Lora_long_T5_sum_outcome

This model is a fine-tuned version of google/long-t5-tglobal-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1051
  • Rouge1: 0.3789
  • Rouge2: 0.1817
  • Rougel: 0.3238
  • Rougelsum: 0.3256
  • Gen Len: 27.8
  • Bleu: 0.0865
  • Precisions: 0.1534
  • Brevity Penalty: 0.8221
  • Length Ratio: 0.8362
  • Translation Length: 980.0
  • Reference Length: 1172.0
  • Precision: 0.8937
  • Recall: 0.8862
  • F1: 0.8898
  • Hashcode: roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1)

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.002
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len Bleu Precisions Brevity Penalty Length Ratio Translation Length Reference Length Precision Recall F1 Hashcode
22.0917 1.0 7 5.3855 0.0468 0.0056 0.0416 0.0415 31.0 0.0 0.016 0.5803 0.6476 759.0 1172.0 0.7506 0.8197 0.7828 roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1)
6.5733 2.0 14 4.6730 0.1909 0.0287 0.1473 0.1475 30.88 0.0179 0.0488 0.8856 0.8916 1045.0 1172.0 0.8418 0.8462 0.844 roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1)
4.2163 3.0 21 3.6942 0.2295 0.0424 0.1634 0.1642 29.08 0.0264 0.0695 0.8469 0.8575 1005.0 1172.0 0.8546 0.8582 0.8563 roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1)
3.5683 4.0 28 3.1688 0.2805 0.0846 0.2121 0.2134 28.98 0.0383 0.0906 0.8469 0.8575 1005.0 1172.0 0.8681 0.8666 0.8672 roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1)
3.2672 5.0 35 2.8633 0.325 0.1351 0.2652 0.2669 28.4 0.0652 0.1242 0.8341 0.8464 992.0 1172.0 0.8823 0.8776 0.8799 roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1)
3.0146 6.0 42 2.4207 0.3326 0.1431 0.2839 0.2856 28.08 0.0788 0.1344 0.839 0.8507 997.0 1172.0 0.8839 0.879 0.8813 roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1)
2.4539 7.0 49 1.7916 0.3471 0.1565 0.2932 0.2931 28.26 0.0882 0.1431 0.839 0.8507 997.0 1172.0 0.8863 0.882 0.884 roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1)
1.965 8.0 56 1.3215 0.3607 0.1749 0.3113 0.3125 28.18 0.0925 0.1498 0.8331 0.8456 991.0 1172.0 0.889 0.8839 0.8863 roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1)
1.7658 9.0 63 1.1630 0.3772 0.1782 0.3211 0.3228 27.8 0.0838 0.1518 0.813 0.8285 971.0 1172.0 0.8937 0.8859 0.8897 roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1)
1.5019 10.0 70 1.1051 0.3789 0.1817 0.3238 0.3256 27.8 0.0865 0.1534 0.8221 0.8362 980.0 1172.0 0.8937 0.8862 0.8898 roberta-large_L17_no-idf_version=0.3.12(hug_trans=4.53.1)

Framework versions

  • PEFT 0.15.2
  • Transformers 4.53.1
  • Pytorch 2.7.0+cu126
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
24
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for floflodebilbao/Lora_long_T5_sum_outcome

Adapter
(12)
this model