File size: 47,069 Bytes
35d9494
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:29911
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: Snowflake/snowflake-arctic-embed-m-v1.5
widget:
- source_sentence: What strategies can be implemented to effectively leverage private
    financing opportunities for small and medium-sized enterprises (SMEs)?
  sentences:
  - (13) While the energy savings potential remains large in all sectors, there is
    a particular challenge relating to transport, as it is responsible for more than
    30 % of final energy consumption, and to buildings, since 75 % of the Union’s
    building stock has a poor energy performance. Another increasingly important sector
    is the information and communications technology (ICT) sector, which is responsible
    for 5 to 9 % of the world’s total electricity use and more than 2 % of global
    emissions. In 2018, data centres accounted for 2,7 % of the electricity demand
    in the EU-28. In that context, the Commission, in its communication of 19 February
    2020 on ‘Shaping Europe's digital future’ (the ‘Union’s Digital Strategy’), highlighted
    the need for highly energy-efficient and sustainable data centres and transparency
    measures for telecoms operators as regards their environmental footprint. Furthermore,
    the possible increase in industry’s energy demand that may result from its decarbonisation,
    particularly for energy intensive processes, should also be taken into account.
  - SMEs in order to leverage and trigger private financing for SMEs.
  - ►M5    K Gases (petroleum), refinery; Refinery gas (A complex combination obtained
    from various petroleum refining operations. It consists of hydrogen and hydrocarbons
    having carbon numbers predominantly in the range of C1 through C3.) 649-153-00-0
    272-338-9 68814-67-5 ►M5    K Gases (petroleum), platformer products separator
    off; Refinery gas (A complex combination obtained from the chemical reforming
    of naphthenes to aromatics. It consists of hydrogen and saturated aliphatic hydrocarbons
    having carbon numbers predominantly in the range of C2 through C4.) 649-154-00-6
    272-343-6 68814-90-4 ►M5    K Gases (petroleum), hydrotreated sour kerosine
    depentaniser stabiliser off; Refinery gas (The complex combination obtained from
    the
- source_sentence: How can an undertaking identify and leverage opportunities related
    to sustainability matters within its business model and strategy?
  sentences:
  - 'i.


    focusses on specific activities, business relationships, geographies or other
    factors that give rise to heightened risk of adverse impacts;


    ii.


    considers the impacts with which the undertaking is involved through its own operations
    or as a result of its business relationships;


    iii.


    includes consultation with affected stakeholders to understand how they may be
    impacted and with external experts;


    iv.


    prioritises negative impacts based on their relative severity and likelihood,
    (see ESRS 1 section 3.4 Impact materiality) and, if applicable, positive impacts
    on their relative scale, scope and likelihood, and determines which sustainability
    matters are material for reporting purposes, including the qualitative or quantitative
    thresholds and other criteria used as prescribed by ESRS 1 section 3.4 Impact
    materiality;


    (c)


    an overview of the process used to identify, assess, prioritise and monitor risks
    and opportunities that have or may have financial effects . The disclosure shall
    include:


    i.


    how the undertaking has considered the connections of its impacts and dependencies
    with the risks and opportunities that may arise from those impacts and dependencies;


    ii.


    ►C1 how the undertaking assesses the likelihood, magnitude, and nature of effects
    of the identified risk and opportunities (such as the qualitative or quantitative
    thresholds and other criteria used as prescribed by ESRS 1 section 3.5 Financial
    materiality); ◄


    iii.


    how the undertaking prioritises sustainability-related risks relative to other
    types of risks, including its use of risk-assessment tools;


    (d)


    a description of the decision-making process and the related internal control
    procedures;


    (e)


    the extent to which and how the process to identify, assess and manage impacts
    and risks is integrated into the undertaking’s overall risk management process
    and used to evaluate the undertaking’s overall risk profile and risk management
    processes;


    (f)


    the extent to which and how the process to identify, assess and manage opportunities
    is integrated into the undertaking’s overall management process where applicable;


    (g)


    the input parameters it uses (for example, data sources, the scope of operations
    covered and the detail used in assumptions); and


    (h)


    whether and how the process has changed compared to the prior reporting period,
    when the process was modified for the last time and future revision dates of the
    materiality assessment.


    Disclosure Requirement IRO-2 – Disclosure Requirements in ESRS covered by the
    undertaking’s sustainability statement


    The undertaking shall report on the Disclosure Requirements complied with in its
    sustainability statements.


