.7791281938552856.
|
581 |
+
[ Wed Sep 14 16:45:12 2022 ] Top1: 64.49%
|
582 |
+
[ Wed Sep 14 16:45:12 2022 ] Top5: 90.49%
|
583 |
+
[ Wed Sep 14 16:45:12 2022 ] Training epoch: 94
|
584 |
+
[ Wed Sep 14 16:45:59 2022 ] Batch(60/123) done. Loss: 0.0029 lr:0.001000 network_time: 0.0300
|
585 |
+
[ Wed Sep 14 16:46:45 2022 ] Eval epoch: 94
|
586 |
+
[ Wed Sep 14 16:47:17 2022 ] Mean test loss of 258 batches: 1.7987879514694214.
|
587 |
+
[ Wed Sep 14 16:47:17 2022 ] Top1: 64.46%
|
588 |
+
[ Wed Sep 14 16:47:17 2022 ] Top5: 90.42%
|
589 |
+
[ Wed Sep 14 16:47:17 2022 ] Training epoch: 95
|
590 |
+
[ Wed Sep 14 16:47:48 2022 ] Batch(37/123) done. Loss: 0.0069 lr:0.001000 network_time: 0.0321
|
591 |
+
[ Wed Sep 14 16:48:50 2022 ] Eval epoch: 95
|
592 |
+
[ Wed Sep 14 16:49:22 2022 ] Mean test loss of 258 batches: 1.9317775964736938.
|
593 |
+
[ Wed Sep 14 16:49:22 2022 ] Top1: 64.55%
|
594 |
+
[ Wed Sep 14 16:49:23 2022 ] Top5: 90.23%
|
595 |
+
[ Wed Sep 14 16:49:23 2022 ] Training epoch: 96
|
596 |
+
[ Wed Sep 14 16:49:37 2022 ] Batch(14/123) done. Loss: 0.0553 lr:0.001000 network_time: 0.0329
|
597 |
+
[ Wed Sep 14 16:50:49 2022 ] Batch(114/123) done. Loss: 0.0015 lr:0.001000 network_time: 0.0284
|
598 |
+
[ Wed Sep 14 16:50:55 2022 ] Eval epoch: 96
|
599 |
+
[ Wed Sep 14 16:51:28 2022 ] Mean test loss of 258 batches: 1.7748775482177734.
|
600 |
+
[ Wed Sep 14 16:51:28 2022 ] Top1: 63.97%
|
601 |
+
[ Wed Sep 14 16:51:28 2022 ] Top5: 90.09%
|
602 |
+
[ Wed Sep 14 16:51:28 2022 ] Training epoch: 97
|
603 |
+
[ Wed Sep 14 16:52:38 2022 ] Batch(91/123) done. Loss: 0.0035 lr:0.001000 network_time: 0.0269
|
604 |
+
[ Wed Sep 14 16:53:01 2022 ] Eval epoch: 97
|
605 |
+
[ Wed Sep 14 16:53:34 2022 ] Mean test loss of 258 batches: 2.001574754714966.
|
606 |
+
[ Wed Sep 14 16:53:34 2022 ] Top1: 59.91%
|
607 |
+
[ Wed Sep 14 16:53:34 2022 ] Top5: 88.32%
|
608 |
+
[ Wed Sep 14 16:53:34 2022 ] Training epoch: 98
|
609 |
+
[ Wed Sep 14 16:54:27 2022 ] Batch(68/123) done. Loss: 0.0029 lr:0.001000 network_time: 0.0311
|
610 |
+
[ Wed Sep 14 16:55:07 2022 ] Eval epoch: 98
|
611 |
+
[ Wed Sep 14 16:55:40 2022 ] Mean test loss of 258 batches: 1.9462146759033203.
|
612 |
+
[ Wed Sep 14 16:55:40 2022 ] Top1: 62.26%
|
613 |
+
[ Wed Sep 14 16:55:40 2022 ] Top5: 89.31%
|
614 |
+
[ Wed Sep 14 16:55:40 2022 ] Training epoch: 99
|
615 |
+
[ Wed Sep 14 16:56:16 2022 ] Batch(45/123) done. Loss: 0.0050 lr:0.001000 network_time: 0.0275
|
616 |
+
[ Wed Sep 14 16:57:12 2022 ] Eval epoch: 99
|
617 |
+
[ Wed Sep 14 16:57:45 2022 ] Mean test loss of 258 batches: 1.8766233921051025.
|
618 |
+
[ Wed Sep 14 16:57:45 2022 ] Top1: 64.34%
|
619 |
+
[ Wed Sep 14 16:57:45 2022 ] Top5: 90.11%
|
620 |
+
[ Wed Sep 14 16:57:45 2022 ] Training epoch: 100
|
621 |
+
[ Wed Sep 14 16:58:05 2022 ] Batch(22/123) done. Loss: 0.0029 lr:0.001000 network_time: 0.0298
|
622 |
+
[ Wed Sep 14 16:59:17 2022 ] Batch(122/123) done. Loss: 0.0024 lr:0.001000 network_time: 0.0273
|
623 |
+
[ Wed Sep 14 16:59:18 2022 ] Eval epoch: 100
|
624 |
+
[ Wed Sep 14 16:59:50 2022 ] Mean test loss of 258 batches: 2.055025339126587.
|
625 |
+
[ Wed Sep 14 16:59:50 2022 ] Top1: 63.57%
|
626 |
+
[ Wed Sep 14 16:59:50 2022 ] Top5: 89.82%
|
627 |
+
[ Wed Sep 14 16:59:51 2022 ] Training epoch: 101
|
628 |
+
[ Wed Sep 14 17:01:06 2022 ] Batch(99/123) done. Loss: 0.0027 lr:0.000100 network_time: 0.0278
|
629 |
+
[ Wed Sep 14 17:01:23 2022 ] Eval epoch: 101
|
630 |
+
[ Wed Sep 14 17:01:56 2022 ] Mean test loss of 258 batches: 2.1624438762664795.
|
631 |
+
[ Wed Sep 14 17:01:56 2022 ] Top1: 63.18%
|
632 |
+
[ Wed Sep 14 17:01:56 2022 ] Top5: 89.18%
|
633 |
+
[ Wed Sep 14 17:01:56 2022 ] Training epoch: 102
|
634 |
+
[ Wed Sep 14 17:02:55 2022 ] Batch(76/123) done. Loss: 0.0037 lr:0.000100 network_time: 0.0286
|
635 |
+
[ Wed Sep 14 17:03:29 2022 ] Eval epoch: 102
|
636 |
+
[ Wed Sep 14 17:04:01 2022 ] Mean test loss of 258 batches: 1.8533306121826172.
|
637 |
+
[ Wed Sep 14 17:04:01 2022 ] Top1: 62.90%
|
638 |
+
[ Wed Sep 14 17:04:02 2022 ] Top5: 89.73%
|
639 |
+
[ Wed Sep 14 17:04:02 2022 ] Training epoch: 103
|
640 |
+
[ Wed Sep 14 17:04:44 2022 ] Batch(53/123) done. Loss: 0.0062 lr:0.000100 network_time: 0.0278
|
641 |
+
[ Wed Sep 14 17:05:34 2022 ] Eval epoch: 103
|
642 |
+
[ Wed Sep 14 17:06:07 2022 ] Mean test loss of 258 batches: 1.783291220664978.
|
643 |
+
[ Wed Sep 14 17:06:07 2022 ] Top1: 64.95%
|
644 |
+
[ Wed Sep 14 17:06:07 2022 ] Top5: 90.61%
|
645 |
+
[ Wed Sep 14 17:06:07 2022 ] Training epoch: 104
|
646 |
+
[ Wed Sep 14 17:06:33 2022 ] Batch(30/123) done. Loss: 0.0126 lr:0.000100 network_time: 0.0259
|
647 |
+
[ Wed Sep 14 17:07:40 2022 ] Eval epoch: 104
|
648 |
+
[ Wed Sep 14 17:08:12 2022 ] Mean test loss of 258 batches: 2.0738165378570557.
|
649 |
+
[ Wed Sep 14 17:08:12 2022 ] Top1: 63.87%
|
650 |
+
[ Wed Sep 14 17:08:12 2022 ] Top5: 89.65%
|
651 |
+
[ Wed Sep 14 17:08:12 2022 ] Training epoch: 105
|
652 |
+
[ Wed Sep 14 17:08:21 2022 ] Batch(7/123) done. Loss: 0.0053 lr:0.000100 network_time: 0.0263
|
653 |
+
[ Wed Sep 14 17:09:33 2022 ] Batch(107/123) done. Loss: 0.0022 lr:0.000100 network_time: 0.0276
|
654 |
+
[ Wed Sep 14 17:09:45 2022 ] Eval epoch: 105
|
655 |
+
[ Wed Sep 14 17:10:18 2022 ] Mean test loss of 258 batches: 1.8350716829299927.
|
656 |
+
[ Wed Sep 14 17:10:18 2022 ] Top1: 63.67%
|
657 |
+
[ Wed Sep 14 17:10:18 2022 ] Top5: 90.12%
|
658 |
+
[ Wed Sep 14 17:10:18 2022 ] Training epoch: 106
|
659 |
+
[ Wed Sep 14 17:11:22 2022 ] Batch(84/123) done. Loss: 0.0068 lr:0.000100 network_time: 0.0269
|
660 |
+
[ Wed Sep 14 17:11:50 2022 ] Eval epoch: 106
|
661 |
+
[ Wed Sep 14 17:12:23 2022 ] Mean test loss of 258 batches: 1.885536551475525.
|
662 |
+
[ Wed Sep 14 17:12:23 2022 ] Top1: 63.25%
|
663 |
+
[ Wed Sep 14 17:12:23 2022 ] Top5: 89.85%
|
664 |
+
[ Wed Sep 14 17:12:23 2022 ] Training epoch: 107
|
665 |
+
[ Wed Sep 14 17:13:11 2022 ] Batch(61/123) done. Loss: 0.0039 lr:0.000100 network_time: 0.0272
|
666 |
+
[ Wed Sep 14 17:13:56 2022 ] Eval epoch: 107
|
667 |
+
[ Wed Sep 14 17:14:28 2022 ] Mean test loss of 258 batches: 1.8537285327911377.
|
668 |
+
[ Wed Sep 14 17:14:28 2022 ] Top1: 64.15%
|
669 |
+
[ Wed Sep 14 17:14:28 2022 ] Top5: 90.17%
|
670 |
+
[ Wed Sep 14 17:14:28 2022 ] Training epoch: 108
|
671 |
+
[ Wed Sep 14 17:15:00 2022 ] Batch(38/123) done. Loss: 0.0113 lr:0.000100 network_time: 0.0306
|
672 |
+
[ Wed Sep 14 17:16:01 2022 ] Eval epoch: 108
|
673 |
+
[ Wed Sep 14 17:16:33 2022 ] Mean test loss of 258 batches: 1.797559380531311.
|
674 |
+
[ Wed Sep 14 17:16:34 2022 ] Top1: 64.61%
|
675 |
+
[ Wed Sep 14 17:16:34 2022 ] Top5: 90.61%
|
676 |
+
[ Wed Sep 14 17:16:34 2022 ] Training epoch: 109
|
677 |
+
[ Wed Sep 14 17:16:48 2022 ] Batch(15/123) done. Loss: 0.0047 lr:0.000100 network_time: 0.0307
|
678 |
+
[ Wed Sep 14 17:18:01 2022 ] Batch(115/123) done. Loss: 0.0027 lr:0.000100 network_time: 0.0278
|
679 |
+
[ Wed Sep 14 17:18:06 2022 ] Eval epoch: 109
|
680 |
+
[ Wed Sep 14 17:18:39 2022 ] Mean test loss of 258 batches: 1.8364958763122559.
|
681 |
+
[ Wed Sep 14 17:18:39 2022 ] Top1: 64.34%
|
682 |
+
[ Wed Sep 14 17:18:39 2022 ] Top5: 90.31%
|
683 |
+
[ Wed Sep 14 17:18:39 2022 ] Training epoch: 110
|
684 |
+
[ Wed Sep 14 17:19:50 2022 ] Batch(92/123) done. Loss: 0.0052 lr:0.000100 network_time: 0.0274
|
685 |
+
[ Wed Sep 14 17:20:12 2022 ] Eval epoch: 110
|
686 |
+
[ Wed Sep 14 17:20:45 2022 ] Mean test loss of 258 batches: 1.7939398288726807.
|
687 |
+
[ Wed Sep 14 17:20:45 2022 ] Top1: 64.52%
|
688 |
+
[ Wed Sep 14 17:20:45 2022 ] Top5: 90.28%
|
689 |
+
[ Wed Sep 14 17:20:45 2022 ] Training epoch: 111
|
690 |
+
[ Wed Sep 14 17:21:39 2022 ] Batch(69/123) done. Loss: 0.0013 lr:0.000100 network_time: 0.0265
|
691 |
+
[ Wed Sep 14 17:22:17 2022 ] Eval epoch: 111
|
692 |
+
[ Wed Sep 14 17:22:50 2022 ] Mean test loss of 258 batches: 1.9241000413894653.
|
693 |
+
[ Wed Sep 14 17:22:50 2022 ] Top1: 64.59%
|
694 |
+
[ Wed Sep 14 17:22:50 2022 ] Top5: 90.22%
|
695 |
+
[ Wed Sep 14 17:22:50 2022 ] Training epoch: 112
|
696 |
+
[ Wed Sep 14 17:23:27 2022 ] Batch(46/123) done. Loss: 0.0044 lr:0.000100 network_time: 0.0266
|
697 |
+
[ Wed Sep 14 17:24:23 2022 ] Eval epoch: 112
|
698 |
+
[ Wed Sep 14 17:24:55 2022 ] Mean test loss of 258 batches: 1.7735662460327148.
|
699 |
+
[ Wed Sep 14 17:24:55 2022 ] Top1: 64.43%
|
700 |
+
[ Wed Sep 14 17:24:55 2022 ] Top5: 90.43%
|
701 |
+
[ Wed Sep 14 17:24:55 2022 ] Training epoch: 113
|
702 |
+
[ Wed Sep 14 17:25:16 2022 ] Batch(23/123) done. Loss: 0.0043 lr:0.000100 network_time: 0.0265
|
703 |
+
[ Wed Sep 14 17:26:28 2022 ] Eval epoch: 113
|
704 |
+
[ Wed Sep 14 17:27:01 2022 ] Mean test loss of 258 batches: 1.8969343900680542.
|
705 |
+
[ Wed Sep 14 17:27:01 2022 ] Top1: 64.16%
|
706 |
+
[ Wed Sep 14 17:27:01 2022 ] Top5: 90.10%
|
707 |
+
[ Wed Sep 14 17:27:01 2022 ] Training epoch: 114
|
708 |
+
[ Wed Sep 14 17:27:05 2022 ] Batch(0/123) done. Loss: 0.0043 lr:0.000100 network_time: 0.0598
|
709 |
+
[ Wed Sep 14 17:28:17 2022 ] Batch(100/123) done. Loss: 0.0062 lr:0.000100 network_time: 0.0330
|
710 |
+
[ Wed Sep 14 17:28:34 2022 ] Eval epoch: 114
|
711 |
+
[ Wed Sep 14 17:29:07 2022 ] Mean test loss of 258 batches: 1.8805485963821411.
|
712 |
+
[ Wed Sep 14 17:29:07 2022 ] Top1: 63.18%
|
713 |
+
[ Wed Sep 14 17:29:07 2022 ] Top5: 89.80%
|
714 |
+
[ Wed Sep 14 17:29:07 2022 ] Training epoch: 115
|
715 |
+
[ Wed Sep 14 17:30:07 2022 ] Batch(77/123) done. Loss: 0.0041 lr:0.000100 network_time: 0.0271
|
716 |
+
[ Wed Sep 14 17:30:39 2022 ] Eval epoch: 115
|
717 |
+
[ Wed Sep 14 17:31:12 2022 ] Mean test loss of 258 batches: 1.844014286994934.
|
718 |
+
[ Wed Sep 14 17:31:12 2022 ] Top1: 64.09%
|
719 |
+
[ Wed Sep 14 17:31:12 2022 ] Top5: 90.31%
|
720 |
+
[ Wed Sep 14 17:31:12 2022 ] Training epoch: 116
|
721 |
+
[ Wed Sep 14 17:31:55 2022 ] Batch(54/123) done. Loss: 0.0065 lr:0.000100 network_time: 0.0270
|
722 |
+
[ Wed Sep 14 17:32:45 2022 ] Eval epoch: 116
|
723 |
+
[ Wed Sep 14 17:33:18 2022 ] Mean test loss of 258 batches: 1.9180779457092285.
|
724 |
+
[ Wed Sep 14 17:33:18 2022 ] Top1: 63.95%
|
725 |
+
[ Wed Sep 14 17:33:18 2022 ] Top5: 90.06%
|
726 |
+
[ Wed Sep 14 17:33:18 2022 ] Training epoch: 117
|
727 |
+
[ Wed Sep 14 17:33:44 2022 ] Batch(31/123) done. Loss: 0.0030 lr:0.000100 network_time: 0.0264
|
728 |
+
[ Wed Sep 14 17:34:51 2022 ] Eval epoch: 117
|
729 |
+
[ Wed Sep 14 17:35:23 2022 ] Mean test loss of 258 batches: 1.81834077835083.
|
730 |
+
[ Wed Sep 14 17:35:23 2022 ] Top1: 64.39%
|
731 |
+
[ Wed Sep 14 17:35:23 2022 ] Top5: 90.51%
|
732 |
+
[ Wed Sep 14 17:35:23 2022 ] Training epoch: 118
|
733 |
+
[ Wed Sep 14 17:35:33 2022 ] Batch(8/123) done. Loss: 0.0031 lr:0.000100 network_time: 0.0276
|
734 |
+
[ Wed Sep 14 17:36:46 2022 ] Batch(108/123) done. Loss: 0.0026 lr:0.000100 network_time: 0.0264
|
735 |
+
[ Wed Sep 14 17:36:56 2022 ] Eval epoch: 118
|
736 |
+
[ Wed Sep 14 17:37:29 2022 ] Mean test loss of 258 batches: 1.917968511581421.
|
737 |
+
[ Wed Sep 14 17:37:29 2022 ] Top1: 63.95%
|
738 |
+
[ Wed Sep 14 17:37:29 2022 ] Top5: 90.01%
|
739 |
+
[ Wed Sep 14 17:37:29 2022 ] Training epoch: 119
|
740 |
+
[ Wed Sep 14 17:38:35 2022 ] Batch(85/123) done. Loss: 0.0034 lr:0.000100 network_time: 0.0285
|
741 |
+
[ Wed Sep 14 17:39:02 2022 ] Eval epoch: 119
|
742 |
+
[ Wed Sep 14 17:39:35 2022 ] Mean test loss of 258 batches: 1.7381958961486816.
|
743 |
+
[ Wed Sep 14 17:39:35 2022 ] Top1: 64.74%
|
744 |
+
[ Wed Sep 14 17:39:35 2022 ] Top5: 90.64%
|
745 |
+
[ Wed Sep 14 17:39:35 2022 ] Training epoch: 120
|
746 |
+
[ Wed Sep 14 17:40:24 2022 ] Batch(62/123) done. Loss: 0.0068 lr:0.000100 network_time: 0.0260
|
747 |
+
[ Wed Sep 14 17:41:08 2022 ] Eval epoch: 120
|
748 |
+
[ Wed Sep 14 17:41:41 2022 ] Mean test loss of 258 batches: 1.9656460285186768.
|
749 |
+
[ Wed Sep 14 17:41:41 2022 ] Top1: 63.85%
|
750 |
+
[ Wed Sep 14 17:41:41 2022 ] Top5: 89.90%
|
751 |
+
[ Wed Sep 14 17:41:41 2022 ] Training epoch: 121
|
752 |
+
[ Wed Sep 14 17:42:13 2022 ] Batch(39/123) done. Loss: 0.0029 lr:0.000100 network_time: 0.0317
|
753 |
+
[ Wed Sep 14 17:43:13 2022 ] Eval epoch: 121
|
754 |
+
[ Wed Sep 14 17:43:46 2022 ] Mean test loss of 258 batches: 1.8274791240692139.
|
755 |
+
[ Wed Sep 14 17:43:46 2022 ] Top1: 64.00%
|
756 |
+
[ Wed Sep 14 17:43:46 2022 ] Top5: 90.22%
|
757 |
+
[ Wed Sep 14 17:43:46 2022 ] Training epoch: 122
|
758 |
+
[ Wed Sep 14 17:44:02 2022 ] Batch(16/123) done. Loss: 0.0178 lr:0.000100 network_time: 0.0337
|
759 |
+
[ Wed Sep 14 17:45:15 2022 ] Batch(116/123) done. Loss: 0.0044 lr:0.000100 network_time: 0.0264
|
760 |
+
[ Wed Sep 14 17:45:19 2022 ] Eval epoch: 122
|
761 |
+
[ Wed Sep 14 17:45:52 2022 ] Mean test loss of 258 batches: 1.8402843475341797.
|
762 |
+
[ Wed Sep 14 17:45:52 2022 ] Top1: 63.36%
|
763 |
+
[ Wed Sep 14 17:45:53 2022 ] Top5: 90.08%
|
764 |
+
[ Wed Sep 14 17:45:53 2022 ] Training epoch: 123
|
765 |
+
[ Wed Sep 14 17:47:04 2022 ] Batch(93/123) done. Loss: 0.0018 lr:0.000100 network_time: 0.0277
|
766 |
+
[ Wed Sep 14 17:47:25 2022 ] Eval epoch: 123
|
767 |
+
[ Wed Sep 14 17:47:58 2022 ] Mean test loss of 258 batches: 1.957480549812317.
