SentenceTransformer based on Snowflake/snowflake-arctic-embed-m-v1.5
This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-m-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Snowflake/snowflake-arctic-embed-m-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'What is the definition of a preliminary economic assessment in the context of evaluating projects for the recovery of critical raw materials?',
'(39)\n\n‘preliminary economic assessment’ means an early-stage, conceptual assessment of the potential economic viability of a project for the recovery of critical raw materials from extractive waste;\n\n(40)\n\n‘magnetic resonance imaging device’ means a non-invasive medical device that uses magnetic fields to make anatomical images or any other device that uses magnetic fields to make images of the inside of object;\n\n(41)\n\n‘wind energy generator’ means the part of an onshore or offshore wind turbine that converts the mechanical energy of the rotor into electrical energy;\n\n(42)',
'For the purposes of the first subparagraph of this paragraph, insurance undertakings referred to in point (a) of the first subparagraph of Article 1(3) of this Directive that are part of a group, on the basis of financial relationships referred to in point (c)(ii) of Article 212(1) of Directive 2009/138/EC, and which are subject to group supervision in accordance with points (a) to (c) of Article 213(2) of that Directive shall be treated as subsidiary undertakings of the parent undertaking of that group.\n\n9.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.8225 |
cosine_accuracy@3 | 0.9526 |
cosine_accuracy@5 | 0.9725 |
cosine_accuracy@10 | 0.9873 |
cosine_precision@1 | 0.8225 |
cosine_precision@3 | 0.3175 |
cosine_precision@5 | 0.1945 |
cosine_precision@10 | 0.0987 |
cosine_recall@1 | 0.8225 |
cosine_recall@3 | 0.9526 |
cosine_recall@5 | 0.9725 |
cosine_recall@10 | 0.9873 |
cosine_ndcg@10 | 0.9141 |
cosine_mrr@10 | 0.8896 |
cosine_map@100 | 0.8903 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 29,911 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 13 tokens
- mean: 41.63 tokens
- max: 252 tokens
- min: 4 tokens
- mean: 233.72 tokens
- max: 512 tokens
- Samples:
sentence_0 sentence_1 What measures must Member States take to ensure that workers who believe they have been discriminated against in terms of equal pay can establish their case before a competent authority or national court?
Article 18
Shift of burden of proof
1. Member States shall take the appropriate measures, in accordance with their national judicial systems, to ensure that, when workers who consider themselves wronged because the principle of equal pay has not been applied to them establish before a competent authority or national court facts from which it may be presumed that there has been direct or indirect discrimination, it shall be for the respondent to prove that there has been no direct or indirect discrimination in relation to pay.
2. Member States shall ensure that, in administrative procedures or court proceedings regarding alleged direct or indirect discrimination in relation to pay, where an employer has not implemented the pay transparency obligations set out in Articles 5, 6, 7, 9 and 10, it is for the employer to prove that there has been no such discrimination.
The first subparagraph of this paragraph shall not apply where the employer proves that the infringement of the obligati...What are the key considerations for recognizing and addressing discrimination in the context of compensation and penalties, particularly in relation to the gender pay gap?
discrimination, in particular for substantive and procedural purposes, including to recognise the existence of discrimination, to decide on the appropriate comparator, to assess the proportionality, and to determine, where relevant, the level of compensation awarded or penalties imposed. An intersectional approach is important for understanding and addressing the gender pay gap. This clarification should not change the scope of employers’ obligations in regard to the pay transparency measures under this Directive. In particular, employers should not be required to gather data related to protected grounds other than sex.
What is the process for aircraft operators and shipping companies regarding the surrendering of allowances in relation to their total emissions from the previous calendar year?
(b)
each aircraft operator surrenders a number of allowances that is equal to its total emissions during the preceding calendar year, as verified in accordance with Article 15;
(c)
each shipping company surrenders a number of allowances that is equal to its total emissions during the preceding calendar year, as verified in accordance with Article 3ge.
