Introduction
FLock Web3 Agent Model is a specialized LLM designed to address complex queries in the Web3 ecosystem, with a focus on DeFi, blockchain interoperability, on-chain analytics, and etc.. The model excels in function-calling reasoning, enabling it to break down intricate user requests into actionable steps, interact with external APIs, and provide data-driven insights for Web3 applications. It is tailored for users ranging from developers and researchers to investors navigating the decentralized landscape.
Requirements
We advise you to use the latest version of transformers
.
Quickstart
Given a query and a list of available tools. The model generate function calls using the provided tools to respond the query correctly.
Example query and tools format
input_example=
{
"query": "Track crosschain message verification, implement timeout recovery procedures.",
"tools": [
{"type": "function", "function": {"name": "track_crosschain_message", "description": "Track the status of a crosschain message", "parameters": {"type": "object", "properties": {"message_id": {"type": "string"}}}}},
{"type": "function", "function": {"name": "schedule_timeout_check", "description": "Schedule a timeout check for a message", "parameters": {"type": "object", "properties": {"message_id": {"type": "string"}, "timeout": {"type": "integer"}}}}}
]
}
Function calling generation
from transformers import AutoModelForCausalLM, AutoTokenizer
import json
model_name = "flock-io/Flock_Web3_Agent_Model"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
messages = [
{"role": "system", "content": "You are a helpful assistant with access to the following functions. Use them if required -"
+ json.dumps(input_example["tools"], ensure_ascii=False)},
{"role": "user", "content": input_example["query"]}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=3000
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
The output text is in the string format
[
{"name": "track_crosschain_message", "arguments": {"message_id": "msg12345"}},
{"name": "schedule_timeout_check", "arguments": {"message_id": "msg12345", "timeout": "30"}}
]
- Downloads last month
- 91