|
768 |
+
[ Wed Sep 14 17:47:58 2022 ] Top1: 64.07%
|
769 |
+
[ Wed Sep 14 17:47:59 2022 ] Top5: 90.03%
|
770 |
+
[ Wed Sep 14 17:47:59 2022 ] Training epoch: 124
|
771 |
+
[ Wed Sep 14 17:48:53 2022 ] Batch(70/123) done. Loss: 0.0031 lr:0.000100 network_time: 0.0276
|
772 |
+
[ Wed Sep 14 17:49:31 2022 ] Eval epoch: 124
|
773 |
+
[ Wed Sep 14 17:50:04 2022 ] Mean test loss of 258 batches: 1.8941755294799805.
|
774 |
+
[ Wed Sep 14 17:50:04 2022 ] Top1: 62.70%
|
775 |
+
[ Wed Sep 14 17:50:04 2022 ] Top5: 89.49%
|
776 |
+
[ Wed Sep 14 17:50:05 2022 ] Training epoch: 125
|
777 |
+
[ Wed Sep 14 17:50:43 2022 ] Batch(47/123) done. Loss: 0.0070 lr:0.000100 network_time: 0.0277
|
778 |
+
[ Wed Sep 14 17:51:37 2022 ] Eval epoch: 125
|
779 |
+
[ Wed Sep 14 17:52:10 2022 ] Mean test loss of 258 batches: 1.9753775596618652.
|
780 |
+
[ Wed Sep 14 17:52:10 2022 ] Top1: 64.40%
|
781 |
+
[ Wed Sep 14 17:52:10 2022 ] Top5: 90.04%
|
782 |
+
[ Wed Sep 14 17:52:10 2022 ] Training epoch: 126
|
783 |
+
[ Wed Sep 14 17:52:31 2022 ] Batch(24/123) done. Loss: 0.0036 lr:0.000100 network_time: 0.0311
|
784 |
+
[ Wed Sep 14 17:53:43 2022 ] Eval epoch: 126
|
785 |
+
[ Wed Sep 14 17:54:16 2022 ] Mean test loss of 258 batches: 1.9079700708389282.
|
786 |
+
[ Wed Sep 14 17:54:16 2022 ] Top1: 63.95%
|
787 |
+
[ Wed Sep 14 17:54:16 2022 ] Top5: 89.97%
|
788 |
+
[ Wed Sep 14 17:54:16 2022 ] Training epoch: 127
|
789 |
+
[ Wed Sep 14 17:54:20 2022 ] Batch(1/123) done. Loss: 0.0100 lr:0.000100 network_time: 0.0312
|
790 |
+
[ Wed Sep 14 17:55:33 2022 ] Batch(101/123) done. Loss: 0.0022 lr:0.000100 network_time: 0.0288
|
791 |
+
[ Wed Sep 14 17:55:48 2022 ] Eval epoch: 127
|
792 |
+
[ Wed Sep 14 17:56:21 2022 ] Mean test loss of 258 batches: 1.9740208387374878.
|
793 |
+
[ Wed Sep 14 17:56:21 2022 ] Top1: 63.95%
|
794 |
+
[ Wed Sep 14 17:56:22 2022 ] Top5: 89.88%
|
795 |
+
[ Wed Sep 14 17:56:22 2022 ] Training epoch: 128
|
796 |
+
[ Wed Sep 14 17:57:22 2022 ] Batch(78/123) done. Loss: 0.0012 lr:0.000100 network_time: 0.0290
|
797 |
+
[ Wed Sep 14 17:57:55 2022 ] Eval epoch: 128
|
798 |
+
[ Wed Sep 14 17:58:28 2022 ] Mean test loss of 258 batches: 1.942625641822815.
|
799 |
+
[ Wed Sep 14 17:58:28 2022 ] Top1: 63.92%
|
800 |
+
[ Wed Sep 14 17:58:28 2022 ] Top5: 90.06%
|
801 |
+
[ Wed Sep 14 17:58:28 2022 ] Training epoch: 129
|
802 |
+
[ Wed Sep 14 17:59:12 2022 ] Batch(55/123) done. Loss: 0.0108 lr:0.000100 network_time: 0.0276
|
803 |
+
[ Wed Sep 14 18:00:00 2022 ] Eval epoch: 129
|
804 |
+
[ Wed Sep 14 18:00:33 2022 ] Mean test loss of 258 batches: 1.9056057929992676.
|
805 |
+
[ Wed Sep 14 18:00:33 2022 ] Top1: 61.71%
|
806 |
+
[ Wed Sep 14 18:00:33 2022 ] Top5: 89.24%
|
807 |
+
[ Wed Sep 14 18:00:34 2022 ] Training epoch: 130
|
808 |
+
[ Wed Sep 14 18:01:01 2022 ] Batch(32/123) done. Loss: 0.0126 lr:0.000100 network_time: 0.0275
|
809 |
+
[ Wed Sep 14 18:02:06 2022 ] Eval epoch: 130
|
810 |
+
[ Wed Sep 14 18:02:39 2022 ] Mean test loss of 258 batches: 1.9844281673431396.
|
811 |
+
[ Wed Sep 14 18:02:39 2022 ] Top1: 64.03%
|
812 |
+
[ Wed Sep 14 18:02:39 2022 ] Top5: 89.79%
|
813 |
+
[ Wed Sep 14 18:02:39 2022 ] Training epoch: 131
|
814 |
+
[ Wed Sep 14 18:02:49 2022 ] Batch(9/123) done. Loss: 0.0030 lr:0.000100 network_time: 0.0293
|
815 |
+
[ Wed Sep 14 18:04:02 2022 ] Batch(109/123) done. Loss: 0.0041 lr:0.000100 network_time: 0.0286
|
816 |
+
[ Wed Sep 14 18:04:11 2022 ] Eval epoch: 131
|
817 |
+
[ Wed Sep 14 18:04:44 2022 ] Mean test loss of 258 batches: 2.0076076984405518.
|
818 |
+
[ Wed Sep 14 18:04:44 2022 ] Top1: 64.24%
|
819 |
+
[ Wed Sep 14 18:04:44 2022 ] Top5: 89.90%
|
820 |
+
[ Wed Sep 14 18:04:44 2022 ] Training epoch: 132
|
821 |
+
[ Wed Sep 14 18:05:50 2022 ] Batch(86/123) done. Loss: 0.0024 lr:0.000100 network_time: 0.0298
|
822 |
+
[ Wed Sep 14 18:06:17 2022 ] Eval epoch: 132
|
823 |
+
[ Wed Sep 14 18:06:49 2022 ] Mean test loss of 258 batches: 1.7660404443740845.
|
824 |
+
[ Wed Sep 14 18:06:49 2022 ] Top1: 64.48%
|
825 |
+
[ Wed Sep 14 18:06:49 2022 ] Top5: 90.42%
|
826 |
+
[ Wed Sep 14 18:06:50 2022 ] Training epoch: 133
|
827 |
+
[ Wed Sep 14 18:07:39 2022 ] Batch(63/123) done. Loss: 0.0091 lr:0.000100 network_time: 0.0277
|
828 |
+
[ Wed Sep 14 18:08:22 2022 ] Eval epoch: 133
|
829 |
+
[ Wed Sep 14 18:08:55 2022 ] Mean test loss of 258 batches: 1.7811264991760254.
|
830 |
+
[ Wed Sep 14 18:08:55 2022 ] Top1: 64.15%
|
831 |
+
[ Wed Sep 14 18:08:55 2022 ] Top5: 90.29%
|
832 |
+
[ Wed Sep 14 18:08:55 2022 ] Training epoch: 134
|
833 |
+
[ Wed Sep 14 18:09:28 2022 ] Batch(40/123) done. Loss: 0.0097 lr:0.000100 network_time: 0.0268
|
834 |
+
[ Wed Sep 14 18:10:28 2022 ] Eval epoch: 134
|
835 |
+
[ Wed Sep 14 18:11:00 2022 ] Mean test loss of 258 batches: 1.7638517618179321.
|
836 |
+
[ Wed Sep 14 18:11:00 2022 ] Top1: 64.26%
|
837 |
+
[ Wed Sep 14 18:11:01 2022 ] Top5: 90.34%
|
838 |
+
[ Wed Sep 14 18:11:01 2022 ] Training epoch: 135
|
839 |
+
[ Wed Sep 14 18:11:17 2022 ] Batch(17/123) done. Loss: 0.0032 lr:0.000100 network_time: 0.0278
|
840 |
+
[ Wed Sep 14 18:12:29 2022 ] Batch(117/123) done. Loss: 0.0040 lr:0.000100 network_time: 0.0329
|
841 |
+
[ Wed Sep 14 18:12:33 2022 ] Eval epoch: 135
|
842 |
+
[ Wed Sep 14 18:13:06 2022 ] Mean test loss of 258 batches: 1.834794044494629.
|
843 |
+
[ Wed Sep 14 18:13:06 2022 ] Top1: 62.77%
|
844 |
+
[ Wed Sep 14 18:13:06 2022 ] Top5: 89.71%
|
845 |
+
[ Wed Sep 14 18:13:06 2022 ] Training epoch: 136
|
846 |
+
[ Wed Sep 14 18:14:18 2022 ] Batch(94/123) done. Loss: 0.0225 lr:0.000100 network_time: 0.0307
|
847 |
+
[ Wed Sep 14 18:14:39 2022 ] Eval epoch: 136
|
848 |
+
[ Wed Sep 14 18:15:11 2022 ] Mean test loss of 258 batches: 1.848984718322754.
|
849 |
+
[ Wed Sep 14 18:15:11 2022 ] Top1: 64.85%
|
850 |
+
[ Wed Sep 14 18:15:11 2022 ] Top5: 90.39%
|
851 |
+
[ Wed Sep 14 18:15:11 2022 ] Training epoch: 137
|
852 |
+
[ Wed Sep 14 18:16:07 2022 ] Batch(71/123) done. Loss: 0.0038 lr:0.000100 network_time: 0.0291
|
853 |
+
[ Wed Sep 14 18:16:44 2022 ] Eval epoch: 137
|
854 |
+
[ Wed Sep 14 18:17:16 2022 ] Mean test loss of 258 batches: 1.887627363204956.
|
855 |
+
[ Wed Sep 14 18:17:17 2022 ] Top1: 64.55%
|
856 |
+
[ Wed Sep 14 18:17:17 2022 ] Top5: 90.42%
|
857 |
+
[ Wed Sep 14 18:17:17 2022 ] Training epoch: 138
|
858 |
+
[ Wed Sep 14 18:17:55 2022 ] Batch(48/123) done. Loss: 0.0091 lr:0.000100 network_time: 0.0314
|
859 |
+
[ Wed Sep 14 18:18:49 2022 ] Eval epoch: 138
|
860 |
+
[ Wed Sep 14 18:19:23 2022 ] Mean test loss of 258 batches: 1.8002877235412598.
|
861 |
+
[ Wed Sep 14 18:19:23 2022 ] Top1: 64.74%
|
862 |
+
[ Wed Sep 14 18:19:23 2022 ] Top5: 90.39%
|
863 |
+
[ Wed Sep 14 18:19:23 2022 ] Training epoch: 139
|
864 |
+
[ Wed Sep 14 18:19:45 2022 ] Batch(25/123) done. Loss: 0.0043 lr:0.000100 network_time: 0.0300
|
865 |
+
[ Wed Sep 14 18:20:55 2022 ] Eval epoch: 139
|
866 |
+
[ Wed Sep 14 18:21:28 2022 ] Mean test loss of 258 batches: 1.872145652770996.
|
867 |
+
[ Wed Sep 14 18:21:28 2022 ] Top1: 64.27%
|
868 |
+
[ Wed Sep 14 18:21:28 2022 ] Top5: 90.06%
|
869 |
+
[ Wed Sep 14 18:21:28 2022 ] Training epoch: 140
|
870 |
+
[ Wed Sep 14 18:21:34 2022 ] Batch(2/123) done. Loss: 0.0032 lr:0.000100 network_time: 0.0340
|
871 |
+
[ Wed Sep 14 18:22:46 2022 ] Batch(102/123) done. Loss: 0.0034 lr:0.000100 network_time: 0.0267
|
872 |
+
[ Wed Sep 14 18:23:01 2022 ] Eval epoch: 140
|
873 |
+
[ Wed Sep 14 18:23:34 2022 ] Mean test loss of 258 batches: 1.8609108924865723.
|
874 |
+
[ Wed Sep 14 18:23:34 2022 ] Top1: 64.27%
|
875 |
+
[ Wed Sep 14 18:23:34 2022 ] Top5: 90.23%
|
ckpt/Others/Shift-GCN/ntu60_xsub/ntu_ShiftGCN_joint_motion_xsub/shift_gcn.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torch.autograd import Variable
|
5 |
+
import numpy as np
|
6 |
+
import math
|
7 |
+
|
8 |
+
import sys
|
9 |
+
sys.path.append("./model/Temporal_shift/")
|
10 |
+
|
11 |
+
from cuda.shift import Shift
|
12 |
+
|
13 |
+
|
14 |
+
def import_class(name):
|
15 |
+
components = name.split('.')
|
16 |
+
mod = __import__(components[0])
|
17 |
+
for comp in components[1:]:
|
18 |
+
mod = getattr(mod, comp)
|
19 |
+
return mod
|
20 |
+
|
21 |
+
def conv_init(conv):
|
22 |
+
nn.init.kaiming_normal(conv.weight, mode='fan_out')
|
23 |
+
nn.init.constant(conv.bias, 0)
|
24 |
+
|
25 |
+
|
26 |
+
def bn_init(bn, scale):
|
27 |
+
nn.init.constant(bn.weight, scale)
|
28 |
+
nn.init.constant(bn.bias, 0)
|
29 |
+
|
30 |
+
|
31 |
+
class tcn(nn.Module):
|
32 |
+
def __init__(self, in_channels, out_channels, kernel_size=9, stride=1):
|
33 |
+
super(tcn, self).__init__()
|
34 |
+
pad = int((kernel_size - 1) / 2)
|
35 |
+
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=(kernel_size, 1), padding=(pad, 0),
|
36 |
+
stride=(stride, 1))
|
37 |
+
|
38 |
+
self.bn = nn.BatchNorm2d(out_channels)
|
39 |
+
self.relu = nn.ReLU()
|
40 |
+
conv_init(self.conv)
|
41 |
+
bn_init(self.bn, 1)
|
42 |
+
|
43 |
+
def forward(self, x):
|
44 |
+
x = self.bn(self.conv(x))
|
45 |
+
return x
|
46 |
+
|
47 |
+
|
48 |
+
class Shift_tcn(nn.Module):
|
49 |
+
def __init__(self, in_channels, out_channels, kernel_size=9, stride=1):
|
50 |
+
super(Shift_tcn, self).__init__()
|
51 |
+
|
52 |
+
self.in_channels = in_channels
|
53 |
+
self.out_channels = out_channels
|
54 |
+
|
55 |
+
self.bn = nn.BatchNorm2d(in_channels)
|
56 |
+
self.bn2 = nn.BatchNorm2d(in_channels)
|
57 |
+
bn_init(self.bn2, 1)
|
58 |
+
self.relu = nn.ReLU(inplace=True)
|
59 |
+
self.shift_in = Shift(channel=in_channels, stride=1, init_scale=1)
|
60 |
+
self.shift_out = Shift(channel=out_channels, stride=stride, init_scale=1)
|
61 |
+
|
62 |
+
self.temporal_linear = nn.Conv2d(in_channels, out_channels, 1)
|
63 |
+
nn.init.kaiming_normal(self.temporal_linear.weight, mode='fan_out')
|
64 |
+
|
65 |
+
def forward(self, x):
|
66 |
+
x = self.bn(x)
|
67 |
+
# shift1
|
68 |
+
x = self.shift_in(x)
|
69 |
+
x = self.temporal_linear(x)
|
70 |
+
x = self.relu(x)
|
71 |
+
# shift2
|
72 |
+
x = self.shift_out(x)
|
73 |
+
x = self.bn2(x)
|
74 |
+
return x
|
75 |
+
|
76 |
+
|
77 |
+
class Shift_gcn(nn.Module):
|
78 |
+
def __init__(self, in_channels, out_channels, A, coff_embedding=4, num_subset=3):
|
79 |
+
super(Shift_gcn, self).__init__()
|
80 |
+
self.in_channels = in_channels
|
81 |
+
self.out_channels = out_channels
|
82 |
+
if in_channels != out_channels:
|
83 |
+
self.down = nn.Sequential(
|
84 |
+
nn.Conv2d(in_channels, out_channels, 1),
|
85 |
+
nn.BatchNorm2d(out_channels)
|
86 |
+
)
|
87 |
+
else:
|
88 |
+
self.down = lambda x: x
|
89 |
+
|
90 |
+
self.Linear_weight = nn.Parameter(torch.zeros(in_channels, out_channels, requires_grad=True, device='cuda'), requires_grad=True)
|
91 |
+
nn.init.normal_(self.Linear_weight, 0,math.sqrt(1.0/out_channels))
|
92 |
+
|
93 |
+
self.Linear_bias = nn.Parameter(torch.zeros(1,1,out_channels,requires_grad=True,device='cuda'),requires_grad=True)
|
94 |
+
nn.init.constant(self.Linear_bias, 0)
|
95 |
+
|
96 |
+
self.Feature_Mask = nn.Parameter(torch.ones(1,25,in_channels, requires_grad=True,device='cuda'),requires_grad=True)
|
97 |
+
nn.init.constant(self.Feature_Mask, 0)
|
98 |
+
|
99 |
+
self.bn = nn.BatchNorm1d(25*out_channels)
|
100 |
+
self.relu = nn.ReLU()
|
101 |
+
|
102 |
+
for m in self.modules():
|
103 |
+
if isinstance(m, nn.Conv2d):
|
104 |
+
conv_init(m)
|
105 |
+
elif isinstance(m, nn.BatchNorm2d):
|
106 |
+
bn_init(m, 1)
|
107 |
+
|
108 |
+
index_array = np.empty(25*in_channels).astype(np.int)
|
109 |
+
for i in range(25):
|
110 |
+
for j in range(in_channels):
|
111 |
+
index_array[i*in_channels + j] = (i*in_channels + j + j*in_channels)%(in_channels*25)
|
112 |
+
self.shift_in = nn.Parameter(torch.from_numpy(index_array),requires_grad=False)
|
113 |
+
|
114 |
+
index_array = np.empty(25*out_channels).astype(np.int)
|
115 |
+
for i in range(25):
|
116 |
+
for j in range(out_channels):
|
117 |
+
index_array[i*out_channels + j] = (i*out_channels + j - j*out_channels)%(out_channels*25)
|
118 |
+
self.shift_out = nn.Parameter(torch.from_numpy(index_array),requires_grad=False)
|
119 |
+
|
120 |
+
|
121 |
+
def forward(self, x0):
|
122 |
+
n, c, t, v = x0.size()
|
123 |
+
x = x0.permute(0,2,3,1).contiguous()
|
124 |
+
|
125 |
+
# shift1
|
126 |
+
x = x.view(n*t,v*c)
|
127 |
+
x = torch.index_select(x, 1, self.shift_in)
|
128 |
+
x = x.view(n*t,v,c)
|
129 |
+
x = x * (torch.tanh(self.Feature_Mask)+1)
|
130 |
+
|
131 |
+
x = torch.einsum('nwc,cd->nwd', (x, self.Linear_weight)).contiguous() # nt,v,c
|
132 |
+
x = x + self.Linear_bias
|
133 |
+
|
134 |
+
# shift2
|
135 |
+
x = x.view(n*t,-1)
|
136 |
+
x = torch.index_select(x, 1, self.shift_out)
|
137 |
+
x = self.bn(x)
|
138 |
+
x = x.view(n,t,v,self.out_channels).permute(0,3,1,2) # n,c,t,v
|
139 |
+
|
140 |
+
x = x + self.down(x0)
|
141 |
+
x = self.relu(x)
|
142 |
+
return x
|
143 |
+
|
144 |
+
|
145 |
+
class TCN_GCN_unit(nn.Module):
|
146 |
+
def __init__(self, in_channels, out_channels, A, stride=1, residual=True):
|
147 |
+
super(TCN_GCN_unit, self).__init__()
|
148 |
+
self.gcn1 = Shift_gcn(in_channels, out_channels, A)
|
149 |
+
self.tcn1 = Shift_tcn(out_channels, out_channels, stride=stride)
|
150 |
+
self.relu = nn.ReLU()
|
151 |
+
|
152 |
+
if not residual:
|
153 |
+
self.residual = lambda x: 0
|
154 |
+
|
155 |
+
elif (in_channels == out_channels) and (stride == 1):
|
156 |
+
self.residual = lambda x: x
|
157 |
+
else:
|
158 |
+
self.residual = tcn(in_channels, out_channels, kernel_size=1, stride=stride)
|
159 |
+
|
160 |
+
def forward(self, x):
|
161 |
+
x = self.tcn1(self.gcn1(x)) + self.residual(x)
|
162 |
+
return self.relu(x)
|
163 |
+
|
164 |
+
|
165 |
+
class Model(nn.Module):
|
166 |
+
def __init__(self, num_class=60, num_point=25, num_person=2, graph=None, graph_args=dict(), in_channels=3):
|
167 |
+
super(Model, self).__init__()
|
168 |
+
|
169 |
+
if graph is None:
|
170 |
+
raise ValueError()
|
171 |
+
else:
|
172 |
+
Graph = import_class(graph)
|
173 |
+
self.graph = Graph(**graph_args)
|
174 |
+
|
175 |
+
A = self.graph.A
|
176 |
+
self.data_bn = nn.BatchNorm1d(num_person * in_channels * num_point)
|
177 |
+
|
178 |
+
self.l1 = TCN_GCN_unit(3, 64, A, residual=False)
|
179 |
+
self.l2 = TCN_GCN_unit(64, 64, A)
|
180 |
+
self.l3 = TCN_GCN_unit(64, 64, A)
|
181 |
+
self.l4 = TCN_GCN_unit(64, 64, A)
|
182 |
+
self.l5 = TCN_GCN_unit(64, 128, A, stride=2)
|
183 |
+
self.l6 = TCN_GCN_unit(128, 128, A)
|
184 |
+
self.l7 = TCN_GCN_unit(128, 128, A)
|
185 |
+
self.l8 = TCN_GCN_unit(128, 256, A, stride=2)
|
186 |
+
self.l9 = TCN_GCN_unit(256, 256, A)
|
187 |
+