    The objective of this Disclosure Requirement is to provide an understanding of
    the Disclosure Requirements included in the undertaking’s sustainability statement
    and of the topics that have been omitted as not material, as a result of the materiality
    assessment.


    The undertaking shall include a list of the Disclosure Requirements complied with
    in preparing the sustainability statement , following the outcome of the materiality
    assessment (see ESRS 1 chapter 3), including the page numbers and/or paragraphs
    where the related disclosures are located in the sustainability statement. This
    may be presented as a content index. The undertaking shall also include a table
    of all the datapoints that derive from other EU legislation as listed in Appendix
    B of this standard, indicating where they can be found in the sustainability statement
    and including those that the undertaking has assessed as not material, in which
    case the undertaking shall indicate ‘Not material’ in the table in accordance
    with ESRS 1 paragraph 35.


    If the undertaking concludes that climate change is not material and therefore
    omits all disclosure requirements in ESRS E1 Climate change, it shall disclose
    a detailed explanation of the conclusions of its materiality assessment with regard
    to climate change (see ESRS 2 IRO-2 Disclosure Requirements in ESRS covered by
    the undertaking’s sustainability statement), including a forward-looking analysis
    of the conditions that could lead the undertaking to conclude that climate change
    is material in the future.


    If the undertaking concludes that a topic other than climate change is not material
    and therefore omits all the Disclosure Requirements in the corresponding topical
    ESRS, it may provide a brief explanation of the conclusions of its materiality
    assessment for that topic.'
  - '(b)


    the number and type of market participants, including the ratio of market participants
    to traded instruments in a particular product;


    (c)


    the average size of spreads, where available;


    (26)


    ‘competent authority’ means the authority, designated by each Member State in
    accordance with Article 67, unless otherwise specified in this Directive;


    (27)


    ‘credit institution’ means a credit institution as defined in point (1) of Article
    4(1) of Regulation (EU) No 575/2013;


    (28)


    ‘UCITS management company’ means a management company as defined in point (b)
    of Article 2(1) of Directive 2009/65/EC of the European Parliament and of the
    Council ( 4 );


    (29)'
  - '(a)


    a brief description of the undertaking’s business model and strategy, including:


    (i)


    the resilience of the undertaking’s business model and strategy in relation to
    risks related to sustainability matters;


    (ii)


    the opportunities for the undertaking related to sustainability matters;


    (iii)'
- source_sentence: What are the conditions under which an undertaking with an average
    number of 750 employees can omit certain sustainability information while still
    needing to disclose the materiality assessment of those topics?
  sentences:
  - '(c)


    impose restrictions on non-EU AIFMs relating to the management of an AIF where
    its activities potentially constitute an important source of counterparty risk
    to a credit institution or other systemically relevant institutions.


    5.


    ESMA may take a decision under paragraph 4 and subject to the requirements set
    out in paragraph 6 if both of the following conditions are met:


    (a)


    a substantial threat exists, originating or aggravated by the activities of AIFMs,
    to the orderly functioning and integrity of the financial market or to the stability
    of the whole or a part of the financial system in the Union and there are cross
    border implications; and


    (b)'
  - '▼B


    If an undertaking or group not exceeding on its balance sheet date the average
    number of 750 employees during the financial year decides to omit the information
    required by ESRS E4, ESRS S1, ESRS S2, ESRS S3 or ESRS S4 in accordance with Appendix
    C of ESRS 1, it shall nevertheless disclose whether the sustainability topics
    covered respectively by ESRS E4, ESRS S1, ESRS S2, ESRS S3 and ESRS S4 have been
    assessed to be material as a result of the undertaking’s materiality assessment.
    In addition, if one or more of these topics has been assessed to be material,
    the undertaking shall, for each material topic:


    (a)'
  - '9.


    The Commission shall establish and keep up-to-date a register of recognised schemes.
    That register shall be made publicly available on a free-access website. That
    website shall also allow for the collation of feedback from all relevant stakeholders
    concerning the implementation of recognised schemes. Such feedback shall be submitted
    to the relevant scheme owners for consideration.


