LED_ACLsum_all_aspects

This model is a fine-tuned version of allenai/led-base-16384 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8994
  • Rouge1: 0.3537
  • Rouge2: 0.143
  • Rougel: 0.297
  • Rougelsum: 0.2963
  • Gen Len: 20.9033
  • Bleu: 0.0675
  • Precisions: 0.1559
  • Brevity Penalty: 0.6296
  • Length Ratio: 0.6837
  • Translation Length: 4828.0
  • Reference Length: 7062.0
  • Precision: 0.8922
  • Recall: 0.8771
  • F1: 0.8845
  • Hashcode: roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.52.4)

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len Bleu Precisions Brevity Penalty Length Ratio Translation Length Reference Length Precision Recall F1 Hashcode
No log 1.0 19 5.3039 0.2366 0.0422 0.1815 0.1814 20.3667 0.0181 0.0718 0.6626 0.7084 5003.0 7062.0 0.8757 0.8602 0.8678 roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.52.4)
No log 2.0 38 3.7375 0.2822 0.0849 0.2274 0.2284 20.6433 0.0442 0.1099 0.6381 0.69 4873.0 7062.0 0.8826 0.8679 0.8751 roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.52.4)
No log 3.0 57 3.1526 0.2879 0.088 0.232 0.2322 20.85 0.0444 0.1101 0.6459 0.6958 4914.0 7062.0 0.882 0.8687 0.8752 roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.52.4)
No log 4.0 76 2.7702 0.3011 0.1037 0.2508 0.251 20.8933 0.0508 0.121 0.6366 0.6889 4865.0 7062.0 0.8824 0.87 0.876 roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.52.4)
No log 5.0 95 2.4854 0.3133 0.111 0.2595 0.2597 20.86 0.0514 0.126 0.6305 0.6844 4833.0 7062.0 0.8857 0.8725 0.879 roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.52.4)
No log 6.0 114 2.2629 0.3255 0.1191 0.2732 0.2724 20.9133 0.0578 0.1348 0.6425 0.6933 4896.0 7062.0 0.8872 0.8738 0.8804 roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.52.4)
No log 7.0 133 2.1041 0.3444 0.1375 0.2888 0.2884 20.9133 0.0656 0.1493 0.6279 0.6824 4819.0 7062.0 0.8914 0.8767 0.8839 roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.52.4)
No log 8.0 152 1.9925 0.3617 0.1468 0.3023 0.3022 20.9233 0.0684 0.158 0.6296 0.6837 4828.0 7062.0 0.8925 0.8782 0.8852 roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.52.4)
No log 9.0 171 1.9258 0.3608 0.1447 0.2999 0.2998 20.9133 0.0689 0.1587 0.6286 0.683 4823.0 7062.0 0.8935 0.8785 0.8858 roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.52.4)
No log 10.0 190 1.8994 0.3537 0.143 0.297 0.2963 20.9033 0.0675 0.1559 0.6296 0.6837 4828.0 7062.0 0.8922 0.8771 0.8845 roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.52.4)

Framework versions

  • Transformers 4.52.4
  • Pytorch 2.7.0+cu126
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
30
Safetensors
Model size
162M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for floflodebilbao/LED_ACLsum_all_aspects

Finetuned
(37)
this model