Member States, administering Member States and administering authorities in respect of a shipping company shall ensure that allowances surrendered in accordance with the first subparagraph are subsequently cancelled.
▼M15
3-e. - Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 6per_device_eval_batch_size
: 6num_train_epochs
: 4multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 6per_device_eval_batch_size
: 6per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Click to expand
Epoch | Step | Training Loss | cosine_ndcg@10 |
---|---|---|---|
0.0201 | 100 | - | 0.6629 |
0.0401 | 200 | - | 0.7746 |
0.0602 | 300 | - | 0.8233 |
0.0802 | 400 | - | 0.8515 |
0.1003 | 500 | 0.4694 | 0.8621 |
0.1203 | 600 | - | 0.8680 |
0.1404 | 700 | - | 0.8733 |
0.1604 | 800 | - | 0.8774 |
0.1805 | 900 | - | 0.8757 |
0.2006 | 1000 | 0.1568 | 0.8795 |
0.2206 | 1100 | - | 0.8808 |
0.2407 | 1200 | - | 0.8789 |
0.2607 | 1300 | - | 0.8796 |
0.2808 | 1400 | - | 0.8822 |
0.3008 | 1500 | 0.1015 | 0.8821 |
0.3209 | 1600 | - | 0.8814 |
0.3410 | 1700 | - | 0.8756 |
0.3610 | 1800 | - | 0.8822 |
0.3811 | 1900 | - | 0.8848 |
0.4011 | 2000 | 0.0836 | 0.8843 |
0.4212 | 2100 | - | 0.8841 |
0.4412 | 2200 | - | 0.8803 |
0.4613 | 2300 | - | 0.8851 |
0.4813 | 2400 | - | 0.8818 |
0.5014 | 2500 | 0.0865 | 0.8849 |
0.5215 | 2600 | - | 0.8877 |
0.5415 | 2700 | - | 0.8806 |
0.5616 | 2800 | - | 0.8832 |
0.5816 | 2900 | - | 0.8930 |
0.6017 | 3000 | 0.0842 | 0.8928 |
0.6217 | 3100 | - | 0.8882 |
0.6418 | 3200 | - | 0.8858 |
0.6619 | 3300 | - | 0.8863 |
0.6819 | 3400 | - | 0.8828 |
0.7020 | 3500 | 0.0669 | 0.8839 |
0.7220 | 3600 | - | 0.8835 |
0.7421 | 3700 | - | 0.8854 |
0.7621 | 3800 | - | 0.8839 |
0.7822 | 3900 | - | 0.8882 |
0.8022 | 4000 | 0.0695 | 0.8871 |
0.8223 | 4100 | - | 0.8854 |
0.8424 | 4200 | - | 0.8822 |
0.8624 | 4300 | - | 0.8847 |
0.8825 | 4400 | - | 0.8863 |
0.9025 | 4500 | 0.0575 | 0.8819 |
0.9226 | 4600 | - | 0.8815 |
0.9426 | 4700 | - | 0.8836 |
0.9627 | 4800 | - | 0.8862 |
0.9828 | 4900 | - | 0.8889 |
1.0 | 4986 | - | 0.8927 |
1.0028 | 5000 | 0.0712 | 0.8935 |
1.0229 | 5100 | - | 0.8890 |
1.0429 | 5200 | - | 0.8919 |
1.0630 | 5300 | - | 0.8949 |
1.0830 | 5400 | - | 0.8950 |
1.1031 | 5500 | 0.0485 | 0.8934 |
1.1231 | 5600 | - | 0.8964 |
1.1432 | 5700 | - | 0.8953 |
1.1633 | 5800 | - | 0.8942 |
1.1833 | 5900 | - | 0.8929 |
1.2034 | 6000 | 0.0465 | 0.8912 |
1.2234 | 6100 | - | 0.8890 |
