Lora_LED_sum_outcome

This model is a fine-tuned version of allenai/led-base-16384 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.7652
  • Rouge1: 0.3745
  • Rouge2: 0.1523
  • Rougel: 0.3056
  • Rougelsum: 0.3055
  • Gen Len: 25.92
  • Bleu: 0.0641
  • Precisions: 0.1432
  • Brevity Penalty: 0.7677
  • Length Ratio: 0.791
  • Translation Length: 927.0
  • Reference Length: 1172.0
  • Precision: 0.8956
  • Recall: 0.8832
  • F1: 0.8892
  • Hashcode: roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1)

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len Bleu Precisions Brevity Penalty Length Ratio Translation Length Reference Length Precision Recall F1 Hashcode
8.3925 1.0 7 8.0434 0.2138 0.043 0.174 0.1733 32.0 0.0223 0.0541 1.0 1.1246 1318.0 1172.0 0.8553 0.8578 0.8564 roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1)
6.8857 2.0 14 6.1890 0.3112 0.0956 0.2638 0.2638 30.08 0.0477 0.0915 1.0 1.0333 1211.0 1172.0 0.8775 0.8694 0.8733 roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1)
5.1856 3.0 21 4.7196 0.3535 0.1502 0.2855 0.2871 23.4 0.0688 0.1552 0.7034 0.7398 867.0 1172.0 0.9014 0.8803 0.8906 roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1)
4.2664 4.0 28 4.1945 0.354 0.1541 0.295 0.2952 23.14 0.0781 0.1725 0.643 0.6937 813.0 1172.0 0.904 0.8821 0.8928 roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1)
3.898 5.0 35 3.9578 0.3777 0.1653 0.3107 0.3108 25.16 0.0912 0.1705 0.7434 0.7713 904.0 1172.0 0.9005 0.884 0.892 roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1)
3.6798 6.0 42 3.8411 0.368 0.1556 0.2914 0.2907 23.92 0.0719 0.1621 0.6836 0.7244 849.0 1172.0 0.9039 0.8834 0.8934 roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1)
3.5743 7.0 49 3.8041 0.3678 0.1445 0.2954 0.2956 27.28 0.0648 0.1358 0.809 0.8251 967.0 1172.0 0.8937 0.883 0.8883 roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1)
3.5091 8.0 56 3.7772 0.371 0.1559 0.3051 0.3061 26.3 0.0755 0.1511 0.7709 0.7935 930.0 1172.0 0.896 0.8833 0.8895 roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1)
3.4502 9.0 63 3.7611 0.3633 0.1495 0.3013 0.3013 25.8 0.0653 0.1423 0.7498 0.7765 910.0 1172.0 0.8952 0.881 0.8879 roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1)
3.4484 10.0 70 3.7652 0.3745 0.1523 0.3056 0.3055 25.92 0.0641 0.1432 0.7677 0.791 927.0 1172.0 0.8956 0.8832 0.8892 roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1)

Framework versions

  • PEFT 0.15.2
  • Transformers 4.53.1
  • Pytorch 2.7.0+cu126
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
47
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for floflodebilbao/Lora_LED_sum_outcome

Adapter
(6)
this model