    Article 31


    Environmental footprint declaration


    1.'
- source_sentence: What are the specific roles and responsibilities of the InvestEU
    Advisory Hub in relation to project development assistance for public authorities
    and project promoters?
  sentences:
  - 'System B


    Alternative characterisation Physical and chemical factors that determine the
    characteristics of the coastal water and hence the biological community structure
    and composition Obligatory factors latitude longitude tidal range salinity Optional
    factors current velocity wave exposure mean water temperature mixing characteristics
    turbidity retention time (of enclosed bays) mean substratum composition water
    temperature range


    1.3. Establishment of type-specific reference conditions for surface water body
    types'
  - newly implemented since 31 December 2008 that continue to have an impact in 2020
    with respect to the obligation period referred to in paragraph 1, first subparagraph,
    point (a), and beyond 2020 with respect to the period referred to in point (b)(i),
    of that subparagraph, and which can be measured and verified; --- --- (e) count
    towards the amount of required energy savings, energy savings that stem from policy
    measures, provided that it can be demonstrated that those measures result in individual
    actions carried out from 1 January 2018 to 31 December 2020 which deliver savings
    after 31 December 2020; --- --- (f) exclude from the calculation of the amount
    of required energy savings pursuant to paragraph 1, first subparagraph, points
    (a) and
  - 'Advisory initiatives shall be available as a component under each policy window
    referred to in Article 8(1), covering sectors under that window. In addition,
    advisory initiatives shall be available under a cross-sectoral component.


    2.


    The InvestEU Advisory Hub shall in particular:


    (a)


    provide a central point of entry, managed and hosted by the Commission, for project
    development assistance under the InvestEU Advisory Hub for public authorities
    and for project promoters;


    (b)


    disseminate to public authorities and project promoters all available additional
    information regarding the investment guidelines, including information on their
    application or on the interpretation provided by the Commission;


    (c)'
- source_sentence: What is the definition of a preliminary economic assessment in
    the context of evaluating projects for the recovery of critical raw materials?
  sentences:
  - 'For the purposes of the first subparagraph of this paragraph, insurance undertakings
    referred to in point (a) of the first subparagraph of Article 1(3) of this Directive
    that are part of a group, on the basis of financial relationships referred to
    in point (c)(ii) of Article 212(1) of Directive 2009/138/EC, and which are subject
    to group supervision in accordance with points (a) to (c) of Article 213(2) of
    that Directive shall be treated as subsidiary undertakings of the parent undertaking
    of that group.


    9.'
  - '(a)


    progress in the implementation of the Strategic Project, in particular with regard
    to the permit-granting process;


    (b)


    where relevant, reasons for delays compared to the timetable referred to in Article
    7(1), point (c) and a plan to overcome such delays;


    (c)


    progress in financing the Strategic Project, including information on public financial
    support.


    The Commission shall submit a copy of the report referred to in the first subparagraph
    of this paragraph to the Board in order to facilitate the discussions referred
    to in Article 36(7), point (c).


    2.


    The Commission may, where necessary, request additional information from project
    promoters relevant to the implementation of the Strategic Project to ascertain
    the continuing fulfilment of the criteria laid down in Article 6(1).


    3.


    The project promoter shall notify the Commission of:


    (a)


    changes to the Strategic Project affecting its fulfilment of the criteria laid
    down in Article 6(1);


    (b)


    changes in control of the undertakings involved in the Strategic Project on a
    lasting basis, compared to the information referred to in Article 7(1), point
    (e).


    4.


    The Commission may adopt implementing acts establishing a single template to be
    used by project promoters to provide all the information required for the reports
    referred to in paragraph 1 of this Article. The single template may indicate how
    the information referred to in paragraph 1 of this Article is to be expressed.
    Those implementing acts shall be adopted in accordance with the advisory procedure
    referred to in Article 39(2).


    The extent of documentation required to complete the single template referred
    to in the first subparagraph shall be reasonable.


    5.'
  - '(39)


    ‘preliminary economic assessment’ means an early-stage, conceptual assessment
    of the potential economic viability of a project for the recovery of critical
    raw materials from extractive waste;


    (40)


    ‘magnetic resonance imaging device’ means a non-invasive medical device that uses
    magnetic fields to make anatomical images or any other device that uses magnetic
    fields to make images of the inside of object;


    (41)


    ‘wind energy generator’ means the part of an onshore or offshore wind turbine
    that converts the mechanical energy of the rotor into electrical energy;


