Improve language tag
#1
by
lbourdois
- opened
README.md
CHANGED
@@ -1,59 +1,73 @@
|
|
1 |
-
---
|
2 |
-
base_model: Qwen/Qwen2.5-0.5B-Instruct
|
3 |
-
datasets: gagan3012/Sky-T1_preference_data_10k_reward_templated
|
4 |
-
library_name: transformers
|
5 |
-
model_name: Qwen-2.5-reasoning-verifier
|
6 |
-
tags:
|
7 |
-
- generated_from_trainer
|
8 |
-
- trl
|
9 |
-
- reward-trainer
|
10 |
-
licence: license
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
```
|
|
|
1 |
+
---
|
2 |
+
base_model: Qwen/Qwen2.5-0.5B-Instruct
|
3 |
+
datasets: gagan3012/Sky-T1_preference_data_10k_reward_templated
|
4 |
+
library_name: transformers
|
5 |
+
model_name: Qwen-2.5-reasoning-verifier
|
6 |
+
tags:
|
7 |
+
- generated_from_trainer
|
8 |
+
- trl
|
9 |
+
- reward-trainer
|
10 |
+
licence: license
|
11 |
+
language:
|
12 |
+
- zho
|
13 |
+
- eng
|
14 |
+
- fra
|
15 |
+
- spa
|
16 |
+
- por
|
17 |
+
- deu
|
18 |
+
- ita
|
19 |
+
- rus
|
20 |
+
- jpn
|
21 |
+
- kor
|
22 |
+
- vie
|
23 |
+
- tha
|
24 |
+
- ara
|
25 |
+
---
|
26 |
+
|
27 |
+
# Model Card for Qwen-2.5-reasoning-verifier
|
28 |
+
|
29 |
+
This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) on the [gagan3012/Sky-T1_preference_data_10k_reward_templated](https://huggingface.co/datasets/gagan3012/Sky-T1_preference_data_10k_reward_templated) dataset.
|
30 |
+
It has been trained using [TRL](https://github.com/huggingface/trl).
|
31 |
+
|
32 |
+
## Quick start
|
33 |
+
|
34 |
+
```python
|
35 |
+
from transformers import pipeline
|
36 |
+
|
37 |
+
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
|
38 |
+
generator = pipeline("text-generation", model="gagan3012/Qwen-2.5-reasoning-verifier", device="cuda")
|
39 |
+
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
|
40 |
+
print(output["generated_text"])
|
41 |
+
```
|
42 |
+
|
43 |
+
## Training procedure
|
44 |
+
|
45 |
+
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/arocr/huggingface/runs/hlsna8w4)
|
46 |
+
|
47 |
+
|
48 |
+
This model was trained with Reward.
|
49 |
+
|
50 |
+
### Framework versions
|
51 |
+
|
52 |
+
- TRL: 0.14.0.dev0
|
53 |
+
- Transformers: 4.47.1
|
54 |
+
- Pytorch: 2.5.1+cu121
|
55 |
+
- Datasets: 3.2.0
|
56 |
+
- Tokenizers: 0.21.0
|
57 |
+
|
58 |
+
## Citations
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
Cite TRL as:
|
63 |
+
|
64 |
+
```bibtex
|
65 |
+
@misc{vonwerra2022trl,
|
66 |
+
title = {{TRL: Transformer Reinforcement Learning}},
|
67 |
+
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
|
68 |
+
year = 2020,
|
69 |
+
journal = {GitHub repository},
|
70 |
+
publisher = {GitHub},
|
71 |
+
howpublished = {\url{https://github.com/huggingface/trl}}
|
72 |
+
}
|
73 |
```
|