self.l10 = TCN_GCN_unit(256, 256, A)
|
188 |
+
|
189 |
+
self.fc = nn.Linear(256, num_class)
|
190 |
+
nn.init.normal(self.fc.weight, 0, math.sqrt(2. / num_class))
|
191 |
+
bn_init(self.data_bn, 1)
|
192 |
+
|
193 |
+
def forward(self, x):
|
194 |
+
N, C, T, V, M = x.size()
|
195 |
+
|
196 |
+
x = x.permute(0, 4, 3, 1, 2).contiguous().view(N, M * V * C, T)
|
197 |
+
x = self.data_bn(x)
|
198 |
+
x = x.view(N, M, V, C, T).permute(0, 1, 3, 4, 2).contiguous().view(N * M, C, T, V)
|
199 |
+
|
200 |
+
x = self.l1(x)
|
201 |
+
x = self.l2(x)
|
202 |
+
x = self.l3(x)
|
203 |
+
x = self.l4(x)
|
204 |
+
x = self.l5(x)
|
205 |
+
x = self.l6(x)
|
206 |
+
x = self.l7(x)
|
207 |
+
x = self.l8(x)
|
208 |
+
x = self.l9(x)
|
209 |
+
x = self.l10(x)
|
210 |
+
|
211 |
+
# N*M,C,T,V
|
212 |
+
c_new = x.size(1)
|
213 |
+
x = x.view(N, M, c_new, -1)
|
214 |
+
x = x.mean(3).mean(1)
|
215 |
+
|
216 |
+
return self.fc(x)
|
ckpt/Others/Shift-GCN/ntu60_xsub/ntu_ShiftGCN_joint_xsub/config.yaml
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Experiment_name: ntu_ShiftGCN_joint_xsub
|
2 |
+
base_lr: 0.1
|
3 |
+
batch_size: 64
|
4 |
+
config: ./config/nturgbd-cross-subject/train_joint.yaml
|
5 |
+
device:
|
6 |
+
- 4
|
7 |
+
- 5
|
8 |
+
eval_interval: 5
|
9 |
+
feeder: feeders.feeder.Feeder
|
10 |
+
ignore_weights: []
|
11 |
+
log_interval: 100
|
12 |
+
model: model.shift_gcn.Model
|
13 |
+
model_args:
|
14 |
+
graph: graph.ntu_rgb_d.Graph
|
15 |
+
graph_args:
|
16 |
+
labeling_mode: spatial
|
17 |
+
num_class: 60
|
18 |
+
num_person: 2
|
19 |
+
num_point: 25
|
20 |
+
model_saved_name: ./save_models/ntu_ShiftGCN_joint_xsub
|
21 |
+
nesterov: true
|
22 |
+
num_epoch: 140
|
23 |
+
num_worker: 32
|
24 |
+
only_train_epoch: 1
|
25 |
+
only_train_part: true
|
26 |
+
optimizer: SGD
|
27 |
+
phase: train
|
28 |
+
print_log: true
|
29 |
+
save_interval: 2
|
30 |
+
save_score: false
|
31 |
+
seed: 1
|
32 |
+
show_topk:
|
33 |
+
- 1
|
34 |
+
- 5
|
35 |
+
start_epoch: 0
|
36 |
+
step:
|
37 |
+
- 60
|
38 |
+
- 80
|
39 |
+
- 100
|
40 |
+
test_batch_size: 64
|
41 |
+
test_feeder_args:
|
42 |
+
data_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/val_data_joint.npy
|
43 |
+
label_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/val_label.pkl
|
44 |
+
train_feeder_args:
|
45 |
+
data_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/train_data_joint.npy
|
46 |
+
debug: false
|
47 |
+
label_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/train_label.pkl
|
48 |
+
normalization: false
|
49 |
+
random_choose: false
|
50 |
+
random_move: false
|
51 |
+
random_shift: false
|
52 |
+
window_size: -1
|
53 |
+
warm_up_epoch: 0
|
54 |
+
weight_decay: 0.0001
|
55 |
+
weights: null
|
56 |
+
work_dir: ./work_dir/ntu_ShiftGCN_joint_xsub
|
ckpt/Others/Shift-GCN/ntu60_xsub/ntu_ShiftGCN_joint_xsub/eval_results/best_acc.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:08a6edb8ac93121efedccfaa08fe4ede9e0e78cb68578f758c768a9e17efa792
|
3 |
+
size 4979902
|
ckpt/Others/Shift-GCN/ntu60_xsub/ntu_ShiftGCN_joint_xsub/log.txt
ADDED
@@ -0,0 +1,893 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[ Wed Sep 14 13:20:57 2022 ] Parameters:
|
2 |
+
{'work_dir': './work_dir/ntu_ShiftGCN_joint_xsub', 'model_saved_name': './save_models/ntu_ShiftGCN_joint_xsub', 'Experiment_name': 'ntu_ShiftGCN_joint_xsub', 'config': './config/nturgbd-cross-subject/train_joint.yaml', 'phase': 'train', 'save_score': False, 'seed': 1, 'log_interval': 100, 'save_interval': 2, 'eval_interval': 5, 'print_log': True, 'show_topk': [1, 5], 'feeder': 'feeders.feeder.Feeder', 'num_worker': 32, 'train_feeder_args': {'data_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/train_data_joint.npy', 'label_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/train_label.pkl', 'debug': False, 'random_choose': False, 'random_shift': False, 'random_move': False, 'window_size': -1, 'normalization': False}, 'test_feeder_args': {'data_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/val_data_joint.npy', 'label_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/val_label.pkl'}, 'model': 'model.shift_gcn.Model', 'model_args': {'num_class': 60, 'num_point': 25, 'num_person': 2, 'graph': 'graph.ntu_rgb_d.Graph', 'graph_args': {'labeling_mode': 'spatial'}}, 'weights': None, 'ignore_weights': [], 'base_lr': 0.1, 'step': [60, 80, 100], 'device': [4, 5], 'optimizer': 'SGD', 'nesterov': True, 'batch_size': 64, 'test_batch_size': 64, 'start_epoch': 0, 'num_epoch': 140, 'weight_decay': 0.0001, 'only_train_part': True, 'only_train_epoch': 1, 'warm_up_epoch': 0}
|
3 |
+
|
4 |
+
[ Wed Sep 14 13:20:57 2022 ] Training epoch: 1
|
5 |
+
[ Wed Sep 14 13:21:38 2022 ] Parameters:
|
6 |
+
{'work_dir': './work_dir/ntu_ShiftGCN_joint_xsub', 'model_saved_name': './save_models/ntu_ShiftGCN_joint_xsub', 'Experiment_name': 'ntu_ShiftGCN_joint_xsub', 'config': './config/nturgbd-cross-subject/train_joint.yaml', 'phase': 'train', 'save_score': False, 'seed': 1, 'log_interval': 100, 'save_interval': 2, 'eval_interval': 5, 'print_log': True, 'show_topk': [1, 5], 'feeder': 'feeders.feeder.Feeder', 'num_worker': 32, 'train_feeder_args': {'data_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/train_data_joint.npy', 'label_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/train_label.pkl', 'debug': False, 'random_choose': False, 'random_shift': False, 'random_move': False, 'window_size': -1, 'normalization': False}, 'test_feeder_args': {'data_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/val_data_joint.npy', 'label_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/val_label.pkl'}, 'model': 'model.shift_gcn.Model', 'model_args': {'num_class': 60, 'num_point': 25, 'num_person': 2, 'graph': 'graph.ntu_rgb_d.Graph', 'graph_args': {'labeling_mode': 'spatial'}}, 'weights': None, 'ignore_weights': [], 'base_lr': 0.1, 'step': [60, 80, 100], 'device': [4, 5], 'optimizer': 'SGD', 'nesterov': True, 'batch_size': 64, 'test_batch_size': 64, 'start_epoch': 0, 'num_epoch': 140, 'weight_decay': 0.0001, 'only_train_part': True, 'only_train_epoch': 1, 'warm_up_epoch': 0}
|
7 |
+
|
8 |
+
[ Wed Sep 14 13:21:38 2022 ] Training epoch: 1
|
9 |
+
[ Wed Sep 14 13:26:13 2022 ] Parameters:
|
10 |
+
{'work_dir': './work_dir/ntu_ShiftGCN_joint_xsub', 'model_saved_name': './save_models/ntu_ShiftGCN_joint_xsub', 'Experiment_name': 'ntu_ShiftGCN_joint_xsub', 'config': './config/nturgbd-cross-subject/train_joint.yaml', 'phase': 'train', 'save_score': False, 'seed': 1, 'log_interval': 100, 'save_interval': 2, 'eval_interval': 5, 'print_log': True, 'show_topk': [1, 5], 'feeder': 'feeders.feeder.Feeder', 'num_worker': 32, 'train_feeder_args': {'data_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/train_data_joint.npy', 'label_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/train_label.pkl', 'debug': False, 'random_choose': False, 'random_shift': False, 'random_move': False, 'window_size': -1, 'normalization': False}, 'test_feeder_args': {'data_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/val_data_joint.npy', 'label_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/val_label.pkl'}, 'model': 'model.shift_gcn.Model', 'model_args': {'num_class': 60, 'num_point': 25, 'num_person': 2, 'graph': 'graph.ntu_rgb_d.Graph', 'graph_args': {'labeling_mode': 'spatial'}}, 'weights': None, 'ignore_weights': [], 'base_lr': 0.1, 'step': [60, 80, 100], 'device': [4, 5], 'optimizer': 'SGD', 'nesterov': True, 'batch_size': 64, 'test_batch_size': 64, 'start_epoch': 0, 'num_epoch': 140, 'weight_decay': 0.0001, 'only_train_part': True, 'only_train_epoch': 1, 'warm_up_epoch': 0}
|
11 |
+
|
12 |
+
[ Wed Sep 14 13:26:13 2022 ] Training epoch: 1
|
13 |
+
[ Wed Sep 14 13:27:32 2022 ] Batch(99/123) done. Loss: 2.1354 lr:0.100000 network_time: 0.0319
|
14 |
+
[ Wed Sep 14 13:27:49 2022 ] Eval epoch: 1
|
15 |
+
[ Wed Sep 14 13:28:22 2022 ] Mean test loss of 258 batches: 4.33281946182251.
|
16 |
+
[ Wed Sep 14 13:28:22 2022 ] Top1: 13.93%
|
17 |
+
[ Wed Sep 14 13:28:22 2022 ] Top5: 38.90%
|
18 |
+
[ Wed Sep 14 13:28:22 2022 ] Training epoch: 2
|
19 |
+
[ Wed Sep 14 13:30:08 2022 ] Parameters:
|
20 |
+
{'work_dir': './work_dir/ntu_ShiftGCN_joint_xsub', 'model_saved_name': './save_models/ntu_ShiftGCN_joint_xsub', 'Experiment_name': 'ntu_ShiftGCN_joint_xsub', 'config': './config/nturgbd-cross-subject/train_joint.yaml', 'phase': 'train', 'save_score': False, 'seed': 1, 'log_interval': 100, 'save_interval': 2, 'eval_interval': 5, 'print_log': True, 'show_topk': [1, 5], 'feeder': 'feeders.feeder.Feeder', 'num_worker': 32, 'train_feeder_args': {'data_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/train_data_joint.npy', 'label_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/train_label.pkl', 'debug': False, 'random_choose': False, 'random_shift': False, 'random_move': False, 'window_size': -1, 'normalization': False}, 'test_feeder_args': {'data_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/val_data_joint.npy', 'label_path': '/data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xsub/val_label.pkl'}, 'model': 'model.shift_gcn.Model', 'model_args': {'num_class': 60, 'num_point': 25, 'num_person': 2, 'graph': 'graph.ntu_rgb_d.Graph', 'graph_args': {'labeling_mode': 'spatial'}}, 'weights': None, 'ignore_weights': [], 'base_lr': 0.1, 'step': [60, 80, 100], 'device': [4, 5], 'optimizer': 'SGD', 'nesterov': True, 'batch_size': 64, 'test_batch_size': 64, 'start_epoch': 0, 'num_epoch': 140, 'weight_decay': 0.0001, 'only_train_part': True, 'only_train_epoch': 1, 'warm_up_epoch': 0}
|
21 |
+
|
22 |
+
[ Wed Sep 14 13:30:08 2022 ] Training epoch: 1
|
23 |
+
[ Wed Sep 14 13:31:26 2022 ] Batch(99/123) done. Loss: 2.1354 lr:0.100000 network_time: 0.0317
|
24 |
+
[ Wed Sep 14 13:31:43 2022 ] Eval epoch: 1
|
25 |
+
[ Wed Sep 14 13:32:15 2022 ] Mean test loss of 258 batches: 4.33281946182251.
|
26 |
+
[ Wed Sep 14 13:32:15 2022 ] Top1: 13.93%
|
27 |
+
[ Wed Sep 14 13:32:15 2022 ] Top5: 38.90%
|
28 |
+
[ Wed Sep 14 13:32:15 2022 ] Training epoch: 2
|
29 |
+
[ Wed Sep 14 13:33:14 2022 ] Batch(76/123) done. Loss: 2.2529 lr:0.100000 network_time: 0.0313
|
30 |
+
[ Wed Sep 14 13:33:48 2022 ] Eval epoch: 2
|
31 |
+
[ Wed Sep 14 13:34:20 2022 ] Mean test loss of 258 batches: 3.571162700653076.
|
32 |
+
[ Wed Sep 14 13:34:20 2022 ] Top1: 19.44%
|
33 |
+
[ Wed Sep 14 13:34:21 2022 ] Top5: 50.74%
|
34 |
+
[ Wed Sep 14 13:34:21 2022 ] Training epoch: 3
|
35 |
+
[ Wed Sep 14 13:35:03 2022 ] Batch(53/123) done. Loss: 1.8599 lr:0.100000 network_time: 0.0305
|
36 |
+
[ Wed Sep 14 13:35:54 2022 ] Eval epoch: 3
|
37 |
+
[ Wed Sep 14 13:36:26 2022 ] Mean test loss of 258 batches: 3.5653231143951416.
|
38 |
+
[ Wed Sep 14 13:36:26 2022 ] Top1: 23.73%
|
39 |
+
[ Wed Sep 14 13:36:26 2022 ] Top5: 58.72%
|
40 |
+
[ Wed Sep 14 13:36:26 2022 ] Training epoch: 4
|
41 |
+
[ Wed Sep 14 13:36:52 2022 ] Batch(30/123) done. Loss: 1.6613 lr:0.100000 network_time: 0.0268
|
42 |
+
[ Wed Sep 14 13:37:59 2022 ] Eval epoch: 4
|
43 |
+
[ Wed Sep 14 13:38:31 2022 ] Mean test loss of 258 batches: 2.9171056747436523.
|
44 |
+
[ Wed Sep 14 13:38:31 2022 ] Top1: 29.33%
|
45 |
+
[ Wed Sep 14 13:38:31 2022 ] Top5: 64.11%
|
46 |
+
[ Wed Sep 14 13:38:31 2022 ] Training epoch: 5
|
47 |
+
[ Wed Sep 14 13:38:40 2022 ] Batch(7/123) done. Loss: 1.1064 lr:0.100000 network_time: 0.0258
|
48 |
+
[ Wed Sep 14 13:39:53 2022 ] Batch(107/123) done. Loss: 1.2393 lr:0.100000 network_time: 0.0274
|
49 |
+
[ Wed Sep 14 13:40:04 2022 ] Eval epoch: 5
|
50 |
+
[ Wed Sep 14 13:40:36 2022 ] Mean test loss of 258 batches: 2.6525120735168457.
|
51 |
+
[ Wed Sep 14 13:40:36 2022 ] Top1: 33.77%
|
52 |
+
[ Wed Sep 14 13:40:36 2022 ] Top5: 70.72%
|
53 |
+
[ Wed Sep 14 13:40:37 2022 ] Training epoch: 6
|
54 |
+
[ Wed Sep 14 13:41:41 2022 ] Batch(84/123) done. Loss: 1.2044 lr:0.100000 network_time: 0.0322
|
55 |
+
[ Wed Sep 14 13:42:09 2022 ] Eval epoch: 6
|
56 |
+
[ Wed Sep 14 13:42:42 2022 ] Mean test loss of 258 batches: 2.4061315059661865.
|
57 |
+
[ Wed Sep 14 13:42:42 2022 ] Top1: 35.90%
|
58 |
+
[ Wed Sep 14 13:42:42 2022 ] Top5: 73.77%
|
59 |
+
[ Wed Sep 14 13:42:42 2022 ] Training epoch: 7
|
60 |
+
[ Wed Sep 14 13:43:30 2022 ] Batch(61/123) done. Loss: 0.9143 lr:0.100000 network_time: 0.0260
|
61 |
+
[ Wed Sep 14 13:44:15 2022 ] Eval epoch: 7
|
62 |
+
[ Wed Sep 14 13:44:47 2022 ] Mean test loss of 258 batches: 2.4678521156311035.
|
63 |
+
[ Wed Sep 14 13:44:48 2022 ] Top1: 38.75%
|
64 |
+
[ Wed Sep 14 13:44:48 2022 ] Top5: 73.76%
|
65 |
+
[ Wed Sep 14 13:44:48 2022 ] Training epoch: 8
|
66 |
+
[ Wed Sep 14 13:45:19 2022 ] Batch(38/123) done. Loss: 1.0245 lr:0.100000 network_time: 0.0257
|
67 |
+
[ Wed Sep 14 13:46:20 2022 ] Eval epoch: 8
|
68 |
+
[ Wed Sep 14 13:46:53 2022 ] Mean test loss of 258 batches: 2.290700912475586.
|
69 |
+
[ Wed Sep 14 13:46:53 2022 ] Top1: 39.76%
|
70 |
+
[ Wed Sep 14 13:46:53 2022 ] Top5: 77.05%
|
71 |
+
[ Wed Sep 14 13:46:53 2022 ] Training epoch: 9
|
72 |
+
[ Wed Sep 14 13:47:08 2022 ] Batch(15/123) done. Loss: 1.0405 lr:0.100000 network_time: 0.0276
|
73 |
+
[ Wed Sep 14 13:48:21 2022 ] Batch(115/123) done. Loss: 1.0858 lr:0.100000 network_time: 0.0317
|
74 |
+
[ Wed Sep 14 13:48:26 2022 ] Eval epoch: 9
|
75 |
+
[ Wed Sep 14 13:48:59 2022 ] Mean test loss of 258 batches: 2.499346971511841.
|
76 |
+
[ Wed Sep 14 13:48:59 2022 ] Top1: 40.40%
|
77 |
+
[ Wed Sep 14 13:48:59 2022 ] Top5: 74.43%
|
78 |
+
[ Wed Sep 14 13:48:59 2022 ] Training epoch: 10
|
79 |
+
[ Wed Sep 14 13:50:10 2022 ] Batch(92/123) done. Loss: 1.0761 lr:0.100000 network_time: 0.0295
|
80 |
+
[ Wed Sep 14 13:50:32 2022 ] Eval epoch: 10
|
81 |
+
[ Wed Sep 14 13:51:05 2022 ] Mean test loss of 258 batches: 2.265429973602295.
|
82 |
+
[ Wed Sep 14 13:51:05 2022 ] Top1: 41.90%
|
83 |
+
[ Wed Sep 14 13:51:05 2022 ] Top5: 76.64%
|
84 |
+
[ Wed Sep 14 13:51:05 2022 ] Training epoch: 11
|
85 |
+
[ Wed Sep 14 13:51:59 2022 ] Batch(69/123) done. Loss: 0.6436 lr:0.100000 network_time: 0.0291
|
86 |
+
[ Wed Sep 14 13:52:38 2022 ] Eval epoch: 11
|
87 |
+
[ Wed Sep 14 13:53:11 2022 ] Mean test loss of 258 batches: 2.014800786972046.
|
88 |
+
[ Wed Sep 14 13:53:11 2022 ] Top1: 47.50%
|
89 |
+
[ Wed Sep 14 13:53:11 2022 ] Top5: 81.51%
|
90 |
+
[ Wed Sep 14 13:53:11 2022 ] Training epoch: 12
|
91 |
+
[ Wed Sep 14 13:53:49 2022 ] Batch(46/123) done. Loss: 0.6086 lr:0.100000 network_time: 0.0289
|
92 |
+
[ Wed Sep 14 13:54:44 2022 ] Eval epoch: 12
|
93 |
+
[ Wed Sep 14 13:55:17 2022 ] Mean test loss of 258 batches: 2.291834831237793.