    (42)'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-m-v1.5
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: Unknown
      type: unknown
    metrics:
    - type: cosine_accuracy@1
      value: 0.822517355870812
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.9526109266525807
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9725324479323876
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9873226682764865
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.822517355870812
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.31753697555086025
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1945064895864775
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09873226682764866
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.822517355870812
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.9526109266525807
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9725324479323876
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9873226682764865
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9140763784801484
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8895886335216252
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8902791958273809
      name: Cosine Map@100
---

# SentenceTransformer based on Snowflake/snowflake-arctic-embed-m-v1.5

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m-v1.5](https://huggingface.co/Snowflake/snowflake-arctic-embed-m-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Snowflake/snowflake-arctic-embed-m-v1.5](https://huggingface.co/Snowflake/snowflake-arctic-embed-m-v1.5) <!-- at revision 8e4eaca09c27ad3d501908636ec7c8bc3561b6de -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'What is the definition of a preliminary economic assessment in the context of evaluating projects for the recovery of critical raw materials?',
    '(39)\n\n‘preliminary economic assessment’ means an early-stage, conceptual assessment of the potential economic viability of a project for the recovery of critical raw materials from extractive waste;\n\n(40)\n\n‘magnetic resonance imaging device’ means a non-invasive medical device that uses magnetic fields to make anatomical images or any other device that uses magnetic fields to make images of the inside of object;\n\n(41)\n\n‘wind energy generator’ means the part of an onshore or offshore wind turbine that converts the mechanical energy of the rotor into electrical energy;\n\n(42)',
    'For the purposes of the first subparagraph of this paragraph, insurance undertakings referred to in point (a) of the first subparagraph of Article 1(3) of this Directive that are part of a group, on the basis of financial relationships referred to in point (c)(ii) of Article 212(1) of Directive 2009/138/EC, and which are subject to group supervision in accordance with points (a) to (c) of Article 213(2) of that Directive shall be treated as subsidiary undertakings of the parent undertaking of that group.\n\n9.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.8225     |
| cosine_accuracy@3   | 0.9526     |
| cosine_accuracy@5   | 0.9725     |
| cosine_accuracy@10  | 0.9873     |
| cosine_precision@1  | 0.8225     |
| cosine_precision@3  | 0.3175     |
| cosine_precision@5  | 0.1945     |
| cosine_precision@10 | 0.0987     |
| cosine_recall@1     | 0.8225     |
| cosine_recall@3     | 0.9526     |
| cosine_recall@5     | 0.9725     |
| cosine_recall@10    | 0.9873     |
| **cosine_ndcg@10**  | **0.9141** |
| cosine_mrr@10       | 0.8896     |
| cosine_map@100      | 0.8903     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset

* Size: 29,911 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence_0                                                                          | sentence_1                                                                          |
  |:--------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                              | string                                                                              |
  | details | <ul><li>min: 13 tokens</li><li>mean: 41.63 tokens</li><li>max: 252 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 233.72 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
  | sentence_0                                                                                                                                                                                                                | sentence_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
  |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>What measures must Member States take to ensure that workers who believe they have been discriminated against in terms of equal pay can establish their case before a competent authority or national court?</code> | <code>Article 18<br><br>Shift of burden of proof<br><br>1. Member States shall take the appropriate measures, in accordance with their national judicial systems, to ensure that, when workers who consider themselves wronged because the principle of equal pay has not been applied to them establish before a competent authority or national court facts from which it may be presumed that there has been direct or indirect discrimination, it shall be for the respondent to prove that there has been no direct or indirect discrimination in relation to pay.<br><br>2. Member States shall ensure that, in administrative procedures or court proceedings regarding alleged direct or indirect discrimination in relation to pay, where an employer has not implemented the pay transparency obligations set out in Articles 5, 6, 7, 9 and 10, it is for the employer to prove that there has been no such discrimination.<br><br>The first subparagraph of this paragraph shall not apply where the employer proves that the infringement of the obligati...</code> |
  | <code>What are the key considerations for recognizing and addressing discrimination in the context of compensation and penalties, particularly in relation to the gender pay gap?</code>                                  | <code>discrimination, in particular for substantive and procedural purposes, including to recognise the existence of discrimination, to decide on the appropriate comparator, to assess the proportionality, and to determine, where relevant, the level of compensation awarded or penalties imposed. An intersectional approach is important for understanding and addressing the gender pay gap. This clarification should not change the scope of employers’ obligations in regard to the pay transparency measures under this Directive. In particular, employers should not be required to gather data related to protected grounds other than sex.</code>                                                                                                                                                                                                                                                                                                                                                                                                                 |
  | <code>What is the process for aircraft operators and shipping companies regarding the surrendering of allowances in relation to their total emissions from the previous calendar year?</code>                             | <code>(b)<br><br>each aircraft operator surrenders a number of allowances that is equal to its total emissions during the preceding calendar year, as verified in accordance with Article 15;<br><br>(c)<br><br>each shipping company surrenders a number of allowances that is equal to its total emissions during the preceding calendar year, as verified in accordance with Article 3ge.<br><br>Member States, administering Member States and administering authorities in respect of a shipping company shall ensure that allowances surrendered in accordance with the first subparagraph are subsequently cancelled.<br><br>▼M15<br><br>3-e.</code>                                                                                                                                                                                                                                                                                                                                                                                                                      |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 6
- `per_device_eval_batch_size`: 6
- `num_train_epochs`: 4
- `multi_dataset_batch_sampler`: round_robin