1.2435 | 6200 | - | 0.8914 |
1.2635 | 6300 | - | 0.8847 |
1.2836 | 6400 | - | 0.8873 |
1.3037 | 6500 | 0.0324 | 0.8912 |
1.3237 | 6600 | - | 0.8956 |
1.3438 | 6700 | - | 0.8954 |
1.3638 | 6800 | - | 0.8946 |
1.3839 | 6900 | - | 0.8931 |
1.4039 | 7000 | 0.0205 | 0.8951 |
1.4240 | 7100 | - | 0.8967 |
1.4440 | 7200 | - | 0.8960 |
1.4641 | 7300 | - | 0.8943 |
1.4842 | 7400 | - | 0.9003 |
1.5042 | 7500 | 0.0489 | 0.8946 |
1.5243 | 7600 | - | 0.8986 |
1.5443 | 7700 | - | 0.8945 |
1.5644 | 7800 | - | 0.8960 |
1.5844 | 7900 | - | 0.8987 |
1.6045 | 8000 | 0.039 | 0.8991 |
1.6245 | 8100 | - | 0.8959 |
1.6446 | 8200 | - | 0.8948 |
1.6647 | 8300 | - | 0.8933 |
1.6847 | 8400 | - | 0.8926 |
1.7048 | 8500 | 0.0297 | 0.8937 |
1.7248 | 8600 | - | 0.8974 |
1.7449 | 8700 | - | 0.8977 |
1.7649 | 8800 | - | 0.8973 |
1.7850 | 8900 | - | 0.8989 |
1.8051 | 9000 | 0.0248 | 0.8974 |
1.8251 | 9100 | - | 0.8980 |
1.8452 | 9200 | - | 0.8970 |
1.8652 | 9300 | - | 0.8997 |
1.8853 | 9400 | - | 0.9007 |
1.9053 | 9500 | 0.0534 | 0.9009 |
1.9254 | 9600 | - | 0.9015 |
1.9454 | 9700 | - | 0.9014 |
1.9655 | 9800 | - | 0.9008 |
1.9856 | 9900 | - | 0.9024 |
2.0 | 9972 | - | 0.9052 |
2.0056 | 10000 | 0.0295 | 0.9041 |
2.0257 | 10100 | - | 0.9009 |
2.0457 | 10200 | - | 0.9030 |
2.0658 | 10300 | - | 0.9028 |
2.0858 | 10400 | - | 0.9051 |
2.1059 | 10500 | 0.027 | 0.9063 |
2.1260 | 10600 | - | 0.9059 |
2.1460 | 10700 | - | 0.9044 |
2.1661 | 10800 | - | 0.9024 |
2.1861 | 10900 | - | 0.9005 |
2.2062 | 11000 | 0.0201 | 0.8996 |
2.2262 | 11100 | - | 0.9037 |
2.2463 | 11200 | - | 0.9029 |
2.2663 | 11300 | - | 0.9047 |
2.2864 | 11400 | - | 0.9030 |
2.3065 | 11500 | 0.0097 | 0.9041 |
2.3265 | 11600 | - | 0.9011 |
2.3466 | 11700 | - | 0.9000 |
2.3666 | 11800 | - | 0.8972 |
2.3867 | 11900 | - | 0.8985 |
2.4067 | 12000 | 0.0165 | 0.8979 |
2.4268 | 12100 | - | 0.8996 |
2.4469 | 12200 | - | 0.9026 |
2.4669 | 12300 | - | 0.9034 |
2.4870 | 12400 | - | 0.9054 |
2.5070 | 12500 | 0.0165 | 0.9029 |
2.5271 | 12600 | - | 0.9052 |
2.5471 | 12700 | - | 0.9057 |
2.5672 | 12800 | - | 0.9059 |
2.5872 | 12900 | - | 0.9092 |
2.6073 | 13000 | 0.0144 | 0.9081 |
2.6274 | 13100 | - | 0.9095 |
2.6474 | 13200 | - | 0.9102 |
2.6675 | 13300 | - | 0.9113 |
2.6875 | 13400 | - | 0.9103 |
2.7076 | 13500 | 0.0159 | 0.9105 |
2.7276 | 13600 | - | 0.9073 |
2.7477 | 13700 | - | 0.9084 |
2.7677 | 13800 | - | 0.9080 |