|
94 |
+
[ Wed Sep 14 13:55:17 2022 ] Top1: 46.36%
|
95 |
+
[ Wed Sep 14 13:55:17 2022 ] Top5: 81.22%
|
96 |
+
[ Wed Sep 14 13:55:17 2022 ] Training epoch: 13
|
97 |
+
[ Wed Sep 14 13:55:38 2022 ] Batch(23/123) done. Loss: 0.8663 lr:0.100000 network_time: 0.0259
|
98 |
+
[ Wed Sep 14 13:56:50 2022 ] Eval epoch: 13
|
99 |
+
[ Wed Sep 14 13:57:22 2022 ] Mean test loss of 258 batches: 2.2155113220214844.
|
100 |
+
[ Wed Sep 14 13:57:22 2022 ] Top1: 46.39%
|
101 |
+
[ Wed Sep 14 13:57:23 2022 ] Top5: 80.01%
|
102 |
+
[ Wed Sep 14 13:57:23 2022 ] Training epoch: 14
|
103 |
+
[ Wed Sep 14 13:57:26 2022 ] Batch(0/123) done. Loss: 0.6118 lr:0.100000 network_time: 0.0475
|
104 |
+
[ Wed Sep 14 13:58:39 2022 ] Batch(100/123) done. Loss: 0.4732 lr:0.100000 network_time: 0.0320
|
105 |
+
[ Wed Sep 14 13:58:56 2022 ] Eval epoch: 14
|
106 |
+
[ Wed Sep 14 13:59:28 2022 ] Mean test loss of 258 batches: 2.701786518096924.
|
107 |
+
[ Wed Sep 14 13:59:28 2022 ] Top1: 38.97%
|
108 |
+
[ Wed Sep 14 13:59:28 2022 ] Top5: 75.62%
|
109 |
+
[ Wed Sep 14 13:59:28 2022 ] Training epoch: 15
|
110 |
+
[ Wed Sep 14 14:00:28 2022 ] Batch(77/123) done. Loss: 0.6637 lr:0.100000 network_time: 0.0265
|
111 |
+
[ Wed Sep 14 14:01:01 2022 ] Eval epoch: 15
|
112 |
+
[ Wed Sep 14 14:01:33 2022 ] Mean test loss of 258 batches: 2.2561497688293457.
|
113 |
+
[ Wed Sep 14 14:01:33 2022 ] Top1: 46.73%
|
114 |
+
[ Wed Sep 14 14:01:33 2022 ] Top5: 79.88%
|
115 |
+
[ Wed Sep 14 14:01:33 2022 ] Training epoch: 16
|
116 |
+
[ Wed Sep 14 14:02:16 2022 ] Batch(54/123) done. Loss: 0.6604 lr:0.100000 network_time: 0.0298
|
117 |
+
[ Wed Sep 14 14:03:06 2022 ] Eval epoch: 16
|
118 |
+
[ Wed Sep 14 14:03:38 2022 ] Mean test loss of 258 batches: 2.2094640731811523.
|
119 |
+
[ Wed Sep 14 14:03:38 2022 ] Top1: 46.29%
|
120 |
+
[ Wed Sep 14 14:03:38 2022 ] Top5: 82.10%
|
121 |
+
[ Wed Sep 14 14:03:39 2022 ] Training epoch: 17
|
122 |
+
[ Wed Sep 14 14:04:05 2022 ] Batch(31/123) done. Loss: 0.5614 lr:0.100000 network_time: 0.0300
|
123 |
+
[ Wed Sep 14 14:05:12 2022 ] Eval epoch: 17
|
124 |
+
[ Wed Sep 14 14:05:45 2022 ] Mean test loss of 258 batches: 2.6692111492156982.
|
125 |
+
[ Wed Sep 14 14:05:45 2022 ] Top1: 41.47%
|
126 |
+
[ Wed Sep 14 14:05:45 2022 ] Top5: 77.44%
|
127 |
+
[ Wed Sep 14 14:05:45 2022 ] Training epoch: 18
|
128 |
+
[ Wed Sep 14 14:05:55 2022 ] Batch(8/123) done. Loss: 0.3214 lr:0.100000 network_time: 0.0334
|
129 |
+
[ Wed Sep 14 14:07:08 2022 ] Batch(108/123) done. Loss: 0.4732 lr:0.100000 network_time: 0.0279
|
130 |
+
[ Wed Sep 14 14:07:18 2022 ] Eval epoch: 18
|
131 |
+
[ Wed Sep 14 14:07:50 2022 ] Mean test loss of 258 batches: 2.0434653759002686.
|
132 |
+
[ Wed Sep 14 14:07:50 2022 ] Top1: 51.87%
|
133 |
+
[ Wed Sep 14 14:07:51 2022 ] Top5: 83.21%
|
134 |
+
[ Wed Sep 14 14:07:51 2022 ] Training epoch: 19
|
135 |
+
[ Wed Sep 14 14:08:57 2022 ] Batch(85/123) done. Loss: 0.4650 lr:0.100000 network_time: 0.0277
|
136 |
+
[ Wed Sep 14 14:09:24 2022 ] Eval epoch: 19
|
137 |
+
[ Wed Sep 14 14:09:56 2022 ] Mean test loss of 258 batches: 1.86018967628479.
|
138 |
+
[ Wed Sep 14 14:09:57 2022 ] Top1: 51.05%
|
139 |
+
[ Wed Sep 14 14:09:57 2022 ] Top5: 83.74%
|
140 |
+
[ Wed Sep 14 14:09:57 2022 ] Training epoch: 20
|
141 |
+
[ Wed Sep 14 14:10:46 2022 ] Batch(62/123) done. Loss: 0.3363 lr:0.100000 network_time: 0.0292
|
142 |
+
[ Wed Sep 14 14:11:30 2022 ] Eval epoch: 20
|
143 |
+
[ Wed Sep 14 14:12:02 2022 ] Mean test loss of 258 batches: 2.408405065536499.
|
144 |
+
[ Wed Sep 14 14:12:02 2022 ] Top1: 46.35%
|
145 |
+
[ Wed Sep 14 14:12:03 2022 ] Top5: 79.66%
|
146 |
+
[ Wed Sep 14 14:12:03 2022 ] Training epoch: 21
|
147 |
+
[ Wed Sep 14 14:12:35 2022 ] Batch(39/123) done. Loss: 0.5413 lr:0.100000 network_time: 0.0288
|
148 |
+
[ Wed Sep 14 14:13:36 2022 ] Eval epoch: 21
|
149 |
+
[ Wed Sep 14 14:14:08 2022 ] Mean test loss of 258 batches: 2.3089609146118164.
|
150 |
+
[ Wed Sep 14 14:14:08 2022 ] Top1: 45.38%
|
151 |
+
[ Wed Sep 14 14:14:08 2022 ] Top5: 82.33%
|
152 |
+
[ Wed Sep 14 14:14:09 2022 ] Training epoch: 22
|
153 |
+
[ Wed Sep 14 14:14:24 2022 ] Batch(16/123) done. Loss: 0.4254 lr:0.100000 network_time: 0.0332
|
154 |
+
[ Wed Sep 14 14:15:37 2022 ] Batch(116/123) done. Loss: 0.4475 lr:0.100000 network_time: 0.0265
|
155 |
+
[ Wed Sep 14 14:15:42 2022 ] Eval epoch: 22
|
156 |
+
[ Wed Sep 14 14:16:14 2022 ] Mean test loss of 258 batches: 2.318674087524414.
|
157 |
+
[ Wed Sep 14 14:16:14 2022 ] Top1: 47.51%
|
158 |
+
[ Wed Sep 14 14:16:15 2022 ] Top5: 82.03%
|
159 |
+
[ Wed Sep 14 14:16:15 2022 ] Training epoch: 23
|
160 |
+
[ Wed Sep 14 14:17:26 2022 ] Batch(93/123) done. Loss: 0.5333 lr:0.100000 network_time: 0.0286
|
161 |
+
[ Wed Sep 14 14:17:48 2022 ] Eval epoch: 23
|
162 |
+
[ Wed Sep 14 14:18:20 2022 ] Mean test loss of 258 batches: 2.097595453262329.
|
163 |
+
[ Wed Sep 14 14:18:20 2022 ] Top1: 49.50%
|
164 |
+
[ Wed Sep 14 14:18:20 2022 ] Top5: 83.20%
|
165 |
+
[ Wed Sep 14 14:18:21 2022 ] Training epoch: 24
|
166 |
+
[ Wed Sep 14 14:19:15 2022 ] Batch(70/123) done. Loss: 0.5075 lr:0.100000 network_time: 0.0293
|
167 |
+
[ Wed Sep 14 14:19:54 2022 ] Eval epoch: 24
|
168 |
+
[ Wed Sep 14 14:20:26 2022 ] Mean test loss of 258 batches: 2.4013638496398926.
|
169 |
+
[ Wed Sep 14 14:20:26 2022 ] Top1: 48.10%
|
170 |
+
[ Wed Sep 14 14:20:26 2022 ] Top5: 81.03%
|
171 |
+
[ Wed Sep 14 14:20:26 2022 ] Training epoch: 25
|
172 |
+
[ Wed Sep 14 14:21:05 2022 ] Batch(47/123) done. Loss: 0.4802 lr:0.100000 network_time: 0.0293
|
173 |
+
[ Wed Sep 14 14:22:00 2022 ] Eval epoch: 25
|
174 |
+
[ Wed Sep 14 14:22:32 2022 ] Mean test loss of 258 batches: 2.116831064224243.
|
175 |
+
[ Wed Sep 14 14:22:33 2022 ] Top1: 49.18%
|
176 |
+
[ Wed Sep 14 14:22:33 2022 ] Top5: 83.03%
|
177 |
+
[ Wed Sep 14 14:22:33 2022 ] Training epoch: 26
|
178 |
+
[ Wed Sep 14 14:22:54 2022 ] Batch(24/123) done. Loss: 0.7263 lr:0.100000 network_time: 0.0276
|
179 |
+
[ Wed Sep 14 14:24:06 2022 ] Eval epoch: 26
|
180 |
+
[ Wed Sep 14 14:24:38 2022 ] Mean test loss of 258 batches: 1.9685046672821045.
|
181 |
+
[ Wed Sep 14 14:24:38 2022 ] Top1: 53.72%
|
182 |
+
[ Wed Sep 14 14:24:38 2022 ] Top5: 85.21%
|
183 |
+
[ Wed Sep 14 14:24:38 2022 ] Training epoch: 27
|
184 |
+
[ Wed Sep 14 14:24:43 2022 ] Batch(1/123) done. Loss: 0.1548 lr:0.100000 network_time: 0.0319
|
185 |
+
[ Wed Sep 14 14:25:56 2022 ] Batch(101/123) done. Loss: 0.3913 lr:0.100000 network_time: 0.0269
|
186 |
+
[ Wed Sep 14 14:26:11 2022 ] Eval epoch: 27
|
187 |
+
[ Wed Sep 14 14:26:43 2022 ] Mean test loss of 258 batches: 2.30924391746521.
|
188 |
+
[ Wed Sep 14 14:26:43 2022 ] Top1: 50.16%
|
189 |
+
[ Wed Sep 14 14:26:43 2022 ] Top5: 82.26%
|
190 |
+
[ Wed Sep 14 14:26:44 2022 ] Training epoch: 28
|
191 |
+
[ Wed Sep 14 14:27:44 2022 ] Batch(78/123) done. Loss: 0.5422 lr:0.100000 network_time: 0.0262
|
192 |
+
[ Wed Sep 14 14:28:17 2022 ] Eval epoch: 28
|
193 |
+
[ Wed Sep 14 14:28:48 2022 ] Mean test loss of 258 batches: 2.1971280574798584.
|
194 |
+
[ Wed Sep 14 14:28:49 2022 ] Top1: 52.06%
|
195 |
+
[ Wed Sep 14 14:28:49 2022 ] Top5: 84.11%
|
196 |
+
[ Wed Sep 14 14:28:49 2022 ] Training epoch: 29
|
197 |
+
[ Wed Sep 14 14:29:32 2022 ] Batch(55/123) done. Loss: 0.3558 lr:0.100000 network_time: 0.0311
|
198 |
+
[ Wed Sep 14 14:30:22 2022 ] Eval epoch: 29
|
199 |
+
[ Wed Sep 14 14:30:53 2022 ] Mean test loss of 258 batches: 1.991234540939331.
|
200 |
+
[ Wed Sep 14 14:30:54 2022 ] Top1: 53.61%
|
201 |
+
[ Wed Sep 14 14:30:54 2022 ] Top5: 85.71%
|
202 |
+
[ Wed Sep 14 14:30:54 2022 ] Training epoch: 30
|
203 |
+
[ Wed Sep 14 14:31:21 2022 ] Batch(32/123) done. Loss: 0.3585 lr:0.100000 network_time: 0.0273
|
204 |
+
[ Wed Sep 14 14:32:26 2022 ] Eval epoch: 30
|
205 |
+
[ Wed Sep 14 14:32:59 2022 ] Mean test loss of 258 batches: 1.8016409873962402.
|
206 |
+
[ Wed Sep 14 14:32:59 2022 ] Top1: 56.30%
|
207 |
+
[ Wed Sep 14 14:32:59 2022 ] Top5: 86.58%
|
208 |
+
[ Wed Sep 14 14:32:59 2022 ] Training epoch: 31
|
209 |
+
[ Wed Sep 14 14:33:09 2022 ] Batch(9/123) done. Loss: 0.2505 lr:0.100000 network_time: 0.0281
|
210 |
+
[ Wed Sep 14 14:34:22 2022 ] Batch(109/123) done. Loss: 0.2635 lr:0.100000 network_time: 0.0264
|
211 |
+
[ Wed Sep 14 14:34:32 2022 ] Eval epoch: 31
|
212 |
+
[ Wed Sep 14 14:35:05 2022 ] Mean test loss of 258 batches: 2.105398178100586.
|
213 |
+
[ Wed Sep 14 14:35:05 2022 ] Top1: 51.54%
|
214 |
+
[ Wed Sep 14 14:35:05 2022 ] Top5: 84.89%
|
215 |
+
[ Wed Sep 14 14:35:05 2022 ] Training epoch: 32
|
216 |
+
[ Wed Sep 14 14:36:11 2022 ] Batch(86/123) done. Loss: 0.4799 lr:0.100000 network_time: 0.0263
|
217 |
+
[ Wed Sep 14 14:36:38 2022 ] Eval epoch: 32
|
218 |
+
[ Wed Sep 14 14:37:10 2022 ] Mean test loss of 258 batches: 2.0153965950012207.
|
219 |
+
[ Wed Sep 14 14:37:10 2022 ] Top1: 52.47%
|
220 |
+
[ Wed Sep 14 14:37:10 2022 ] Top5: 85.09%
|
221 |
+
[ Wed Sep 14 14:37:10 2022 ] Training epoch: 33
|
222 |
+
[ Wed Sep 14 14:38:00 2022 ] Batch(63/123) done. Loss: 0.3095 lr:0.100000 network_time: 0.0275
|
223 |
+
[ Wed Sep 14 14:38:43 2022 ] Eval epoch: 33
|
224 |
+
[ Wed Sep 14 14:39:15 2022 ] Mean test loss of 258 batches: 2.7301554679870605.
|
225 |
+
[ Wed Sep 14 14:39:15 2022 ] Top1: 47.96%
|
226 |
+
[ Wed Sep 14 14:39:15 2022 ] Top5: 81.24%
|
227 |
+
[ Wed Sep 14 14:39:15 2022 ] Training epoch: 34
|
228 |
+
[ Wed Sep 14 14:39:48 2022 ] Batch(40/123) done. Loss: 0.3923 lr:0.100000 network_time: 0.0274
|
229 |
+
[ Wed Sep 14 14:40:48 2022 ] Eval epoch: 34
|
230 |
+
[ Wed Sep 14 14:41:21 2022 ] Mean test loss of 258 batches: 1.9540212154388428.
|
231 |
+
[ Wed Sep 14 14:41:21 2022 ] Top1: 54.04%
|
232 |
+
[ Wed Sep 14 14:41:21 2022 ] Top5: 85.81%
|
233 |
+
[ Wed Sep 14 14:41:21 2022 ] Training epoch: 35
|
234 |
+
[ Wed Sep 14 14:41:37 2022 ] Batch(17/123) done. Loss: 0.1987 lr:0.100000 network_time: 0.0280
|
235 |
+
[ Wed Sep 14 14:42:50 2022 ] Batch(117/123) done. Loss: 0.3243 lr:0.100000 network_time: 0.0291
|
236 |
+
[ Wed Sep 14 14:42:54 2022 ] Eval epoch: 35
|
237 |
+
[ Wed Sep 14 14:43:26 2022 ] Mean test loss of 258 batches: 2.593190908432007.
|
238 |
+
[ Wed Sep 14 14:43:26 2022 ] Top1: 50.09%
|
239 |
+
[ Wed Sep 14 14:43:26 2022 ] Top5: 81.51%
|
240 |
+
[ Wed Sep 14 14:43:26 2022 ] Training epoch: 36
|
241 |
+
[ Wed Sep 14 14:44:38 2022 ] Batch(94/123) done. Loss: 0.3176 lr:0.100000 network_time: 0.0269
|
242 |
+
[ Wed Sep 14 14:44:59 2022 ] Eval epoch: 36
|
243 |
+
[ Wed Sep 14 14:45:31 2022 ] Mean test loss of 258 batches: 2.1365630626678467.
|
244 |
+
[ Wed Sep 14 14:45:32 2022 ] Top1: 54.51%
|
245 |
+
[ Wed Sep 14 14:45:32 2022 ] Top5: 84.55%
|
246 |
+
[ Wed Sep 14 14:45:32 2022 ] Training epoch: 37
|
247 |
+
[ Wed Sep 14 14:46:27 2022 ] Batch(71/123) done. Loss: 0.2958 lr:0.100000 network_time: 0.0255
|
248 |
+
[ Wed Sep 14 14:47:05 2022 ] Eval epoch: 37
|
249 |
+
[ Wed Sep 14 14:47:36 2022 ] Mean test loss of 258 batches: 2.1151015758514404.
|
250 |
+
[ Wed Sep 14 14:47:37 2022 ] Top1: 51.03%
|
251 |
+
[ Wed Sep 14 14:47:37 2022 ] Top5: 84.02%
|
252 |
+
[ Wed Sep 14 14:47:37 2022 ] Training epoch: 38
|
253 |
+
[ Wed Sep 14 14:48:15 2022 ] Batch(48/123) done. Loss: 0.2557 lr:0.100000 network_time: 0.0309
|
254 |
+
[ Wed Sep 14 14:49:10 2022 ] Eval epoch: 38
|
255 |
+
[ Wed Sep 14 14:49:41 2022 ] Mean test loss of 258 batches: 2.130195140838623.
|
256 |
+
[ Wed Sep 14 14:49:42 2022 ] Top1: 52.40%
|
257 |
+
[ Wed Sep 14 14:49:42 2022 ] Top5: 83.91%
|
258 |
+
[ Wed Sep 14 14:49:42 2022 ] Training epoch: 39
|
259 |
+
[ Wed Sep 14 14:50:03 2022 ] Batch(25/123) done. Loss: 0.2468 lr:0.100000 network_time: 0.0258
|
260 |
+
[ Wed Sep 14 14:51:15 2022 ] Eval epoch: 39
|
261 |
+
[ Wed Sep 14 14:51:47 2022 ] Mean test loss of 258 batches: 2.4296348094940186.
|
262 |
+
[ Wed Sep 14 14:51:47 2022 ] Top1: 52.08%
|
263 |
+
[ Wed Sep 14 14:51:47 2022 ] Top5: 83.84%
|
264 |
+
[ Wed Sep 14 14:51:47 2022 ] Training epoch: 40
|
265 |
+
[ Wed Sep 14 14:51:52 2022 ] Batch(2/123) done. Loss: 0.4386 lr:0.100000 network_time: 0.0269
|
266 |
+
[ Wed Sep 14 14:53:05 2022 ] Batch(102/123) done. Loss: 0.2768 lr:0.100000 network_time: 0.0305
|
267 |
+
[ Wed Sep 14 14:53:20 2022 ] Eval epoch: 40
|
268 |
+
[ Wed Sep 14 14:53:52 2022 ] Mean test loss of 258 batches: 2.3187801837921143.
|
269 |
+
[ Wed Sep 14 14:53:52 2022 ] Top1: 51.82%
|
270 |
+
[ Wed Sep 14 14:53:52 2022 ] Top5: 83.99%
|
271 |
+
[ Wed Sep 14 14:53:52 2022 ] Training epoch: 41
|
272 |
+
[ Wed Sep 14 14:54:54 2022 ] Batch(79/123) done. Loss: 0.2464 lr:0.100000 network_time: 0.0303
|
273 |
+
[ Wed Sep 14 14:55:25 2022 ] Eval epoch: 41
|
274 |
+
[ Wed Sep 14 14:55:58 2022 ] Mean test loss of 258 batches: 2.4942824840545654.