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 6
- `per_device_eval_batch_size`: 6
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin

</details>

### Training Logs
<details><summary>Click to expand</summary>

| Epoch  | Step  | Training Loss | cosine_ndcg@10 |
|:------:|:-----:|:-------------:|:--------------:|
| 0.0201 | 100   | -             | 0.6629         |
| 0.0401 | 200   | -             | 0.7746         |
| 0.0602 | 300   | -             | 0.8233         |
| 0.0802 | 400   | -             | 0.8515         |
| 0.1003 | 500   | 0.4694        | 0.8621         |
| 0.1203 | 600   | -             | 0.8680         |
| 0.1404 | 700   | -             | 0.8733         |
| 0.1604 | 800   | -             | 0.8774         |
| 0.1805 | 900   | -             | 0.8757         |
| 0.2006 | 1000  | 0.1568        | 0.8795         |
| 0.2206 | 1100  | -             | 0.8808         |
| 0.2407 | 1200  | -             | 0.8789         |
| 0.2607 | 1300  | -             | 0.8796         |
| 0.2808 | 1400  | -             | 0.8822         |
| 0.3008 | 1500  | 0.1015        | 0.8821         |
| 0.3209 | 1600  | -             | 0.8814         |
| 0.3410 | 1700  | -             | 0.8756         |
| 0.3610 | 1800  | -             | 0.8822         |
| 0.3811 | 1900  | -             | 0.8848         |
| 0.4011 | 2000  | 0.0836        | 0.8843         |
| 0.4212 | 2100  | -             | 0.8841         |
| 0.4412 | 2200  | -             | 0.8803         |
| 0.4613 | 2300  | -             | 0.8851         |
| 0.4813 | 2400  | -             | 0.8818         |
| 0.5014 | 2500  | 0.0865        | 0.8849         |
| 0.5215 | 2600  | -             | 0.8877         |
| 0.5415 | 2700  | -             | 0.8806         |
| 0.5616 | 2800  | -             | 0.8832         |
| 0.5816 | 2900  | -             | 0.8930         |
| 0.6017 | 3000  | 0.0842        | 0.8928         |
| 0.6217 | 3100  | -             | 0.8882         |
| 0.6418 | 3200  | -             | 0.8858         |
| 0.6619 | 3300  | -             | 0.8863         |
| 0.6819 | 3400  | -             | 0.8828         |
| 0.7020 | 3500  | 0.0669        | 0.8839         |
| 0.7220 | 3600  | -             | 0.8835         |
| 0.7421 | 3700  | -             | 0.8854         |
| 0.7621 | 3800  | -             | 0.8839         |
| 0.7822 | 3900  | -             | 0.8882         |
| 0.8022 | 4000  | 0.0695        | 0.8871         |
| 0.8223 | 4100  | -             | 0.8854         |
| 0.8424 | 4200  | -             | 0.8822         |
| 0.8624 | 4300  | -             | 0.8847         |
| 0.8825 | 4400  | -             | 0.8863         |
| 0.9025 | 4500  | 0.0575        | 0.8819         |
| 0.9226 | 4600  | -             | 0.8815         |
| 0.9426 | 4700  | -             | 0.8836         |
| 0.9627 | 4800  | -             | 0.8862         |
| 0.9828 | 4900  | -             | 0.8889         |
| 1.0    | 4986  | -             | 0.8927         |
| 1.0028 | 5000  | 0.0712        | 0.8935         |
| 1.0229 | 5100  | -             | 0.8890         |
| 1.0429 | 5200  | -             | 0.8919         |
| 1.0630 | 5300  | -             | 0.8949         |
| 1.0830 | 5400  | -             | 0.8950         |
| 1.1031 | 5500  | 0.0485        | 0.8934         |
| 1.1231 | 5600  | -             | 0.8964         |
| 1.1432 | 5700  | -             | 0.8953         |
| 1.1633 | 5800  | -             | 0.8942         |
| 1.1833 | 5900  | -             | 0.8929         |
| 1.2034 | 6000  | 0.0465        | 0.8912         |