2.7878 | 13900 | - | 0.9083 |
2.8079 | 14000 | 0.0183 | 0.9083 |
2.8279 | 14100 | - | 0.9070 |
2.8480 | 14200 | - | 0.9085 |
2.8680 | 14300 | - | 0.9078 |
2.8881 | 14400 | - | 0.9075 |
2.9081 | 14500 | 0.0257 | 0.9073 |
2.9282 | 14600 | - | 0.9098 |
2.9483 | 14700 | - | 0.9089 |
2.9683 | 14800 | - | 0.9097 |
2.9884 | 14900 | - | 0.9079 |
3.0 | 14958 | - | 0.9081 |
3.0084 | 15000 | 0.0144 | 0.9084 |
3.0285 | 15100 | - | 0.9083 |
3.0485 | 15200 | - | 0.9078 |
3.0686 | 15300 | - | 0.9079 |
3.0886 | 15400 | - | 0.9089 |
3.1087 | 15500 | 0.0082 | 0.9093 |
3.1288 | 15600 | - | 0.9098 |
3.1488 | 15700 | - | 0.9106 |
3.1689 | 15800 | - | 0.9103 |
3.1889 | 15900 | - | 0.9110 |
3.2090 | 16000 | 0.0185 | 0.9117 |
3.2290 | 16100 | - | 0.9116 |
3.2491 | 16200 | - | 0.9125 |
3.2692 | 16300 | - | 0.9111 |
3.2892 | 16400 | - | 0.9109 |
3.3093 | 16500 | 0.0105 | 0.9125 |
3.3293 | 16600 | - | 0.9117 |
3.3494 | 16700 | - | 0.9118 |
3.3694 | 16800 | - | 0.9117 |
3.3895 | 16900 | - | 0.9137 |
3.4095 | 17000 | 0.019 | 0.9134 |
3.4296 | 17100 | - | 0.9129 |
3.4497 | 17200 | - | 0.9126 |
3.4697 | 17300 | - | 0.9133 |
3.4898 | 17400 | - | 0.9136 |
3.5098 | 17500 | 0.0109 | 0.9120 |
3.5299 | 17600 | - | 0.9124 |
3.5499 | 17700 | - | 0.9122 |
3.5700 | 17800 | - | 0.9129 |
3.5901 | 17900 | - | 0.9132 |
3.6101 | 18000 | 0.0207 | 0.9139 |
3.6302 | 18100 | - | 0.9134 |
3.6502 | 18200 | - | 0.9135 |
3.6703 | 18300 | - | 0.9139 |
3.6903 | 18400 | - | 0.9141 |
3.7104 | 18500 | 0.0105 | 0.9139 |
3.7304 | 18600 | - | 0.9138 |
3.7505 | 18700 | - | 0.9136 |
3.7706 | 18800 | - | 0.9141 |
Framework Versions
- Python: 3.10.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.1
- PyTorch: 2.4.0+cu121
- Accelerate: 1.4.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 8,160
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for fjavigv/snoweu_v2
Base model
Snowflake/snowflake-arctic-embed-m-v1.5Evaluation results
- Cosine Accuracy@1 on Unknownself-reported0.823
- Cosine Accuracy@3 on Unknownself-reported0.953
- Cosine Accuracy@5 on Unknownself-reported0.973
- Cosine Accuracy@10 on Unknownself-reported0.987
- Cosine Precision@1 on Unknownself-reported0.823
- Cosine Precision@3 on Unknownself-reported0.318
- Cosine Precision@5 on Unknownself-reported0.195
- Cosine Precision@10 on Unknownself-reported0.099
- Cosine Recall@1 on Unknownself-reported0.823
- Cosine Recall@3 on Unknownself-reported0.953