|
275 |
+
[ Wed Sep 14 14:55:58 2022 ] Top1: 51.19%
|
276 |
+
[ Wed Sep 14 14:55:58 2022 ] Top5: 83.19%
|
277 |
+
[ Wed Sep 14 14:55:58 2022 ] Training epoch: 42
|
278 |
+
[ Wed Sep 14 14:56:43 2022 ] Batch(56/123) done. Loss: 0.1342 lr:0.100000 network_time: 0.0293
|
279 |
+
[ Wed Sep 14 14:57:31 2022 ] Eval epoch: 42
|
280 |
+
[ Wed Sep 14 14:58:03 2022 ] Mean test loss of 258 batches: 2.3902950286865234.
|
281 |
+
[ Wed Sep 14 14:58:03 2022 ] Top1: 52.47%
|
282 |
+
[ Wed Sep 14 14:58:03 2022 ] Top5: 84.04%
|
283 |
+
[ Wed Sep 14 14:58:03 2022 ] Training epoch: 43
|
284 |
+
[ Wed Sep 14 14:58:31 2022 ] Batch(33/123) done. Loss: 0.1424 lr:0.100000 network_time: 0.0311
|
285 |
+
[ Wed Sep 14 14:59:36 2022 ] Eval epoch: 43
|
286 |
+
[ Wed Sep 14 15:00:08 2022 ] Mean test loss of 258 batches: 2.4120872020721436.
|
287 |
+
[ Wed Sep 14 15:00:08 2022 ] Top1: 49.75%
|
288 |
+
[ Wed Sep 14 15:00:08 2022 ] Top5: 81.69%
|
289 |
+
[ Wed Sep 14 15:00:08 2022 ] Training epoch: 44
|
290 |
+
[ Wed Sep 14 15:00:19 2022 ] Batch(10/123) done. Loss: 0.2357 lr:0.100000 network_time: 0.0313
|
291 |
+
[ Wed Sep 14 15:01:32 2022 ] Batch(110/123) done. Loss: 0.2504 lr:0.100000 network_time: 0.0287
|
292 |
+
[ Wed Sep 14 15:01:41 2022 ] Eval epoch: 44
|
293 |
+
[ Wed Sep 14 15:02:13 2022 ] Mean test loss of 258 batches: 1.7786136865615845.
|
294 |
+
[ Wed Sep 14 15:02:14 2022 ] Top1: 56.93%
|
295 |
+
[ Wed Sep 14 15:02:14 2022 ] Top5: 86.68%
|
296 |
+
[ Wed Sep 14 15:02:14 2022 ] Training epoch: 45
|
297 |
+
[ Wed Sep 14 15:03:21 2022 ] Batch(87/123) done. Loss: 0.2842 lr:0.100000 network_time: 0.0310
|
298 |
+
[ Wed Sep 14 15:03:47 2022 ] Eval epoch: 45
|
299 |
+
[ Wed Sep 14 15:04:19 2022 ] Mean test loss of 258 batches: 2.2016782760620117.
|
300 |
+
[ Wed Sep 14 15:04:19 2022 ] Top1: 55.22%
|
301 |
+
[ Wed Sep 14 15:04:19 2022 ] Top5: 86.05%
|
302 |
+
[ Wed Sep 14 15:04:19 2022 ] Training epoch: 46
|
303 |
+
[ Wed Sep 14 15:05:10 2022 ] Batch(64/123) done. Loss: 0.3073 lr:0.100000 network_time: 0.0285
|
304 |
+
[ Wed Sep 14 15:05:52 2022 ] Eval epoch: 46
|
305 |
+
[ Wed Sep 14 15:06:24 2022 ] Mean test loss of 258 batches: 2.2162413597106934.
|
306 |
+
[ Wed Sep 14 15:06:24 2022 ] Top1: 52.64%
|
307 |
+
[ Wed Sep 14 15:06:24 2022 ] Top5: 84.02%
|
308 |
+
[ Wed Sep 14 15:06:24 2022 ] Training epoch: 47
|
309 |
+
[ Wed Sep 14 15:06:58 2022 ] Batch(41/123) done. Loss: 0.6450 lr:0.100000 network_time: 0.0275
|
310 |
+
[ Wed Sep 14 15:07:57 2022 ] Eval epoch: 47
|
311 |
+
[ Wed Sep 14 15:08:29 2022 ] Mean test loss of 258 batches: 1.919111967086792.
|
312 |
+
[ Wed Sep 14 15:08:29 2022 ] Top1: 57.42%
|
313 |
+
[ Wed Sep 14 15:08:30 2022 ] Top5: 86.45%
|
314 |
+
[ Wed Sep 14 15:08:30 2022 ] Training epoch: 48
|
315 |
+
[ Wed Sep 14 15:08:46 2022 ] Batch(18/123) done. Loss: 0.1862 lr:0.100000 network_time: 0.0268
|
316 |
+
[ Wed Sep 14 15:09:59 2022 ] Batch(118/123) done. Loss: 0.2942 lr:0.100000 network_time: 0.0270
|
317 |
+
[ Wed Sep 14 15:10:02 2022 ] Eval epoch: 48
|
318 |
+
[ Wed Sep 14 15:10:35 2022 ] Mean test loss of 258 batches: 2.217275381088257.
|
319 |
+
[ Wed Sep 14 15:10:35 2022 ] Top1: 53.76%
|
320 |
+
[ Wed Sep 14 15:10:35 2022 ] Top5: 84.15%
|
321 |
+
[ Wed Sep 14 15:10:35 2022 ] Training epoch: 49
|
322 |
+
[ Wed Sep 14 15:11:48 2022 ] Batch(95/123) done. Loss: 0.2444 lr:0.100000 network_time: 0.0267
|
323 |
+
[ Wed Sep 14 15:12:08 2022 ] Eval epoch: 49
|
324 |
+
[ Wed Sep 14 15:12:40 2022 ] Mean test loss of 258 batches: 1.9189571142196655.
|
325 |
+
[ Wed Sep 14 15:12:40 2022 ] Top1: 56.74%
|
326 |
+
[ Wed Sep 14 15:12:41 2022 ] Top5: 87.08%
|
327 |
+
[ Wed Sep 14 15:12:41 2022 ] Training epoch: 50
|
328 |
+
[ Wed Sep 14 15:13:37 2022 ] Batch(72/123) done. Loss: 0.2989 lr:0.100000 network_time: 0.0322
|
329 |
+
[ Wed Sep 14 15:14:14 2022 ] Eval epoch: 50
|
330 |
+
[ Wed Sep 14 15:14:46 2022 ] Mean test loss of 258 batches: 1.8722784519195557.
|
331 |
+
[ Wed Sep 14 15:14:46 2022 ] Top1: 55.79%
|
332 |
+
[ Wed Sep 14 15:14:46 2022 ] Top5: 86.23%
|
333 |
+
[ Wed Sep 14 15:14:46 2022 ] Training epoch: 51
|
334 |
+
[ Wed Sep 14 15:15:26 2022 ] Batch(49/123) done. Loss: 0.1550 lr:0.100000 network_time: 0.0309
|
335 |
+
[ Wed Sep 14 15:16:19 2022 ] Eval epoch: 51
|
336 |
+
[ Wed Sep 14 15:16:51 2022 ] Mean test loss of 258 batches: 1.8202694654464722.
|
337 |
+
[ Wed Sep 14 15:16:51 2022 ] Top1: 57.06%
|
338 |
+
[ Wed Sep 14 15:16:51 2022 ] Top5: 87.21%
|
339 |
+
[ Wed Sep 14 15:16:51 2022 ] Training epoch: 52
|
340 |
+
[ Wed Sep 14 15:17:14 2022 ] Batch(26/123) done. Loss: 0.1605 lr:0.100000 network_time: 0.0289
|
341 |
+
[ Wed Sep 14 15:18:24 2022 ] Eval epoch: 52
|
342 |
+
[ Wed Sep 14 15:18:56 2022 ] Mean test loss of 258 batches: 2.127373695373535.
|
343 |
+
[ Wed Sep 14 15:18:56 2022 ] Top1: 53.71%
|
344 |
+
[ Wed Sep 14 15:18:57 2022 ] Top5: 84.94%
|
345 |
+
[ Wed Sep 14 15:18:57 2022 ] Training epoch: 53
|
346 |
+
[ Wed Sep 14 15:19:02 2022 ] Batch(3/123) done. Loss: 0.2372 lr:0.100000 network_time: 0.0279
|
347 |
+
[ Wed Sep 14 15:20:15 2022 ] Batch(103/123) done. Loss: 0.2728 lr:0.100000 network_time: 0.0277
|
348 |
+
[ Wed Sep 14 15:20:29 2022 ] Eval epoch: 53
|
349 |
+
[ Wed Sep 14 15:21:02 2022 ] Mean test loss of 258 batches: 2.177319049835205.
|
350 |
+
[ Wed Sep 14 15:21:02 2022 ] Top1: 51.14%
|
351 |
+
[ Wed Sep 14 15:21:02 2022 ] Top5: 83.88%
|
352 |
+
[ Wed Sep 14 15:21:02 2022 ] Training epoch: 54
|
353 |
+
[ Wed Sep 14 15:22:04 2022 ] Batch(80/123) done. Loss: 0.0702 lr:0.100000 network_time: 0.0273
|
354 |
+
[ Wed Sep 14 15:22:35 2022 ] Eval epoch: 54
|
355 |
+
[ Wed Sep 14 15:23:07 2022 ] Mean test loss of 258 batches: 1.9530134201049805.
|
356 |
+
[ Wed Sep 14 15:23:07 2022 ] Top1: 57.14%
|
357 |
+
[ Wed Sep 14 15:23:07 2022 ] Top5: 87.07%
|
358 |
+
[ Wed Sep 14 15:23:08 2022 ] Training epoch: 55
|
359 |
+
[ Wed Sep 14 15:23:53 2022 ] Batch(57/123) done. Loss: 0.1349 lr:0.100000 network_time: 0.0271
|
360 |
+
[ Wed Sep 14 15:24:40 2022 ] Eval epoch: 55
|
361 |
+
[ Wed Sep 14 15:25:12 2022 ] Mean test loss of 258 batches: 2.054978847503662.
|
362 |
+
[ Wed Sep 14 15:25:13 2022 ] Top1: 56.96%
|
363 |
+
[ Wed Sep 14 15:25:13 2022 ] Top5: 85.78%
|
364 |
+
[ Wed Sep 14 15:25:13 2022 ] Training epoch: 56
|
365 |
+
[ Wed Sep 14 15:25:42 2022 ] Batch(34/123) done. Loss: 0.1589 lr:0.100000 network_time: 0.0277
|
366 |
+
[ Wed Sep 14 15:26:46 2022 ] Eval epoch: 56
|
367 |
+
[ Wed Sep 14 15:27:18 2022 ] Mean test loss of 258 batches: 2.158838987350464.
|
368 |
+
[ Wed Sep 14 15:27:18 2022 ] Top1: 53.88%
|
369 |
+
[ Wed Sep 14 15:27:18 2022 ] Top5: 84.66%
|
370 |
+
[ Wed Sep 14 15:27:19 2022 ] Training epoch: 57
|
371 |
+
[ Wed Sep 14 15:27:30 2022 ] Batch(11/123) done. Loss: 0.3453 lr:0.100000 network_time: 0.0283
|
372 |
+
[ Wed Sep 14 15:28:43 2022 ] Batch(111/123) done. Loss: 0.2935 lr:0.100000 network_time: 0.0468
|
373 |
+
[ Wed Sep 14 15:28:51 2022 ] Eval epoch: 57
|
374 |
+
[ Wed Sep 14 15:29:24 2022 ] Mean test loss of 258 batches: 2.115934133529663.
|
375 |
+
[ Wed Sep 14 15:29:24 2022 ] Top1: 55.32%
|
376 |
+
[ Wed Sep 14 15:29:24 2022 ] Top5: 86.03%
|
377 |
+
[ Wed Sep 14 15:29:24 2022 ] Training epoch: 58
|
378 |
+
[ Wed Sep 14 15:30:32 2022 ] Batch(88/123) done. Loss: 0.3999 lr:0.100000 network_time: 0.0269
|
379 |
+
[ Wed Sep 14 15:30:57 2022 ] Eval epoch: 58
|
380 |
+
[ Wed Sep 14 15:31:29 2022 ] Mean test loss of 258 batches: 2.2344048023223877.
|
381 |
+
[ Wed Sep 14 15:31:29 2022 ] Top1: 53.47%
|
382 |
+
[ Wed Sep 14 15:31:29 2022 ] Top5: 84.13%
|
383 |
+
[ Wed Sep 14 15:31:29 2022 ] Training epoch: 59
|
384 |
+
[ Wed Sep 14 15:32:21 2022 ] Batch(65/123) done. Loss: 0.2181 lr:0.100000 network_time: 0.0271
|
385 |
+
[ Wed Sep 14 15:33:03 2022 ] Eval epoch: 59
|
386 |
+
[ Wed Sep 14 15:33:35 2022 ] Mean test loss of 258 batches: 2.1006672382354736.
|
387 |
+
[ Wed Sep 14 15:33:35 2022 ] Top1: 57.98%
|
388 |
+
[ Wed Sep 14 15:33:35 2022 ] Top5: 86.38%
|
389 |
+
[ Wed Sep 14 15:33:35 2022 ] Training epoch: 60
|
390 |
+
[ Wed Sep 14 15:34:10 2022 ] Batch(42/123) done. Loss: 0.1203 lr:0.100000 network_time: 0.0380
|
391 |
+
[ Wed Sep 14 15:35:08 2022 ] Eval epoch: 60
|
392 |
+
[ Wed Sep 14 15:35:40 2022 ] Mean test loss of 258 batches: 2.0645995140075684.
|
393 |
+
[ Wed Sep 14 15:35:41 2022 ] Top1: 56.20%
|
394 |
+
[ Wed Sep 14 15:35:41 2022 ] Top5: 84.93%
|
395 |
+
[ Wed Sep 14 15:35:41 2022 ] Training epoch: 61
|
396 |
+
[ Wed Sep 14 15:35:58 2022 ] Batch(19/123) done. Loss: 0.1308 lr:0.010000 network_time: 0.0309
|
397 |
+
[ Wed Sep 14 15:37:11 2022 ] Batch(119/123) done. Loss: 0.1849 lr:0.010000 network_time: 0.0279
|
398 |
+
[ Wed Sep 14 15:37:13 2022 ] Eval epoch: 61
|
399 |
+
[ Wed Sep 14 15:37:46 2022 ] Mean test loss of 258 batches: 1.7348182201385498.
|
400 |
+
[ Wed Sep 14 15:37:46 2022 ] Top1: 62.35%
|
401 |
+
[ Wed Sep 14 15:37:46 2022 ] Top5: 88.77%
|
402 |
+
[ Wed Sep 14 15:37:46 2022 ] Training epoch: 62
|
403 |
+
[ Wed Sep 14 15:38:59 2022 ] Batch(96/123) done. Loss: 0.0961 lr:0.010000 network_time: 0.0270
|
404 |
+
[ Wed Sep 14 15:39:19 2022 ] Eval epoch: 62
|
405 |
+
[ Wed Sep 14 15:39:51 2022 ] Mean test loss of 258 batches: 1.711524486541748.
|
406 |
+
[ Wed Sep 14 15:39:51 2022 ] Top1: 63.01%
|
407 |
+
[ Wed Sep 14 15:39:51 2022 ] Top5: 89.26%
|
408 |
+
[ Wed Sep 14 15:39:51 2022 ] Training epoch: 63
|
409 |
+
[ Wed Sep 14 15:40:48 2022 ] Batch(73/123) done. Loss: 0.0374 lr:0.010000 network_time: 0.0273
|
410 |
+
[ Wed Sep 14 15:41:24 2022 ] Eval epoch: 63
|
411 |
+
[ Wed Sep 14 15:41:56 2022 ] Mean test loss of 258 batches: 1.72061026096344.
|
412 |
+
[ Wed Sep 14 15:41:56 2022 ] Top1: 63.20%
|
413 |
+
[ Wed Sep 14 15:41:56 2022 ] Top5: 89.08%
|
414 |
+
[ Wed Sep 14 15:41:56 2022 ] Training epoch: 64
|
415 |
+
[ Wed Sep 14 15:42:37 2022 ] Batch(50/123) done. Loss: 0.0324 lr:0.010000 network_time: 0.0283
|
416 |
+
[ Wed Sep 14 15:43:29 2022 ] Eval epoch: 64
|
417 |
+
[ Wed Sep 14 15:44:02 2022 ] Mean test loss of 258 batches: 1.731319546699524.
|
418 |
+
[ Wed Sep 14 15:44:02 2022 ] Top1: 63.34%
|
419 |
+
[ Wed Sep 14 15:44:02 2022 ] Top5: 89.07%
|
420 |
+
[ Wed Sep 14 15:44:02 2022 ] Training epoch: 65
|
421 |
+
[ Wed Sep 14 15:44:25 2022 ] Batch(27/123) done. Loss: 0.0490 lr:0.010000 network_time: 0.0318
|
422 |
+
[ Wed Sep 14 15:45:35 2022 ] Eval epoch: 65
|
423 |
+
[ Wed Sep 14 15:46:07 2022 ] Mean test loss of 258 batches: 1.735913634300232.
|
424 |
+
[ Wed Sep 14 15:46:07 2022 ] Top1: 63.48%
|
425 |
+
[ Wed Sep 14 15:46:07 2022 ] Top5: 89.29%
|
426 |
+
[ Wed Sep 14 15:46:08 2022 ] Training epoch: 66
|
427 |
+
[ Wed Sep 14 15:46:14 2022 ] Batch(4/123) done. Loss: 0.0260 lr:0.010000 network_time: 0.0324
|
428 |
+
[ Wed Sep 14 15:47:27 2022 ] Batch(104/123) done. Loss: 0.0232 lr:0.010000 network_time: 0.0294
|
429 |
+
[ Wed Sep 14 15:47:40 2022 ] Eval epoch: 66
|
430 |
+
[ Wed Sep 14 15:48:13 2022 ] Mean test loss of 258 batches: 1.7407399415969849.
|
431 |
+
[ Wed Sep 14 15:48:13 2022 ] Top1: 63.42%
|
432 |
+
[ Wed Sep 14 15:48:13 2022 ] Top5: 89.34%
|
433 |
+
[ Wed Sep 14 15:48:13 2022 ] Training epoch: 67
|
434 |
+
[ Wed Sep 14 15:49:15 2022 ] Batch(81/123) done. Loss: 0.0287 lr:0.010000 network_time: 0.0282
|
435 |
+
[ Wed Sep 14 15:49:46 2022 ] Eval epoch: 67
|
436 |
+
[ Wed Sep 14 15:50:18 2022 ] Mean test loss of 258 batches: 1.7624691724777222.
|
437 |
+
[ Wed Sep 14 15:50:18 2022 ] Top1: 63.43%
|
438 |
+
[ Wed Sep 14 15:50:18 2022 ] Top5: 89.25%
|
439 |
+
[ Wed Sep 14 15:50:18 2022 ] Training epoch: 68
|
440 |
+
[ Wed Sep 14 15:51:04 2022 ] Batch(58/123) done. Loss: 0.0116 lr:0.010000 network_time: 0.0266
|
441 |
+
[ Wed Sep 14 15:51:51 2022 ] Eval epoch: 68
|
442 |
+
[ Wed Sep 14 15:52:23 2022 ] Mean test loss of 258 batches: 1.7701879739761353.
|
443 |
+
[ Wed Sep 14 15:52:24 2022 ] Top1: 63.40%
|
444 |
+
[ Wed Sep 14 15:52:24 2022 ] Top5: 89.14%
|
445 |
+
[ Wed Sep 14 15:52:24 2022 ] Training epoch: 69
|
446 |
+
[ Wed Sep 14 15:52:53 2022 ] Batch(35/123) done. Loss: 0.0248 lr:0.010000 network_time: 0.0269
|
447 |
+
[ Wed Sep 14 15:53:57 2022 ] Eval epoch: 69
|
448 |
+
[ Wed Sep 14 15:54:29 2022 ] Mean test loss of 258 batches: 1.7476320266723633.
|
449 |
+
[ Wed Sep 14 15:54:29 2022 ] Top1: 63.65%
|
450 |
+
[ Wed Sep 14 15:54:29 2022 ] Top5: 89.06%
|
451 |
+
[ Wed Sep 14 15:54:29 2022 ] Training epoch: 70
|
452 |
+
[ Wed Sep 14 15:54:42 2022 ] Batch(12/123) done. Loss: 0.0127 lr:0.010000 network_time: 0.0290
|
453 |
+
[ Wed Sep 14 15:55:55 2022 ] Batch(112/123) done. Loss: 0.0187 lr:0.010000 network_time: 0.0298
|
454 |
+
[ Wed Sep 14 15:56:02 2022 ] Eval epoch: 70
|
455 |
+
[ Wed Sep 14 15:56:35 2022 ] Mean test loss of 258 batches: 1.746610403060913.
|
456 |
+
[ Wed Sep 14 15:56:35 2022 ] Top1: 63.94%
|
457 |
+
[ Wed Sep 14 15:56:35 2022 ] Top5: 89.23%
|
458 |
+
[ Wed Sep 14 15:56:35 2022 ] Training epoch: 71
|
459 |
+
[ Wed Sep 14 15:57:43 2022 ] Batch(89/123) done. Loss: 0.0119 lr:0.010000 network_time: 0.0263
|
460 |
+
[ Wed Sep 14 15:58:08 2022 ] Eval epoch: 71
|
461 |
+
[ Wed Sep 14 15:58:40 2022 ] Mean test loss of 258 batches: 1.7734960317611694.
