metadata
library_name: transformers
license: apache-2.0
base_model: allenai/led-base-16384
tags:
- generated_from_trainer
metrics:
- rouge
- bleu
- precision
- recall
- f1
model-index:
- name: LED_sum_challenge2
results: []
LED_sum_challenge2
This model is a fine-tuned version of allenai/led-base-16384 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.9586
- Rouge1: 0.2918
- Rouge2: 0.1012
- Rougel: 0.2293
- Rougelsum: 0.2288
- Gen Len: 28.12
- Bleu: 0.0548
- Precisions: 0.1048
- Brevity Penalty: 0.9001
- Length Ratio: 0.9048
- Translation Length: 1093.0
- Reference Length: 1208.0
- Precision: 0.8818
- Recall: 0.8759
- F1: 0.8788
- Hashcode: roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1)
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | Bleu | Precisions | Brevity Penalty | Length Ratio | Translation Length | Reference Length | Precision | Recall | F1 | Hashcode |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
9.0848 | 1.0 | 13 | 7.5283 | 0.24 | 0.0579 | 0.1713 | 0.1714 | 31.78 | 0.0296 | 0.0629 | 1.0 | 1.0439 | 1261.0 | 1208.0 | 0.8521 | 0.8597 | 0.8558 | roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1) |
6.171 | 2.0 | 26 | 4.9217 | 0.2695 | 0.0854 | 0.203 | 0.2033 | 25.98 | 0.0368 | 0.0987 | 0.8063 | 0.8228 | 994.0 | 1208.0 | 0.8806 | 0.8705 | 0.8755 | roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1) |
4.4536 | 3.0 | 39 | 4.1312 | 0.2717 | 0.0862 | 0.2162 | 0.2157 | 23.34 | 0.0352 | 0.1067 | 0.6694 | 0.7136 | 862.0 | 1208.0 | 0.8846 | 0.8732 | 0.8788 | roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1) |
3.7683 | 4.0 | 52 | 3.7332 | 0.3043 | 0.0981 | 0.2301 | 0.2308 | 25.46 | 0.0499 | 0.1154 | 0.7784 | 0.7997 | 966.0 | 1208.0 | 0.8885 | 0.8787 | 0.8835 | roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1) |
3.3278 | 5.0 | 65 | 3.4699 | 0.2978 | 0.1041 | 0.2351 | 0.2344 | 25.38 | 0.0497 | 0.1117 | 0.7854 | 0.8055 | 973.0 | 1208.0 | 0.8869 | 0.8763 | 0.8815 | roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1) |
3.0332 | 6.0 | 78 | 3.2808 | 0.2946 | 0.1013 | 0.2335 | 0.2319 | 26.48 | 0.0503 | 0.1069 | 0.8181 | 0.8328 | 1006.0 | 1208.0 | 0.8857 | 0.8774 | 0.8815 | roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1) |
2.8037 | 7.0 | 91 | 3.1443 | 0.295 | 0.0965 | 0.2275 | 0.2264 | 27.52 | 0.0428 | 0.0978 | 0.8612 | 0.87 | 1051.0 | 1208.0 | 0.8822 | 0.8777 | 0.8799 | roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1) |
2.637 | 8.0 | 104 | 3.0523 | 0.2834 | 0.0997 | 0.2263 | 0.2257 | 27.22 | 0.0499 | 0.1034 | 0.8527 | 0.8626 | 1042.0 | 1208.0 | 0.8813 | 0.8752 | 0.8781 | roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1) |
2.5158 | 9.0 | 117 | 2.9900 | 0.2821 | 0.0989 | 0.2271 | 0.2273 | 27.18 | 0.0508 | 0.1051 | 0.848 | 0.8584 | 1037.0 | 1208.0 | 0.8842 | 0.8773 | 0.8806 | roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1) |
2.4321 | 10.0 | 130 | 2.9586 | 0.2918 | 0.1012 | 0.2293 | 0.2288 | 28.12 | 0.0548 | 0.1048 | 0.9001 | 0.9048 | 1093.0 | 1208.0 | 0.8818 | 0.8759 | 0.8788 | roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1) |
Framework versions
- Transformers 4.53.1
- Pytorch 2.7.0+cu126
- Datasets 3.6.0
- Tokenizers 0.21.1