| 1.2234 | 6100  | -             | 0.8890         |
| 1.2435 | 6200  | -             | 0.8914         |
| 1.2635 | 6300  | -             | 0.8847         |
| 1.2836 | 6400  | -             | 0.8873         |
| 1.3037 | 6500  | 0.0324        | 0.8912         |
| 1.3237 | 6600  | -             | 0.8956         |
| 1.3438 | 6700  | -             | 0.8954         |
| 1.3638 | 6800  | -             | 0.8946         |
| 1.3839 | 6900  | -             | 0.8931         |
| 1.4039 | 7000  | 0.0205        | 0.8951         |
| 1.4240 | 7100  | -             | 0.8967         |
| 1.4440 | 7200  | -             | 0.8960         |
| 1.4641 | 7300  | -             | 0.8943         |
| 1.4842 | 7400  | -             | 0.9003         |
| 1.5042 | 7500  | 0.0489        | 0.8946         |
| 1.5243 | 7600  | -             | 0.8986         |
| 1.5443 | 7700  | -             | 0.8945         |
| 1.5644 | 7800  | -             | 0.8960         |
| 1.5844 | 7900  | -             | 0.8987         |
| 1.6045 | 8000  | 0.039         | 0.8991         |
| 1.6245 | 8100  | -             | 0.8959         |
| 1.6446 | 8200  | -             | 0.8948         |
| 1.6647 | 8300  | -             | 0.8933         |
| 1.6847 | 8400  | -             | 0.8926         |
| 1.7048 | 8500  | 0.0297        | 0.8937         |
| 1.7248 | 8600  | -             | 0.8974         |
| 1.7449 | 8700  | -             | 0.8977         |
| 1.7649 | 8800  | -             | 0.8973         |
| 1.7850 | 8900  | -             | 0.8989         |
| 1.8051 | 9000  | 0.0248        | 0.8974         |
| 1.8251 | 9100  | -             | 0.8980         |
| 1.8452 | 9200  | -             | 0.8970         |
| 1.8652 | 9300  | -             | 0.8997         |
| 1.8853 | 9400  | -             | 0.9007         |
| 1.9053 | 9500  | 0.0534        | 0.9009         |
| 1.9254 | 9600  | -             | 0.9015         |
| 1.9454 | 9700  | -             | 0.9014         |
| 1.9655 | 9800  | -             | 0.9008         |
| 1.9856 | 9900  | -             | 0.9024         |
| 2.0    | 9972  | -             | 0.9052         |
| 2.0056 | 10000 | 0.0295        | 0.9041         |
| 2.0257 | 10100 | -             | 0.9009         |
| 2.0457 | 10200 | -             | 0.9030         |
| 2.0658 | 10300 | -             | 0.9028         |
| 2.0858 | 10400 | -             | 0.9051         |
| 2.1059 | 10500 | 0.027         | 0.9063         |
| 2.1260 | 10600 | -             | 0.9059         |
| 2.1460 | 10700 | -             | 0.9044         |
| 2.1661 | 10800 | -             | 0.9024         |
| 2.1861 | 10900 | -             | 0.9005         |
| 2.2062 | 11000 | 0.0201        | 0.8996         |
| 2.2262 | 11100 | -             | 0.9037         |
| 2.2463 | 11200 | -             | 0.9029         |
| 2.2663 | 11300 | -             | 0.9047         |
| 2.2864 | 11400 | -             | 0.9030         |
| 2.3065 | 11500 | 0.0097        | 0.9041         |
| 2.3265 | 11600 | -             | 0.9011         |
| 2.3466 | 11700 | -             | 0.9000         |
| 2.3666 | 11800 | -             | 0.8972         |
| 2.3867 | 11900 | -             | 0.8985         |
| 2.4067 | 12000 | 0.0165        | 0.8979         |
| 2.4268 | 12100 | -             | 0.8996         |
| 2.4469 | 12200 | -             | 0.9026         |
| 2.4669 | 12300 | -             | 0.9034         |
| 2.4870 | 12400 | -             | 0.9054         |
| 2.5070 | 12500 | 0.0165        | 0.9029         |
| 2.5271 | 12600 | -             | 0.9052         |