|
462 |
+
[ Wed Sep 14 15:58:40 2022 ] Top1: 63.64%
|
463 |
+
[ Wed Sep 14 15:58:40 2022 ] Top5: 89.36%
|
464 |
+
[ Wed Sep 14 15:58:40 2022 ] Training epoch: 72
|
465 |
+
[ Wed Sep 14 15:59:32 2022 ] Batch(66/123) done. Loss: 0.0212 lr:0.010000 network_time: 0.0329
|
466 |
+
[ Wed Sep 14 16:00:13 2022 ] Eval epoch: 72
|
467 |
+
[ Wed Sep 14 16:00:46 2022 ] Mean test loss of 258 batches: 1.7869070768356323.
|
468 |
+
[ Wed Sep 14 16:00:46 2022 ] Top1: 63.77%
|
469 |
+
[ Wed Sep 14 16:00:46 2022 ] Top5: 89.18%
|
470 |
+
[ Wed Sep 14 16:00:46 2022 ] Training epoch: 73
|
471 |
+
[ Wed Sep 14 16:01:21 2022 ] Batch(43/123) done. Loss: 0.0425 lr:0.010000 network_time: 0.0276
|
472 |
+
[ Wed Sep 14 16:02:19 2022 ] Eval epoch: 73
|
473 |
+
[ Wed Sep 14 16:02:51 2022 ] Mean test loss of 258 batches: 1.7861807346343994.
|
474 |
+
[ Wed Sep 14 16:02:51 2022 ] Top1: 63.49%
|
475 |
+
[ Wed Sep 14 16:02:52 2022 ] Top5: 89.21%
|
476 |
+
[ Wed Sep 14 16:02:52 2022 ] Training epoch: 74
|
477 |
+
[ Wed Sep 14 16:03:10 2022 ] Batch(20/123) done. Loss: 0.0187 lr:0.010000 network_time: 0.0348
|
478 |
+
[ Wed Sep 14 16:04:23 2022 ] Batch(120/123) done. Loss: 0.0111 lr:0.010000 network_time: 0.0269
|
479 |
+
[ Wed Sep 14 16:04:25 2022 ] Eval epoch: 74
|
480 |
+
[ Wed Sep 14 16:04:57 2022 ] Mean test loss of 258 batches: 1.8124498128890991.
|
481 |
+
[ Wed Sep 14 16:04:57 2022 ] Top1: 63.50%
|
482 |
+
[ Wed Sep 14 16:04:57 2022 ] Top5: 89.26%
|
483 |
+
[ Wed Sep 14 16:04:57 2022 ] Training epoch: 75
|
484 |
+
[ Wed Sep 14 16:06:11 2022 ] Batch(97/123) done. Loss: 0.0189 lr:0.010000 network_time: 0.0304
|
485 |
+
[ Wed Sep 14 16:06:30 2022 ] Eval epoch: 75
|
486 |
+
[ Wed Sep 14 16:07:02 2022 ] Mean test loss of 258 batches: 1.7966654300689697.
|
487 |
+
[ Wed Sep 14 16:07:02 2022 ] Top1: 63.86%
|
488 |
+
[ Wed Sep 14 16:07:02 2022 ] Top5: 89.43%
|
489 |
+
[ Wed Sep 14 16:07:02 2022 ] Training epoch: 76
|
490 |
+
[ Wed Sep 14 16:08:00 2022 ] Batch(74/123) done. Loss: 0.0252 lr:0.010000 network_time: 0.0298
|
491 |
+
[ Wed Sep 14 16:08:35 2022 ] Eval epoch: 76
|
492 |
+
[ Wed Sep 14 16:09:08 2022 ] Mean test loss of 258 batches: 1.8263705968856812.
|
493 |
+
[ Wed Sep 14 16:09:08 2022 ] Top1: 63.57%
|
494 |
+
[ Wed Sep 14 16:09:08 2022 ] Top5: 88.96%
|
495 |
+
[ Wed Sep 14 16:09:08 2022 ] Training epoch: 77
|
496 |
+
[ Wed Sep 14 16:09:49 2022 ] Batch(51/123) done. Loss: 0.0034 lr:0.010000 network_time: 0.0268
|
497 |
+
[ Wed Sep 14 16:10:41 2022 ] Eval epoch: 77
|
498 |
+
[ Wed Sep 14 16:11:13 2022 ] Mean test loss of 258 batches: 1.7833702564239502.
|
499 |
+
[ Wed Sep 14 16:11:13 2022 ] Top1: 63.86%
|
500 |
+
[ Wed Sep 14 16:11:13 2022 ] Top5: 89.27%
|
501 |
+
[ Wed Sep 14 16:11:13 2022 ] Training epoch: 78
|
502 |
+
[ Wed Sep 14 16:11:37 2022 ] Batch(28/123) done. Loss: 0.0234 lr:0.010000 network_time: 0.0280
|
503 |
+
[ Wed Sep 14 16:12:46 2022 ] Eval epoch: 78
|
504 |
+
[ Wed Sep 14 16:13:19 2022 ] Mean test loss of 258 batches: 1.8438570499420166.
|
505 |
+
[ Wed Sep 14 16:13:19 2022 ] Top1: 63.21%
|
506 |
+
[ Wed Sep 14 16:13:19 2022 ] Top5: 88.88%
|
507 |
+
[ Wed Sep 14 16:13:19 2022 ] Training epoch: 79
|
508 |
+
[ Wed Sep 14 16:13:26 2022 ] Batch(5/123) done. Loss: 0.0124 lr:0.010000 network_time: 0.0236
|
509 |
+
[ Wed Sep 14 16:14:39 2022 ] Batch(105/123) done. Loss: 0.0067 lr:0.010000 network_time: 0.0304
|
510 |
+
[ Wed Sep 14 16:14:52 2022 ] Eval epoch: 79
|
511 |
+
[ Wed Sep 14 16:15:24 2022 ] Mean test loss of 258 batches: 1.7994800806045532.
|
512 |
+
[ Wed Sep 14 16:15:24 2022 ] Top1: 63.84%
|
513 |
+
[ Wed Sep 14 16:15:24 2022 ] Top5: 89.23%
|
514 |
+
[ Wed Sep 14 16:15:24 2022 ] Training epoch: 80
|
515 |
+
[ Wed Sep 14 16:16:27 2022 ] Batch(82/123) done. Loss: 0.0106 lr:0.010000 network_time: 0.0276
|
516 |
+
[ Wed Sep 14 16:16:57 2022 ] Eval epoch: 80
|
517 |
+
[ Wed Sep 14 16:17:28 2022 ] Mean test loss of 258 batches: 1.8134398460388184.
|
518 |
+
[ Wed Sep 14 16:17:29 2022 ] Top1: 63.86%
|
519 |
+
[ Wed Sep 14 16:17:29 2022 ] Top5: 89.26%
|
520 |
+
[ Wed Sep 14 16:17:29 2022 ] Training epoch: 81
|
521 |
+
[ Wed Sep 14 16:18:15 2022 ] Batch(59/123) done. Loss: 0.0091 lr:0.001000 network_time: 0.0297
|
522 |
+
[ Wed Sep 14 16:19:02 2022 ] Eval epoch: 81
|
523 |
+
[ Wed Sep 14 16:19:34 2022 ] Mean test loss of 258 batches: 1.796744704246521.
|
524 |
+
[ Wed Sep 14 16:19:34 2022 ] Top1: 63.98%
|
525 |
+
[ Wed Sep 14 16:19:34 2022 ] Top5: 89.26%
|
526 |
+
[ Wed Sep 14 16:19:34 2022 ] Training epoch: 82
|
527 |
+
[ Wed Sep 14 16:20:04 2022 ] Batch(36/123) done. Loss: 0.0092 lr:0.001000 network_time: 0.0268
|
528 |
+
[ Wed Sep 14 16:21:07 2022 ] Eval epoch: 82
|
529 |
+
[ Wed Sep 14 16:21:40 2022 ] Mean test loss of 258 batches: 1.843143343925476.
|
530 |
+
[ Wed Sep 14 16:21:40 2022 ] Top1: 63.77%
|
531 |
+
[ Wed Sep 14 16:21:40 2022 ] Top5: 89.06%
|
532 |
+
[ Wed Sep 14 16:21:40 2022 ] Training epoch: 83
|
533 |
+
[ Wed Sep 14 16:21:53 2022 ] Batch(13/123) done. Loss: 0.0141 lr:0.001000 network_time: 0.0311
|
534 |
+
[ Wed Sep 14 16:23:06 2022 ] Batch(113/123) done. Loss: 0.0083 lr:0.001000 network_time: 0.0270
|
535 |
+
[ Wed Sep 14 16:23:13 2022 ] Eval epoch: 83
|
536 |
+
[ Wed Sep 14 16:23:45 2022 ] Mean test loss of 258 batches: 1.8037279844284058.
|
537 |
+
[ Wed Sep 14 16:23:45 2022 ] Top1: 63.89%
|
538 |
+
[ Wed Sep 14 16:23:45 2022 ] Top5: 89.27%
|
539 |
+
[ Wed Sep 14 16:23:45 2022 ] Training epoch: 84
|
540 |
+
[ Wed Sep 14 16:24:55 2022 ] Batch(90/123) done. Loss: 0.0043 lr:0.001000 network_time: 0.0329
|
541 |
+
[ Wed Sep 14 16:25:18 2022 ] Eval epoch: 84
|
542 |
+
[ Wed Sep 14 16:25:50 2022 ] Mean test loss of 258 batches: 1.8453911542892456.
|
543 |
+
[ Wed Sep 14 16:25:51 2022 ] Top1: 63.47%
|
544 |
+
[ Wed Sep 14 16:25:51 2022 ] Top5: 89.03%
|
545 |
+
[ Wed Sep 14 16:25:51 2022 ] Training epoch: 85
|
546 |
+
[ Wed Sep 14 16:26:43 2022 ] Batch(67/123) done. Loss: 0.0063 lr:0.001000 network_time: 0.0268
|
547 |
+
[ Wed Sep 14 16:27:24 2022 ] Eval epoch: 85
|
548 |
+
[ Wed Sep 14 16:27:56 2022 ] Mean test loss of 258 batches: 1.8150367736816406.
|
549 |
+
[ Wed Sep 14 16:27:56 2022 ] Top1: 63.74%
|
550 |
+
[ Wed Sep 14 16:27:56 2022 ] Top5: 89.11%
|
551 |
+
[ Wed Sep 14 16:27:56 2022 ] Training epoch: 86
|
552 |
+
[ Wed Sep 14 16:28:32 2022 ] Batch(44/123) done. Loss: 0.0100 lr:0.001000 network_time: 0.0273
|
553 |
+
[ Wed Sep 14 16:29:29 2022 ] Eval epoch: 86
|
554 |
+
[ Wed Sep 14 16:30:01 2022 ] Mean test loss of 258 batches: 1.7877106666564941.
|
555 |
+
[ Wed Sep 14 16:30:01 2022 ] Top1: 64.03%
|
556 |
+
[ Wed Sep 14 16:30:01 2022 ] Top5: 89.32%
|
557 |
+
[ Wed Sep 14 16:30:01 2022 ] Training epoch: 87
|
558 |
+
[ Wed Sep 14 16:30:21 2022 ] Batch(21/123) done. Loss: 0.0049 lr:0.001000 network_time: 0.0266
|
559 |
+
[ Wed Sep 14 16:31:34 2022 ] Batch(121/123) done. Loss: 0.0076 lr:0.001000 network_time: 0.0262
|
560 |
+
[ Wed Sep 14 16:31:35 2022 ] Eval epoch: 87
|
561 |
+
[ Wed Sep 14 16:32:07 2022 ] Mean test loss of 258 batches: 1.8418843746185303.
|
562 |
+
[ Wed Sep 14 16:32:07 2022 ] Top1: 63.81%
|
563 |
+
[ Wed Sep 14 16:32:07 2022 ] Top5: 88.97%
|
564 |
+
[ Wed Sep 14 16:32:07 2022 ] Training epoch: 88
|
565 |
+
[ Wed Sep 14 16:33:23 2022 ] Batch(98/123) done. Loss: 0.0163 lr:0.001000 network_time: 0.0261
|
566 |
+
[ Wed Sep 14 16:33:41 2022 ] Eval epoch: 88
|
567 |
+
[ Wed Sep 14 16:34:13 2022 ] Mean test loss of 258 batches: 1.8131529092788696.
|
568 |
+
[ Wed Sep 14 16:34:13 2022 ] Top1: 63.85%
|
569 |
+
[ Wed Sep 14 16:34:13 2022 ] Top5: 89.12%
|
570 |
+
[ Wed Sep 14 16:34:13 2022 ] Training epoch: 89
|
571 |
+
[ Wed Sep 14 16:35:11 2022 ] Batch(75/123) done. Loss: 0.0171 lr:0.001000 network_time: 0.0283
|
572 |
+
[ Wed Sep 14 16:35:46 2022 ] Eval epoch: 89
|
573 |
+
[ Wed Sep 14 16:36:18 2022 ] Mean test loss of 258 batches: 1.7912170886993408.
|
574 |
+
[ Wed Sep 14 16:36:18 2022 ] Top1: 64.00%
|
575 |
+
[ Wed Sep 14 16:36:18 2022 ] Top5: 89.34%
|
576 |
+
[ Wed Sep 14 16:36:18 2022 ] Training epoch: 90
|
577 |
+
[ Wed Sep 14 16:37:00 2022 ] Batch(52/123) done. Loss: 0.0198 lr:0.001000 network_time: 0.0267
|
578 |
+
[ Wed Sep 14 16:37:51 2022 ] Eval epoch: 90
|
579 |
+
[ Wed Sep 14 16:38:23 2022 ] Mean test loss of 258 batches: 1.8016085624694824.
|
580 |
+
[ Wed Sep 14 16:38:24 2022 ] Top1: 64.03%
|
581 |
+
[ Wed Sep 14 16:38:24 2022 ] Top5: 89.33%
|
582 |
+
[ Wed Sep 14 16:38:24 2022 ] Training epoch: 91
|
583 |
+
[ Wed Sep 14 16:38:49 2022 ] Batch(29/123) done. Loss: 0.0090 lr:0.001000 network_time: 0.0474
|
584 |
+
[ Wed Sep 14 16:39:57 2022 ] Eval epoch: 91
|
585 |
+
[ Wed Sep 14 16:40:29 2022 ] Mean test loss of 258 batches: 1.809605360031128.
|
586 |
+
[ Wed Sep 14 16:40:29 2022 ] Top1: 64.01%
|
587 |
+
[ Wed Sep 14 16:40:29 2022 ] Top5: 89.17%
|
588 |
+
[ Wed Sep 14 16:40:29 2022 ] Training epoch: 92
|
589 |
+
[ Wed Sep 14 16:40:37 2022 ] Batch(6/123) done. Loss: 0.0152 lr:0.001000 network_time: 0.0268
|
590 |
+
[ Wed Sep 14 16:41:50 2022 ] Batch(106/123) done. Loss: 0.0232 lr:0.001000 network_time: 0.0269
|
591 |
+
[ Wed Sep 14 16:42:02 2022 ] Eval epoch: 92
|
592 |
+
[ Wed Sep 14 16:42:34 2022 ] Mean test loss of 258 batches: 1.8451917171478271.
|
593 |
+
[ Wed Sep 14 16:42:34 2022 ] Top1: 63.58%
|
594 |
+
[ Wed Sep 14 16:42:35 2022 ] Top5: 89.08%
|
595 |
+
[ Wed Sep 14 16:42:35 2022 ] Training epoch: 93
|
596 |
+
[ Wed Sep 14 16:43:39 2022 ] Batch(83/123) done. Loss: 0.0068 lr:0.001000 network_time: 0.0269
|
597 |
+
[ Wed Sep 14 16:44:08 2022 ] Eval epoch: 93
|
598 |
+
[ Wed Sep 14 16:44:40 2022 ] Mean test loss of 258 batches: 1.8375056982040405.
|
599 |
+
[ Wed Sep 14 16:44:40 2022 ] Top1: 63.52%
|
600 |
+
[ Wed Sep 14 16:44:40 2022 ] Top5: 89.05%
|
601 |
+
[ Wed Sep 14 16:44:40 2022 ] Training epoch: 94
|
602 |
+
[ Wed Sep 14 16:45:28 2022 ] Batch(60/123) done. Loss: 0.0073 lr:0.001000 network_time: 0.0271
|
603 |
+
[ Wed Sep 14 16:46:13 2022 ] Eval epoch: 94
|
604 |
+
[ Wed Sep 14 16:46:45 2022 ] Mean test loss of 258 batches: 1.7938319444656372.
|
605 |
+
[ Wed Sep 14 16:46:46 2022 ] Top1: 64.17%
|
606 |
+
[ Wed Sep 14 16:46:46 2022 ] Top5: 89.06%
|
607 |
+
[ Wed Sep 14 16:46:46 2022 ] Training epoch: 95
|
608 |
+
[ Wed Sep 14 16:47:17 2022 ] Batch(37/123) done. Loss: 0.0082 lr:0.001000 network_time: 0.0267
|
609 |
+
[ Wed Sep 14 16:48:19 2022 ] Eval epoch: 95
|
610 |
+
[ Wed Sep 14 16:48:52 2022 ] Mean test loss of 258 batches: 1.8545280694961548.
|
611 |
+
[ Wed Sep 14 16:48:52 2022 ] Top1: 63.48%
|
612 |
+
[ Wed Sep 14 16:48:52 2022 ] Top5: 89.26%
|
613 |
+
[ Wed Sep 14 16:48:52 2022 ] Training epoch: 96
|
614 |
+
[ Wed Sep 14 16:49:06 2022 ] Batch(14/123) done. Loss: 0.0101 lr:0.001000 network_time: 0.0299
|
615 |
+
[ Wed Sep 14 16:50:19 2022 ] Batch(114/123) done. Loss: 0.0086 lr:0.001000 network_time: 0.0273
|
616 |
+
[ Wed Sep 14 16:50:25 2022 ] Eval epoch: 96
|
617 |
+
[ Wed Sep 14 16:50:58 2022 ] Mean test loss of 258 batches: 1.7887837886810303.
|
618 |
+
[ Wed Sep 14 16:50:58 2022 ] Top1: 64.00%
|
619 |
+
[ Wed Sep 14 16:50:58 2022 ] Top5: 89.36%
|
620 |
+
[ Wed Sep 14 16:50:58 2022 ] Training epoch: 97
|
621 |
+
[ Wed Sep 14 16:52:08 2022 ] Batch(91/123) done. Loss: 0.0042 lr:0.001000 network_time: 0.0311
|
622 |
+
[ Wed Sep 14 16:52:31 2022 ] Eval epoch: 97
|
623 |
+
[ Wed Sep 14 16:53:03 2022 ] Mean test loss of 258 batches: 1.8494559526443481.
|
624 |
+
[ Wed Sep 14 16:53:03 2022 ] Top1: 63.47%
|
625 |
+
[ Wed Sep 14 16:53:03 2022 ] Top5: 89.13%
|
626 |
+
[ Wed Sep 14 16:53:03 2022 ] Training epoch: 98
|
627 |
+
[ Wed Sep 14 16:53:56 2022 ] Batch(68/123) done. Loss: 0.0138 lr:0.001000 network_time: 0.0329
|
628 |
+
[ Wed Sep 14 16:54:36 2022 ] Eval epoch: 98
|
629 |
+
[ Wed Sep 14 16:55:08 2022 ] Mean test loss of 258 batches: 1.7884374856948853.
|
630 |
+
[ Wed Sep 14 16:55:08 2022 ] Top1: 63.95%
|
631 |
+
[ Wed Sep 14 16:55:08 2022 ] Top5: 89.45%
|
632 |
+
[ Wed Sep 14 16:55:08 2022 ] Training epoch: 99
|
633 |
+
[ Wed Sep 14 16:55:45 2022 ] Batch(45/123) done. Loss: 0.0193 lr:0.001000 network_time: 0.0327
|
634 |
+
[ Wed Sep 14 16:56:41 2022 ] Eval epoch: 99
|
635 |
+
[ Wed Sep 14 16:57:14 2022 ] Mean test loss of 258 batches: 1.8234803676605225.
|
636 |
+
[ Wed Sep 14 16:57:14 2022 ] Top1: 63.93%
|
637 |
+
[ Wed Sep 14 16:57:14 2022 ] Top5: 89.20%
|
638 |
+
[ Wed Sep 14 16:57:14 2022 ] Training epoch: 100
|
639 |
+
[ Wed Sep 14 16:57:34 2022 ] Batch(22/123) done. Loss: 0.0035 lr:0.001000 network_time: 0.0282
|
640 |
+
[ Wed Sep 14 16:58:47 2022 ] Batch(122/123) done. Loss: 0.0035 lr:0.001000 network_time: 0.0290
|
641 |
+
[ Wed Sep 14 16:58:47 2022 ] Eval epoch: 100
|
642 |
+
[ Wed Sep 14 16:59:19 2022 ] Mean test loss of 258 batches: 1.8526291847229004.
|
643 |
+
[ Wed Sep 14 16:59:19 2022 ] Top1: 63.60%
|
644 |
+
[ Wed Sep 14 16:59:19 2022 ] Top5: 89.09%
|
645 |
+
[ Wed Sep 14 16:59:20 2022 ] Training epoch: 101
|
646 |
+
[ Wed Sep 14 17:00:36 2022 ] Batch(99/123) done. Loss: 0.0040 lr:0.000100 network_time: 0.0436
|
647 |
+
[ Wed Sep 14 17:00:53 2022 ] Eval epoch: 101
|
648 |
+
[ Wed Sep 14 17:01:25 2022 ] Mean test loss of 258 batches: 1.860023021697998.
