indobart-small
This model is a fine-tuned version of bart-large-cnn on Liputan6 dataset. See demo model here notebook.
Training procedure
Training hyperparameters
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
Training results
Training Loss | Epoch | R1 Precision | R1 Recall | R1 Fmeasure | R2 Precision | R2 Recall | R2 Fmeasure | Rl Precision | Rl Recall | Rl Fmeasure |
---|---|---|---|---|---|---|---|---|---|---|
0.3064 | 1.0 | 0.3487 | 0.6043 | 0.4375 | 0.1318 | 0.2613 | 0.1723 | 0.3349 | 0.5833 | 0.4208 |
Framework versions
- Transformers 4.40.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
Usage
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
# Load model and tokenizer
model = AutoModelForSeq2SeqLM.from_pretrained("gaduhhartawan/indobart-base")
tokenizer = AutoTokenizer.from_pretrained("gaduhhartawan/indobart-base")
# Input article for summarization
ARTICLE_TO_SUMMARIZE = "lorem ipsum..."
# Generate summary
input_ids = tokenizer.encode(ARTICLE_TO_SUMMARIZE, return_tensors='pt')
summary_ids = model.generate(input_ids,
min_length=30,
max_length=150,
num_beams=2,
repetition_penalty=2.0,
length_penalty=0.8,
early_stopping=True,
no_repeat_ngram_size=2,
use_cache=True,
do_sample=True,
temperature=0.7,
top_k=50,
top_p=0.95)
# Decode the summary
summary_text = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
print("Summary: ", summary_text)
- Downloads last month
- 107
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.