| 2.5471 | 12700 | -             | 0.9057         |
| 2.5672 | 12800 | -             | 0.9059         |
| 2.5872 | 12900 | -             | 0.9092         |
| 2.6073 | 13000 | 0.0144        | 0.9081         |
| 2.6274 | 13100 | -             | 0.9095         |
| 2.6474 | 13200 | -             | 0.9102         |
| 2.6675 | 13300 | -             | 0.9113         |
| 2.6875 | 13400 | -             | 0.9103         |
| 2.7076 | 13500 | 0.0159        | 0.9105         |
| 2.7276 | 13600 | -             | 0.9073         |
| 2.7477 | 13700 | -             | 0.9084         |
| 2.7677 | 13800 | -             | 0.9080         |
| 2.7878 | 13900 | -             | 0.9083         |
| 2.8079 | 14000 | 0.0183        | 0.9083         |
| 2.8279 | 14100 | -             | 0.9070         |
| 2.8480 | 14200 | -             | 0.9085         |
| 2.8680 | 14300 | -             | 0.9078         |
| 2.8881 | 14400 | -             | 0.9075         |
| 2.9081 | 14500 | 0.0257        | 0.9073         |
| 2.9282 | 14600 | -             | 0.9098         |
| 2.9483 | 14700 | -             | 0.9089         |
| 2.9683 | 14800 | -             | 0.9097         |
| 2.9884 | 14900 | -             | 0.9079         |
| 3.0    | 14958 | -             | 0.9081         |
| 3.0084 | 15000 | 0.0144        | 0.9084         |
| 3.0285 | 15100 | -             | 0.9083         |
| 3.0485 | 15200 | -             | 0.9078         |
| 3.0686 | 15300 | -             | 0.9079         |
| 3.0886 | 15400 | -             | 0.9089         |
| 3.1087 | 15500 | 0.0082        | 0.9093         |
| 3.1288 | 15600 | -             | 0.9098         |
| 3.1488 | 15700 | -             | 0.9106         |
| 3.1689 | 15800 | -             | 0.9103         |
| 3.1889 | 15900 | -             | 0.9110         |
| 3.2090 | 16000 | 0.0185        | 0.9117         |
| 3.2290 | 16100 | -             | 0.9116         |
| 3.2491 | 16200 | -             | 0.9125         |
| 3.2692 | 16300 | -             | 0.9111         |
| 3.2892 | 16400 | -             | 0.9109         |
| 3.3093 | 16500 | 0.0105        | 0.9125         |
| 3.3293 | 16600 | -             | 0.9117         |
| 3.3494 | 16700 | -             | 0.9118         |
| 3.3694 | 16800 | -             | 0.9117         |
| 3.3895 | 16900 | -             | 0.9137         |
| 3.4095 | 17000 | 0.019         | 0.9134         |
| 3.4296 | 17100 | -             | 0.9129         |
| 3.4497 | 17200 | -             | 0.9126         |
| 3.4697 | 17300 | -             | 0.9133         |
| 3.4898 | 17400 | -             | 0.9136         |
| 3.5098 | 17500 | 0.0109        | 0.9120         |
| 3.5299 | 17600 | -             | 0.9124         |
| 3.5499 | 17700 | -             | 0.9122         |
| 3.5700 | 17800 | -             | 0.9129         |
| 3.5901 | 17900 | -             | 0.9132         |
| 3.6101 | 18000 | 0.0207        | 0.9139         |
| 3.6302 | 18100 | -             | 0.9134         |
| 3.6502 | 18200 | -             | 0.9135         |
| 3.6703 | 18300 | -             | 0.9139         |
| 3.6903 | 18400 | -             | 0.9141         |
| 3.7104 | 18500 | 0.0105        | 0.9139         |
| 3.7304 | 18600 | -             | 0.9138         |
| 3.7505 | 18700 | -             | 0.9136         |
| 3.7706 | 18800 | -             | 0.9141         |

</details>

### Framework Versions
- Python: 3.10.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.1
- PyTorch: 2.4.0+cu121
- Accelerate: 1.4.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->