|
649 |
+
[ Wed Sep 14 17:01:25 2022 ] Top1: 63.39%
|
650 |
+
[ Wed Sep 14 17:01:26 2022 ] Top5: 89.03%
|
651 |
+
[ Wed Sep 14 17:01:26 2022 ] Training epoch: 102
|
652 |
+
[ Wed Sep 14 17:02:25 2022 ] Batch(76/123) done. Loss: 0.0103 lr:0.000100 network_time: 0.0254
|
653 |
+
[ Wed Sep 14 17:02:59 2022 ] Eval epoch: 102
|
654 |
+
[ Wed Sep 14 17:03:31 2022 ] Mean test loss of 258 batches: 1.8325798511505127.
|
655 |
+
[ Wed Sep 14 17:03:31 2022 ] Top1: 63.43%
|
656 |
+
[ Wed Sep 14 17:03:31 2022 ] Top5: 89.12%
|
657 |
+
[ Wed Sep 14 17:03:31 2022 ] Training epoch: 103
|
658 |
+
[ Wed Sep 14 17:04:13 2022 ] Batch(53/123) done. Loss: 0.0046 lr:0.000100 network_time: 0.0269
|
659 |
+
[ Wed Sep 14 17:05:04 2022 ] Eval epoch: 103
|
660 |
+
[ Wed Sep 14 17:05:36 2022 ] Mean test loss of 258 batches: 1.7819689512252808.
|
661 |
+
[ Wed Sep 14 17:05:36 2022 ] Top1: 64.24%
|
662 |
+
[ Wed Sep 14 17:05:36 2022 ] Top5: 89.63%
|
663 |
+
[ Wed Sep 14 17:05:36 2022 ] Training epoch: 104
|
664 |
+
[ Wed Sep 14 17:06:02 2022 ] Batch(30/123) done. Loss: 0.0073 lr:0.000100 network_time: 0.0252
|
665 |
+
[ Wed Sep 14 17:07:09 2022 ] Eval epoch: 104
|
666 |
+
[ Wed Sep 14 17:07:42 2022 ] Mean test loss of 258 batches: 1.8267995119094849.
|
667 |
+
[ Wed Sep 14 17:07:42 2022 ] Top1: 63.73%
|
668 |
+
[ Wed Sep 14 17:07:42 2022 ] Top5: 89.19%
|
669 |
+
[ Wed Sep 14 17:07:42 2022 ] Training epoch: 105
|
670 |
+
[ Wed Sep 14 17:07:51 2022 ] Batch(7/123) done. Loss: 0.0092 lr:0.000100 network_time: 0.0260
|
671 |
+
[ Wed Sep 14 17:09:04 2022 ] Batch(107/123) done. Loss: 0.0127 lr:0.000100 network_time: 0.0264
|
672 |
+
[ Wed Sep 14 17:09:15 2022 ] Eval epoch: 105
|
673 |
+
[ Wed Sep 14 17:09:47 2022 ] Mean test loss of 258 batches: 1.8645508289337158.
|
674 |
+
[ Wed Sep 14 17:09:47 2022 ] Top1: 63.26%
|
675 |
+
[ Wed Sep 14 17:09:47 2022 ] Top5: 88.95%
|
676 |
+
[ Wed Sep 14 17:09:47 2022 ] Training epoch: 106
|
677 |
+
[ Wed Sep 14 17:10:52 2022 ] Batch(84/123) done. Loss: 0.0067 lr:0.000100 network_time: 0.0281
|
678 |
+
[ Wed Sep 14 17:11:20 2022 ] Eval epoch: 106
|
679 |
+
[ Wed Sep 14 17:11:53 2022 ] Mean test loss of 258 batches: 1.7852859497070312.
|
680 |
+
[ Wed Sep 14 17:11:53 2022 ] Top1: 64.12%
|
681 |
+
[ Wed Sep 14 17:11:53 2022 ] Top5: 89.42%
|
682 |
+
[ Wed Sep 14 17:11:53 2022 ] Training epoch: 107
|
683 |
+
[ Wed Sep 14 17:12:41 2022 ] Batch(61/123) done. Loss: 0.0074 lr:0.000100 network_time: 0.0451
|
684 |
+
[ Wed Sep 14 17:13:26 2022 ] Eval epoch: 107
|
685 |
+
[ Wed Sep 14 17:13:58 2022 ] Mean test loss of 258 batches: 1.8736193180084229.
|
686 |
+
[ Wed Sep 14 17:13:58 2022 ] Top1: 63.23%
|
687 |
+
[ Wed Sep 14 17:13:58 2022 ] Top5: 88.91%
|
688 |
+
[ Wed Sep 14 17:13:58 2022 ] Training epoch: 108
|
689 |
+
[ Wed Sep 14 17:14:29 2022 ] Batch(38/123) done. Loss: 0.0282 lr:0.000100 network_time: 0.0286
|
690 |
+
[ Wed Sep 14 17:15:31 2022 ] Eval epoch: 108
|
691 |
+
[ Wed Sep 14 17:16:03 2022 ] Mean test loss of 258 batches: 1.816180944442749.
|
692 |
+
[ Wed Sep 14 17:16:03 2022 ] Top1: 64.07%
|
693 |
+
[ Wed Sep 14 17:16:03 2022 ] Top5: 89.38%
|
694 |
+
[ Wed Sep 14 17:16:03 2022 ] Training epoch: 109
|
695 |
+
[ Wed Sep 14 17:16:18 2022 ] Batch(15/123) done. Loss: 0.0097 lr:0.000100 network_time: 0.0254
|
696 |
+
[ Wed Sep 14 17:17:30 2022 ] Batch(115/123) done. Loss: 0.0088 lr:0.000100 network_time: 0.0285
|
697 |
+
[ Wed Sep 14 17:17:36 2022 ] Eval epoch: 109
|
698 |
+
[ Wed Sep 14 17:18:08 2022 ] Mean test loss of 258 batches: 1.824914813041687.
|
699 |
+
[ Wed Sep 14 17:18:08 2022 ] Top1: 64.07%
|
700 |
+
[ Wed Sep 14 17:18:08 2022 ] Top5: 89.18%
|
701 |
+
[ Wed Sep 14 17:18:09 2022 ] Training epoch: 110
|
702 |
+
[ Wed Sep 14 17:19:19 2022 ] Batch(92/123) done. Loss: 0.0085 lr:0.000100 network_time: 0.0321
|
703 |
+
[ Wed Sep 14 17:19:41 2022 ] Eval epoch: 110
|
704 |
+
[ Wed Sep 14 17:20:14 2022 ] Mean test loss of 258 batches: 1.8336659669876099.
|
705 |
+
[ Wed Sep 14 17:20:14 2022 ] Top1: 63.71%
|
706 |
+
[ Wed Sep 14 17:20:14 2022 ] Top5: 89.11%
|
707 |
+
[ Wed Sep 14 17:20:14 2022 ] Training epoch: 111
|
708 |
+
[ Wed Sep 14 17:21:08 2022 ] Batch(69/123) done. Loss: 0.0051 lr:0.000100 network_time: 0.0321
|
709 |
+
[ Wed Sep 14 17:21:47 2022 ] Eval epoch: 111
|
710 |
+
[ Wed Sep 14 17:22:19 2022 ] Mean test loss of 258 batches: 1.8149291276931763.
|
711 |
+
[ Wed Sep 14 17:22:19 2022 ] Top1: 64.02%
|
712 |
+
[ Wed Sep 14 17:22:19 2022 ] Top5: 89.28%
|
713 |
+
[ Wed Sep 14 17:22:19 2022 ] Training epoch: 112
|
714 |
+
[ Wed Sep 14 17:22:57 2022 ] Batch(46/123) done. Loss: 0.0036 lr:0.000100 network_time: 0.0277
|
715 |
+
[ Wed Sep 14 17:23:53 2022 ] Eval epoch: 112
|
716 |
+
[ Wed Sep 14 17:24:24 2022 ] Mean test loss of 258 batches: 1.805535912513733.
|
717 |
+
[ Wed Sep 14 17:24:25 2022 ] Top1: 63.88%
|
718 |
+
[ Wed Sep 14 17:24:25 2022 ] Top5: 89.33%
|
719 |
+
[ Wed Sep 14 17:24:25 2022 ] Training epoch: 113
|
720 |
+
[ Wed Sep 14 17:24:45 2022 ] Batch(23/123) done. Loss: 0.0105 lr:0.000100 network_time: 0.0273
|
721 |
+
[ Wed Sep 14 17:25:58 2022 ] Eval epoch: 113
|
722 |
+
[ Wed Sep 14 17:26:30 2022 ] Mean test loss of 258 batches: 1.8021278381347656.
|
723 |
+
[ Wed Sep 14 17:26:31 2022 ] Top1: 63.98%
|
724 |
+
[ Wed Sep 14 17:26:31 2022 ] Top5: 89.25%
|
725 |
+
[ Wed Sep 14 17:26:31 2022 ] Training epoch: 114
|
726 |
+
[ Wed Sep 14 17:26:34 2022 ] Batch(0/123) done. Loss: 0.0183 lr:0.000100 network_time: 0.0544
|
727 |
+
[ Wed Sep 14 17:27:47 2022 ] Batch(100/123) done. Loss: 0.0082 lr:0.000100 network_time: 0.0264
|
728 |
+
[ Wed Sep 14 17:28:03 2022 ] Eval epoch: 114
|
729 |
+
[ Wed Sep 14 17:28:36 2022 ] Mean test loss of 258 batches: 1.8260608911514282.
|
730 |
+
[ Wed Sep 14 17:28:36 2022 ] Top1: 63.96%
|
731 |
+
[ Wed Sep 14 17:28:36 2022 ] Top5: 89.14%
|
732 |
+
[ Wed Sep 14 17:28:36 2022 ] Training epoch: 115
|
733 |
+
[ Wed Sep 14 17:29:36 2022 ] Batch(77/123) done. Loss: 0.0054 lr:0.000100 network_time: 0.0308
|
734 |
+
[ Wed Sep 14 17:30:09 2022 ] Eval epoch: 115
|
735 |
+
[ Wed Sep 14 17:30:41 2022 ] Mean test loss of 258 batches: 1.7994446754455566.
|
736 |
+
[ Wed Sep 14 17:30:41 2022 ] Top1: 64.01%
|
737 |
+
[ Wed Sep 14 17:30:41 2022 ] Top5: 89.37%
|
738 |
+
[ Wed Sep 14 17:30:41 2022 ] Training epoch: 116
|
739 |
+
[ Wed Sep 14 17:31:24 2022 ] Batch(54/123) done. Loss: 0.0119 lr:0.000100 network_time: 0.0250
|
740 |
+
[ Wed Sep 14 17:32:14 2022 ] Eval epoch: 116
|
741 |
+
[ Wed Sep 14 17:32:47 2022 ] Mean test loss of 258 batches: 1.830991506576538.
|
742 |
+
[ Wed Sep 14 17:32:47 2022 ] Top1: 63.83%
|
743 |
+
[ Wed Sep 14 17:32:47 2022 ] Top5: 89.22%
|
744 |
+
[ Wed Sep 14 17:32:47 2022 ] Training epoch: 117
|
745 |
+
[ Wed Sep 14 17:33:14 2022 ] Batch(31/123) done. Loss: 0.0070 lr:0.000100 network_time: 0.0278
|
746 |
+
[ Wed Sep 14 17:34:20 2022 ] Eval epoch: 117
|
747 |
+
[ Wed Sep 14 17:34:53 2022 ] Mean test loss of 258 batches: 1.827774167060852.
|
748 |
+
[ Wed Sep 14 17:34:53 2022 ] Top1: 63.74%
|
749 |
+
[ Wed Sep 14 17:34:53 2022 ] Top5: 89.23%
|
750 |
+
[ Wed Sep 14 17:34:53 2022 ] Training epoch: 118
|
751 |
+
[ Wed Sep 14 17:35:03 2022 ] Batch(8/123) done. Loss: 0.0177 lr:0.000100 network_time: 0.0267
|
752 |
+
[ Wed Sep 14 17:36:16 2022 ] Batch(108/123) done. Loss: 0.0133 lr:0.000100 network_time: 0.0270
|
753 |
+
[ Wed Sep 14 17:36:26 2022 ] Eval epoch: 118
|
754 |
+
[ Wed Sep 14 17:36:59 2022 ] Mean test loss of 258 batches: 1.833808183670044.
|
755 |
+
[ Wed Sep 14 17:36:59 2022 ] Top1: 63.37%
|
756 |
+
[ Wed Sep 14 17:36:59 2022 ] Top5: 89.25%
|
757 |
+
[ Wed Sep 14 17:36:59 2022 ] Training epoch: 119
|
758 |
+
[ Wed Sep 14 17:38:05 2022 ] Batch(85/123) done. Loss: 0.0074 lr:0.000100 network_time: 0.0282
|
759 |
+
[ Wed Sep 14 17:38:32 2022 ] Eval epoch: 119
|
760 |
+
[ Wed Sep 14 17:39:04 2022 ] Mean test loss of 258 batches: 1.8108863830566406.
|
761 |
+
[ Wed Sep 14 17:39:04 2022 ] Top1: 64.01%
|
762 |
+
[ Wed Sep 14 17:39:04 2022 ] Top5: 89.40%
|
763 |
+
[ Wed Sep 14 17:39:04 2022 ] Training epoch: 120
|
764 |
+
[ Wed Sep 14 17:39:53 2022 ] Batch(62/123) done. Loss: 0.0039 lr:0.000100 network_time: 0.0308
|
765 |
+
[ Wed Sep 14 17:40:37 2022 ] Eval epoch: 120
|
766 |
+
[ Wed Sep 14 17:41:10 2022 ] Mean test loss of 258 batches: 1.8470932245254517.
|
767 |
+
[ Wed Sep 14 17:41:10 2022 ] Top1: 63.45%
|
768 |
+
[ Wed Sep 14 17:41:10 2022 ] Top5: 88.98%
|
769 |
+
[ Wed Sep 14 17:41:10 2022 ] Training epoch: 121
|
770 |
+
[ Wed Sep 14 17:41:43 2022 ] Batch(39/123) done. Loss: 0.0086 lr:0.000100 network_time: 0.0267
|
771 |
+
[ Wed Sep 14 17:42:43 2022 ] Eval epoch: 121
|
772 |
+
[ Wed Sep 14 17:43:15 2022 ] Mean test loss of 258 batches: 1.8321284055709839.
|
773 |
+
[ Wed Sep 14 17:43:16 2022 ] Top1: 63.67%
|
774 |
+
[ Wed Sep 14 17:43:16 2022 ] Top5: 89.13%
|
775 |
+
[ Wed Sep 14 17:43:16 2022 ] Training epoch: 122
|
776 |
+
[ Wed Sep 14 17:43:31 2022 ] Batch(16/123) done. Loss: 0.0431 lr:0.000100 network_time: 0.0316
|
777 |
+
[ Wed Sep 14 17:44:44 2022 ] Batch(116/123) done. Loss: 0.0082 lr:0.000100 network_time: 0.0269
|
778 |
+
[ Wed Sep 14 17:44:49 2022 ] Eval epoch: 122
|
779 |
+
[ Wed Sep 14 17:45:21 2022 ] Mean test loss of 258 batches: 1.8278491497039795.
|
780 |
+
[ Wed Sep 14 17:45:21 2022 ] Top1: 63.84%
|
781 |
+
[ Wed Sep 14 17:45:21 2022 ] Top5: 89.29%
|
782 |
+
[ Wed Sep 14 17:45:21 2022 ] Training epoch: 123
|
783 |
+
[ Wed Sep 14 17:46:33 2022 ] Batch(93/123) done. Loss: 0.0059 lr:0.000100 network_time: 0.0308
|
784 |
+
[ Wed Sep 14 17:46:54 2022 ] Eval epoch: 123
|
785 |
+
[ Wed Sep 14 17:47:27 2022 ] Mean test loss of 258 batches: 1.840074062347412.
|
786 |
+
[ Wed Sep 14 17:47:27 2022 ] Top1: 63.57%
|
787 |
+
[ Wed Sep 14 17:47:27 2022 ] Top5: 89.11%
|
788 |
+
[ Wed Sep 14 17:47:27 2022 ] Training epoch: 124
|
789 |
+
[ Wed Sep 14 17:48:22 2022 ] Batch(70/123) done. Loss: 0.0087 lr:0.000100 network_time: 0.0309
|
790 |
+
[ Wed Sep 14 17:49:00 2022 ] Eval epoch: 124
|
791 |
+
[ Wed Sep 14 17:49:32 2022 ] Mean test loss of 258 batches: 1.8375566005706787.
|
792 |
+
[ Wed Sep 14 17:49:32 2022 ] Top1: 63.77%
|
793 |
+
[ Wed Sep 14 17:49:32 2022 ] Top5: 89.02%
|
794 |
+
[ Wed Sep 14 17:49:32 2022 ] Training epoch: 125
|
795 |
+
[ Wed Sep 14 17:50:11 2022 ] Batch(47/123) done. Loss: 0.0099 lr:0.000100 network_time: 0.0278
|
796 |
+
[ Wed Sep 14 17:51:06 2022 ] Eval epoch: 125
|
797 |
+
[ Wed Sep 14 17:51:38 2022 ] Mean test loss of 258 batches: 1.7994847297668457.
|
798 |
+
[ Wed Sep 14 17:51:38 2022 ] Top1: 64.32%
|
799 |
+
[ Wed Sep 14 17:51:38 2022 ] Top5: 89.43%
|
800 |
+
[ Wed Sep 14 17:51:38 2022 ] Training epoch: 126
|
801 |
+
[ Wed Sep 14 17:52:00 2022 ] Batch(24/123) done. Loss: 0.0080 lr:0.000100 network_time: 0.0276
|
802 |
+
[ Wed Sep 14 17:53:12 2022 ] Eval epoch: 126
|
803 |
+
[ Wed Sep 14 17:53:44 2022 ] Mean test loss of 258 batches: 1.8445631265640259.
|
804 |
+
[ Wed Sep 14 17:53:44 2022 ] Top1: 63.87%
|
805 |
+
[ Wed Sep 14 17:53:44 2022 ] Top5: 89.10%
|
806 |
+
[ Wed Sep 14 17:53:44 2022 ] Training epoch: 127
|
807 |
+
[ Wed Sep 14 17:53:49 2022 ] Batch(1/123) done. Loss: 0.0095 lr:0.000100 network_time: 0.0316
|
808 |
+
[ Wed Sep 14 17:55:02 2022 ] Batch(101/123) done. Loss: 0.0048 lr:0.000100 network_time: 0.0280
|
809 |
+
[ Wed Sep 14 17:55:17 2022 ] Eval epoch: 127
|
810 |
+
[ Wed Sep 14 17:55:50 2022 ] Mean test loss of 258 batches: 1.853245496749878.
|
811 |
+
[ Wed Sep 14 17:55:50 2022 ] Top1: 63.81%
|
812 |
+
[ Wed Sep 14 17:55:50 2022 ] Top5: 89.00%
|
813 |
+
[ Wed Sep 14 17:55:50 2022 ] Training epoch: 128
|
814 |
+
[ Wed Sep 14 17:56:51 2022 ] Batch(78/123) done. Loss: 0.0021 lr:0.000100 network_time: 0.0309
|
815 |
+
[ Wed Sep 14 17:57:23 2022 ] Eval epoch: 128
|
816 |
+
[ Wed Sep 14 17:57:55 2022 ] Mean test loss of 258 batches: 1.8543254137039185.
|
817 |
+
[ Wed Sep 14 17:57:55 2022 ] Top1: 63.38%
|
818 |
+
[ Wed Sep 14 17:57:56 2022 ] Top5: 89.08%
|
819 |
+
[ Wed Sep 14 17:57:56 2022 ] Training epoch: 129
|
820 |
+
[ Wed Sep 14 17:58:40 2022 ] Batch(55/123) done. Loss: 0.0053 lr:0.000100 network_time: 0.0322
|
821 |
+
[ Wed Sep 14 17:59:29 2022 ] Eval epoch: 129
|
822 |
+
[ Wed Sep 14 18:00:01 2022 ] Mean test loss of 258 batches: 1.8299524784088135.
|
823 |
+
[ Wed Sep 14 18:00:01 2022 ] Top1: 63.84%
|
824 |
+
[ Wed Sep 14 18:00:01 2022 ] Top5: 89.05%
|
825 |
+
[ Wed Sep 14 18:00:01 2022 ] Training epoch: 130
|
826 |
+
[ Wed Sep 14 18:00:28 2022 ] Batch(32/123) done. Loss: 0.0081 lr:0.000100 network_time: 0.0266
|
827 |
+
[ Wed Sep 14 18:01:34 2022 ] Eval epoch: 130
|
828 |
+
[ Wed Sep 14 18:02:07 2022 ] Mean test loss of 258 batches: 1.827720046043396.
|
829 |
+
[ Wed Sep 14 18:02:07 2022 ] Top1: 63.86%
|
830 |
+
[ Wed Sep 14 18:02:07 2022 ] Top5: 89.22%
|
831 |
+
[ Wed Sep 14 18:02:07 2022 ] Training epoch: 131
|
832 |
+
[ Wed Sep 14 18:02:18 2022 ] Batch(9/123) done. Loss: 0.0106 lr:0.000100 network_time: 0.0325
|
833 |
+
[ Wed Sep 14 18:03:31 2022 ] Batch(109/123) done. Loss: 0.0237 lr:0.000100 network_time: 0.0271
|
834 |
+
[ Wed Sep 14 18:03:40 2022 ] Eval epoch: 131
|
835 |
+
[ Wed Sep 14 18:04:13 2022 ] Mean test loss of 258 batches: 1.862596869468689.
