flxowens's picture
End of training
f56a2a2 verified
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: celebrity-classifier-alpha-1
    results: []

celebrity-classifier-alpha-1

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.5674
  • Accuracy: 0.5012

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
6.89 1.0 57 6.8778 0.0008
6.7604 2.0 114 6.7367 0.0187
6.5063 3.0 171 6.4866 0.0467
6.2493 4.0 228 6.2322 0.0800
5.9905 5.0 285 6.0155 0.1039
5.7537 6.0 342 5.7997 0.1361
5.5712 7.0 399 5.6379 0.1529
5.384 8.0 456 5.4450 0.1936
5.1517 9.0 513 5.2739 0.2150
4.9379 10.0 570 5.1161 0.2530
4.8069 11.0 627 4.9782 0.2673
4.6418 12.0 684 4.8380 0.3005
4.4666 13.0 741 4.6963 0.3132
4.3445 14.0 798 4.5707 0.3346
4.1866 15.0 855 4.4440 0.3660
4.0571 16.0 912 4.3320 0.3926
3.9432 17.0 969 4.2483 0.3899
3.8203 18.0 1026 4.1406 0.4058
3.7025 19.0 1083 4.0536 0.4262
3.6165 20.0 1140 3.9738 0.4311
3.5122 21.0 1197 3.9039 0.4517
3.4541 22.0 1254 3.8438 0.4603
3.3528 23.0 1311 3.7834 0.4625
3.3077 24.0 1368 3.7017 0.4820
3.263 25.0 1425 3.6716 0.4740
3.2036 26.0 1482 3.6239 0.4955
3.1572 27.0 1539 3.6172 0.4927
3.1123 28.0 1596 3.5982 0.5034
3.0804 29.0 1653 3.5672 0.5048
3.0423 30.0 1710 3.5674 0.5012

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3