|
836 |
+
[ Wed Sep 14 18:04:13 2022 ] Top1: 63.49%
|
837 |
+
[ Wed Sep 14 18:04:13 2022 ] Top5: 88.98%
|
838 |
+
[ Wed Sep 14 18:04:13 2022 ] Training epoch: 132
|
839 |
+
[ Wed Sep 14 18:05:19 2022 ] Batch(86/123) done. Loss: 0.0090 lr:0.000100 network_time: 0.0276
|
840 |
+
[ Wed Sep 14 18:05:46 2022 ] Eval epoch: 132
|
841 |
+
[ Wed Sep 14 18:06:18 2022 ] Mean test loss of 258 batches: 1.8246906995773315.
|
842 |
+
[ Wed Sep 14 18:06:18 2022 ] Top1: 63.55%
|
843 |
+
[ Wed Sep 14 18:06:18 2022 ] Top5: 89.17%
|
844 |
+
[ Wed Sep 14 18:06:18 2022 ] Training epoch: 133
|
845 |
+
[ Wed Sep 14 18:07:08 2022 ] Batch(63/123) done. Loss: 0.0128 lr:0.000100 network_time: 0.0278
|
846 |
+
[ Wed Sep 14 18:07:52 2022 ] Eval epoch: 133
|
847 |
+
[ Wed Sep 14 18:08:24 2022 ] Mean test loss of 258 batches: 1.843893051147461.
|
848 |
+
[ Wed Sep 14 18:08:24 2022 ] Top1: 63.65%
|
849 |
+
[ Wed Sep 14 18:08:24 2022 ] Top5: 88.95%
|
850 |
+
[ Wed Sep 14 18:08:24 2022 ] Training epoch: 134
|
851 |
+
[ Wed Sep 14 18:08:57 2022 ] Batch(40/123) done. Loss: 0.0098 lr:0.000100 network_time: 0.0323
|
852 |
+
[ Wed Sep 14 18:09:57 2022 ] Eval epoch: 134
|
853 |
+
[ Wed Sep 14 18:10:30 2022 ] Mean test loss of 258 batches: 1.8185917139053345.
|
854 |
+
[ Wed Sep 14 18:10:30 2022 ] Top1: 63.82%
|
855 |
+
[ Wed Sep 14 18:10:30 2022 ] Top5: 89.31%
|
856 |
+
[ Wed Sep 14 18:10:30 2022 ] Training epoch: 135
|
857 |
+
[ Wed Sep 14 18:10:46 2022 ] Batch(17/123) done. Loss: 0.0097 lr:0.000100 network_time: 0.0330
|
858 |
+
[ Wed Sep 14 18:11:59 2022 ] Batch(117/123) done. Loss: 0.0066 lr:0.000100 network_time: 0.0273
|
859 |
+
[ Wed Sep 14 18:12:03 2022 ] Eval epoch: 135
|
860 |
+
[ Wed Sep 14 18:12:36 2022 ] Mean test loss of 258 batches: 1.8323661088943481.
|
861 |
+
[ Wed Sep 14 18:12:36 2022 ] Top1: 63.80%
|
862 |
+
[ Wed Sep 14 18:12:36 2022 ] Top5: 89.21%
|
863 |
+
[ Wed Sep 14 18:12:36 2022 ] Training epoch: 136
|
864 |
+
[ Wed Sep 14 18:13:49 2022 ] Batch(94/123) done. Loss: 0.0069 lr:0.000100 network_time: 0.0274
|
865 |
+
[ Wed Sep 14 18:14:09 2022 ] Eval epoch: 136
|
866 |
+
[ Wed Sep 14 18:14:42 2022 ] Mean test loss of 258 batches: 1.8389002084732056.
|
867 |
+
[ Wed Sep 14 18:14:42 2022 ] Top1: 63.81%
|
868 |
+
[ Wed Sep 14 18:14:42 2022 ] Top5: 89.14%
|
869 |
+
[ Wed Sep 14 18:14:42 2022 ] Training epoch: 137
|
870 |
+
[ Wed Sep 14 18:15:37 2022 ] Batch(71/123) done. Loss: 0.0042 lr:0.000100 network_time: 0.0273
|
871 |
+
[ Wed Sep 14 18:16:15 2022 ] Eval epoch: 137
|
872 |
+
[ Wed Sep 14 18:16:47 2022 ] Mean test loss of 258 batches: 1.789794683456421.
|
873 |
+
[ Wed Sep 14 18:16:47 2022 ] Top1: 63.95%
|
874 |
+
[ Wed Sep 14 18:16:47 2022 ] Top5: 89.40%
|
875 |
+
[ Wed Sep 14 18:16:47 2022 ] Training epoch: 138
|
876 |
+
[ Wed Sep 14 18:17:26 2022 ] Batch(48/123) done. Loss: 0.0349 lr:0.000100 network_time: 0.0269
|
877 |
+
[ Wed Sep 14 18:18:20 2022 ] Eval epoch: 138
|
878 |
+
[ Wed Sep 14 18:18:53 2022 ] Mean test loss of 258 batches: 1.8242590427398682.
|
879 |
+
[ Wed Sep 14 18:18:53 2022 ] Top1: 63.83%
|
880 |
+
[ Wed Sep 14 18:18:53 2022 ] Top5: 89.13%
|
881 |
+
[ Wed Sep 14 18:18:53 2022 ] Training epoch: 139
|
882 |
+
[ Wed Sep 14 18:19:15 2022 ] Batch(25/123) done. Loss: 0.0128 lr:0.000100 network_time: 0.0299
|
883 |
+
[ Wed Sep 14 18:20:26 2022 ] Eval epoch: 139
|
884 |
+
[ Wed Sep 14 18:20:59 2022 ] Mean test loss of 258 batches: 1.815767526626587.
|
885 |
+
[ Wed Sep 14 18:20:59 2022 ] Top1: 63.94%
|
886 |
+
[ Wed Sep 14 18:20:59 2022 ] Top5: 89.37%
|
887 |
+
[ Wed Sep 14 18:20:59 2022 ] Training epoch: 140
|
888 |
+
[ Wed Sep 14 18:21:04 2022 ] Batch(2/123) done. Loss: 0.0084 lr:0.000100 network_time: 0.0263
|
889 |
+
[ Wed Sep 14 18:22:17 2022 ] Batch(102/123) done. Loss: 0.0049 lr:0.000100 network_time: 0.0259
|
890 |
+
[ Wed Sep 14 18:22:32 2022 ] Eval epoch: 140
|
891 |
+
[ Wed Sep 14 18:23:05 2022 ] Mean test loss of 258 batches: 1.8298001289367676.
|
892 |
+
[ Wed Sep 14 18:23:05 2022 ] Top1: 63.69%
|
893 |
+
[ Wed Sep 14 18:23:05 2022 ] Top5: 89.31%
|
ckpt/Others/Shift-GCN/ntu60_xsub/ntu_ShiftGCN_joint_xsub/shift_gcn.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torch.autograd import Variable
|
5 |
+
import numpy as np
|
6 |
+
import math
|
7 |
+
|
8 |
+
import sys
|
9 |
+
sys.path.append("./model/Temporal_shift/")
|
10 |
+
|
11 |
+
from cuda.shift import Shift
|
12 |
+
|
13 |
+
|
14 |
+
def import_class(name):
|
15 |
+
components = name.split('.')
|
16 |
+
mod = __import__(components[0])
|
17 |
+
for comp in components[1:]:
|
18 |
+
mod = getattr(mod, comp)
|
19 |
+
return mod
|
20 |
+
|
21 |
+
def conv_init(conv):
|
22 |
+
nn.init.kaiming_normal(conv.weight, mode='fan_out')
|
23 |
+
nn.init.constant(conv.bias, 0)
|
24 |
+
|
25 |
+
|
26 |
+
def bn_init(bn, scale):
|
27 |
+
nn.init.constant(bn.weight, scale)
|
28 |
+
nn.init.constant(bn.bias, 0)
|
29 |
+
|
30 |
+
|
31 |
+
class tcn(nn.Module):
|
32 |
+
def __init__(self, in_channels, out_channels, kernel_size=9, stride=1):
|
33 |
+
super(tcn, self).__init__()
|
34 |
+
pad = int((kernel_size - 1) / 2)
|
35 |
+
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=(kernel_size, 1), padding=(pad, 0),
|
36 |
+
stride=(stride, 1))
|
37 |
+
|
38 |
+
self.bn = nn.BatchNorm2d(out_channels)
|
39 |
+
self.relu = nn.ReLU()
|
40 |
+
conv_init(self.conv)
|
41 |
+
bn_init(self.bn, 1)
|
42 |
+
|
43 |
+
def forward(self, x):
|
44 |
+
x = self.bn(self.conv(x))
|
45 |
+
return x
|
46 |
+
|
47 |
+
|
48 |
+
class Shift_tcn(nn.Module):
|
49 |
+
def __init__(self, in_channels, out_channels, kernel_size=9, stride=1):
|
50 |
+
super(Shift_tcn, self).__init__()
|
51 |
+
|
52 |
+
self.in_channels = in_channels
|
53 |
+
self.out_channels = out_channels
|
54 |
+
|
55 |
+
self.bn = nn.BatchNorm2d(in_channels)
|
56 |
+
self.bn2 = nn.BatchNorm2d(in_channels)
|
57 |
+
bn_init(self.bn2, 1)
|
58 |
+
self.relu = nn.ReLU(inplace=True)
|
59 |
+
self.shift_in = Shift(channel=in_channels, stride=1, init_scale=1)
|
60 |
+
self.shift_out = Shift(channel=out_channels, stride=stride, init_scale=1)
|
61 |
+
|
62 |
+
self.temporal_linear = nn.Conv2d(in_channels, out_channels, 1)
|
63 |
+
nn.init.kaiming_normal(self.temporal_linear.weight, mode='fan_out')
|
64 |
+
|
65 |
+
def forward(self, x):
|
66 |
+
x = self.bn(x)
|
67 |
+
# shift1
|
68 |
+
x = self.shift_in(x)
|
69 |
+
x = self.temporal_linear(x)
|
70 |
+
x = self.relu(x)
|
71 |
+
# shift2
|
72 |
+
x = self.shift_out(x)
|
73 |
+
x = self.bn2(x)
|
74 |
+
return x
|
75 |
+
|
76 |
+
|
77 |
+
class Shift_gcn(nn.Module):
|
78 |
+
def __init__(self, in_channels, out_channels, A, coff_embedding=4, num_subset=3):
|
79 |
+
super(Shift_gcn, self).__init__()
|
80 |
+
self.in_channels = in_channels
|
81 |
+
self.out_channels = out_channels
|
82 |
+
if in_channels != out_channels:
|
83 |
+
self.down = nn.Sequential(
|
84 |
+
nn.Conv2d(in_channels, out_channels, 1),
|
85 |
+
nn.BatchNorm2d(out_channels)
|
86 |
+
)
|
87 |
+
else:
|
88 |
+
self.down = lambda x: x
|
89 |
+
|
90 |
+
self.Linear_weight = nn.Parameter(torch.zeros(in_channels, out_channels, requires_grad=True, device='cuda'), requires_grad=True)
|
91 |
+
nn.init.normal_(self.Linear_weight, 0,math.sqrt(1.0/out_channels))
|
92 |
+
|
93 |
+
self.Linear_bias = nn.Parameter(torch.zeros(1,1,out_channels,requires_grad=True,device='cuda'),requires_grad=True)
|
94 |
+
nn.init.constant(self.Linear_bias, 0)
|
95 |
+
|
96 |
+
self.Feature_Mask = nn.Parameter(torch.ones(1,25,in_channels, requires_grad=True,device='cuda'),requires_grad=True)
|
97 |
+
nn.init.constant(self.Feature_Mask, 0)
|
98 |
+
|
99 |
+
self.bn = nn.BatchNorm1d(25*out_channels)
|
100 |
+
self.relu = nn.ReLU()
|
101 |
+
|
102 |
+
for m in self.modules():
|
103 |
+
if isinstance(m, nn.Conv2d):
|
104 |
+
conv_init(m)
|
105 |
+
elif isinstance(m, nn.BatchNorm2d):
|
106 |
+
bn_init(m, 1)
|
107 |
+
|
108 |
+
index_array = np.empty(25*in_channels).astype(np.int)
|
109 |
+
for i in range(25):
|
110 |
+
for j in range(in_channels):
|
111 |
+
index_array[i*in_channels + j] = (i*in_channels + j + j*in_channels)%(in_channels*25)
|
112 |
+
self.shift_in = nn.Parameter(torch.from_numpy(index_array),requires_grad=False)
|
113 |
+
|
114 |
+
index_array = np.empty(25*out_channels).astype(np.int)
|
115 |
+
for i in range(25):
|
116 |
+
for j in range(out_channels):
|
117 |
+
index_array[i*out_channels + j] = (i*out_channels + j - j*out_channels)%(out_channels*25)
|
118 |
+
self.shift_out = nn.Parameter(torch.from_numpy(index_array),requires_grad=False)
|
119 |
+
|
120 |
+
|
121 |
+
def forward(self, x0):
|
122 |
+
n, c, t, v = x0.size()
|
123 |
+
x = x0.permute(0,2,3,1).contiguous()
|
124 |
+
|
125 |
+
# shift1
|
126 |
+
x = x.view(n*t,v*c)
|
127 |
+
x = torch.index_select(x, 1, self.shift_in)
|
128 |
+
x = x.view(n*t,v,c)
|
129 |
+
x = x * (torch.tanh(self.Feature_Mask)+1)
|
130 |
+
|
131 |
+
x = torch.einsum('nwc,cd->nwd', (x, self.Linear_weight)).contiguous() # nt,v,c
|
132 |
+
x = x + self.Linear_bias
|
133 |
+
|
134 |
+
# shift2
|
135 |
+
x = x.view(n*t,-1)
|
136 |
+
x = torch.index_select(x, 1, self.shift_out)
|
137 |
+
x = self.bn(x)
|
138 |
+
x = x.view(n,t,v,self.out_channels).permute(0,3,1,2) # n,c,t,v
|
139 |
+
|
140 |
+
x = x + self.down(x0)
|
141 |
+
x = self.relu(x)
|
142 |
+
return x
|
143 |
+
|
144 |
+
|
145 |
+
class TCN_GCN_unit(nn.Module):
|
146 |
+
def __init__(self, in_channels, out_channels, A, stride=1, residual=True):
|
147 |
+
super(TCN_GCN_unit, self).__init__()
|
148 |
+
self.gcn1 = Shift_gcn(in_channels, out_channels, A)
|
149 |
+
self.tcn1 = Shift_tcn(out_channels, out_channels, stride=stride)
|
150 |
+
self.relu = nn.ReLU()
|
151 |
+
|
152 |
+
if not residual:
|
153 |
+
self.residual = lambda x: 0
|
154 |
+
|
155 |
+
elif (in_channels == out_channels) and (stride == 1):
|
156 |
+
self.residual = lambda x: x
|
157 |
+
else:
|
158 |
+
self.residual = tcn(in_channels, out_channels, kernel_size=1, stride=stride)
|
159 |
+
|
160 |
+
def forward(self, x):
|
161 |
+
x = self.tcn1(self.gcn1(x)) + self.residual(x)
|
162 |
+
return self.relu(x)
|
163 |
+
|
164 |
+
|
165 |
+
class Model(nn.Module):
|
166 |
+
def __init__(self, num_class=60, num_point=25, num_person=2, graph=None, graph_args=dict(), in_channels=3):
|
167 |
+
super(Model, self).__init__()
|
168 |
+
|
169 |
+
if graph is None:
|
170 |
+
raise ValueError()
|
171 |
+
else:
|
172 |
+
Graph = import_class(graph)
|
173 |
+
self.graph = Graph(**graph_args)
|
174 |
+
|
175 |
+
A = self.graph.A
|
176 |
+
self.data_bn = nn.BatchNorm1d(num_person * in_channels * num_point)
|
177 |
+
|
178 |
+
self.l1 = TCN_GCN_unit(3, 64, A, residual=False)
|
179 |
+
self.l2 = TCN_GCN_unit(64, 64, A)
|
180 |
+
self.l3 = TCN_GCN_unit(64, 64, A)
|
181 |
+
self.l4 = TCN_GCN_unit(64, 64, A)
|
182 |
+
self.l5 = TCN_GCN_unit(64, 128, A, stride=2)
|
183 |
+
self.l6 = TCN_GCN_unit(128, 128, A)
|
184 |
+
self.l7 = TCN_GCN_unit(128, 128, A)
|
185 |
+
self.l8 = TCN_GCN_unit(128, 256, A, stride=2)
|
186 |
+
self.l9 = TCN_GCN_unit(256, 256, A)
|
187 |
+
self.l10 = TCN_GCN_unit(256, 256, A)
|
188 |
+
|
189 |
+
self.fc = nn.Linear(256, num_class)
|
190 |
+
nn.init.normal(self.fc.weight, 0, math.sqrt(2. / num_class))
|
191 |
+
bn_init(self.data_bn, 1)
|
192 |
+
|
193 |
+
def forward(self, x):
|
194 |
+
N, C, T, V, M = x.size()
|
195 |
+
|
196 |
+
x = x.permute(0, 4, 3, 1, 2).contiguous().view(N, M * V * C, T)
|
197 |
+
x = self.data_bn(x)
|
198 |
+
x = x.view(N, M, V, C, T).permute(0, 1, 3, 4, 2).contiguous().view(N * M, C, T, V)
|
199 |
+
|
200 |
+
x = self.l1(x)
|
201 |
+
x = self.l2(x)
|
202 |
+
x = self.l3(x)
|
203 |
+
x = self.l4(x)
|
204 |
+
x = self.l5(x)
|
205 |
+
x = self.l6(x)
|
206 |
+
x = self.l7(x)
|
207 |
+
x = self.l8(x)
|
208 |
+
x = self.l9(x)
|
209 |
+
x = self.l10(x)
|
210 |
+
|
211 |
+
# N*M,C,T,V
|
212 |
+
c_new = x.size(1)
|
213 |
+
x = x.view(N, M, c_new, -1)
|
214 |
+
x = x.mean(3).mean(1)
|
215 |
+
|
216 |
+
return self.fc(x)
|
ckpt/Others/Shift-GCN/ntu60_xview/ntu_ShiftGCN_bone_motion_xview/config.yaml
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Experiment_name: ntu_ShiftGCN_bone_motion_xview
|
2 |
+
base_lr: 0.1
|
3 |
+
batch_size: 64
|
4 |
+
config: ./config/nturgbd-cross-view/train_bone_motion.yaml
|
5 |
+
device:
|
6 |
+
- 2
|
7 |
+
- 3
|
8 |
+
eval_interval: 5
|
9 |
+
feeder: feeders.feeder.Feeder
|
10 |
+
ignore_weights: []
|
11 |
+
log_interval: 100
|
12 |
+
model: model.shift_gcn.Model
|
13 |
+
model_args:
|
14 |
+
graph: graph.ntu_rgb_d.Graph
|
15 |
+
graph_args:
|
16 |
+
labeling_mode: spatial
|
17 |
+
num_class: 60
|
18 |
+
num_person: 2
|
19 |
+
num_point: 25
|
20 |
+
model_saved_name: ./save_models/ntu_ShiftGCN_bone_motion_xview
|
21 |
+
nesterov: true
|
22 |
+
num_epoch: 140
|
23 |
+
num_worker: 32
|
24 |
+
only_train_epoch: 1
|
25 |
+
only_train_part: true
|
26 |
+
optimizer: SGD
|
27 |
+
phase: train
|
28 |
+
print_log: true
|
29 |
+
save_interval: 2
|
30 |
+
save_score: false
|
31 |
+
seed: 1
|
32 |
+
show_topk:
|
33 |
+
- 1
|
34 |
+
- 5
|
35 |
+
start_epoch: 0
|
36 |
+
step:
|
37 |
+
- 60
|
38 |
+
- 80
|
39 |
+
- 100
|
40 |
+
test_batch_size: 64
|
41 |
+
test_feeder_args:
|
42 |
+
data_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xview/val_data_bone_motion.npy
|
43 |
+
label_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xview/val_label.pkl
|
44 |
+
train_feeder_args:
|
45 |
+
data_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xview/train_data_bone_motion.npy
|
46 |
+
debug: false
|
47 |
+
label_path: /data/lhd/long_tailed_skeleton_data/MS-G3D-data/ntu/xview/train_label.pkl
|
48 |
+
normalization: false
|
49 |
+
random_choose: false
|
50 |
+
random_move: false
|
51 |
+
random_shift: false
|
52 |
+
window_size: -1
|
53 |
+
warm_up_epoch: 0
|
54 |
+
weight_decay: 0.0001
|
55 |
+
weights: null
|
56 |
+
work_dir: ./work_dir/ntu_ShiftGCN_bone_motion_xview
|
ckpt/Others/Shift-GCN/ntu60_xview/ntu_ShiftGCN_bone_motion_xview/eval_results/best_acc.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:442f8022455e68553c84d6873a7ba2458ea90e3fe15beec0070d7d45b01ef029
|
3 |
+
size 5718404
|