gehaustein's picture
Push model using huggingface_hub.
fa814e6 verified
---
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: für Integration
- text: Zugang zu Integrationsmaßnahmen sicherstellen;
- text: Wir sehen in der natürlichen Zwei- oder Mehrsprachigkeit ein wichtiges Potenzial,
das durch eine gezielte sprachliche Förderung realisiert werden kann.
- text: Deutschland braucht ein umfassendes Integrationskonzept auf allen Ebenen -
der Kommune, des Landes und des Bundes.
- text: Eine offene Gesellschaft bietet im Rahmen der Grundrechte allen Religionen
den Freiraum zur Entfaltung ihres Glaubens.
metrics:
- f1
- precision
- recall
pipeline_tag: text-classification
library_name: setfit
inference: true
base_model: deutsche-telekom/gbert-large-paraphrase-cosine
model-index:
- name: SetFit with deutsche-telekom/gbert-large-paraphrase-cosine
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: f1
value: 0.8563995837669095
name: F1
- type: precision
value: 0.858476507713885
name: Precision
- type: recall
value: 0.8548387096774194
name: Recall
---
# SetFit with deutsche-telekom/gbert-large-paraphrase-cosine
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [deutsche-telekom/gbert-large-paraphrase-cosine](https://huggingface.co/deutsche-telekom/gbert-large-paraphrase-cosine) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [deutsche-telekom/gbert-large-paraphrase-cosine](https://huggingface.co/deutsche-telekom/gbert-large-paraphrase-cosine)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 2 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | <ul><li>'Deutschland ist ein gastfreundliches und weltoffenes Land.'</li><li>'Aber auch in der Polizei und Justiz muss sich einiges ändern.'</li><li>'Die FDP sucht das Gespräch mit der evangelischen und katholischen Kirche ebenso wie mit dem Judentum, dem Islam und allen anderen Religionsgemeinschaften.'</li></ul> |
| 0 | <ul><li>'Wir wollen eine Integrationsoffensive.'</li><li>'Kenntnisse der deutschen Sprache sind eine unverzichtbare Voraussetzung zur Beseitigung sozialer Benachteiligungen und zum Erreichen schulischer, beruflicher und gesellschaftlicher Erfolge.'</li><li>'Wir erwarten von Zuwandernden, dass sie die deutsche Sprache erlernen.'</li></ul> |
## Evaluation
### Metrics
| Label | F1 | Precision | Recall |
|:--------|:-------|:----------|:-------|
| **all** | 0.8564 | 0.8585 | 0.8548 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("gehaustein/gbert-large-stance-multiculturalism")
# Run inference
preds = model("für Integration")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:--------|:----|
| Word count | 1 | 14.6336 | 42 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0 | 128 |
| 1 | 366 |
### Training Hyperparameters
- batch_size: (128, 128)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (1e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:----------:|:-------:|:-------------:|:---------------:|
| 0.0008 | 1 | 0.3283 | - |
| 0.0424 | 50 | 0.2401 | 0.234 |
| 0.0848 | 100 | 0.0852 | 0.202 |
| 0.1272 | 150 | 0.0054 | 0.2493 |
| 0.1696 | 200 | 0.001 | 0.2502 |
| 0.2120 | 250 | 0.0002 | 0.2513 |
| 0.2545 | 300 | 0.0012 | 0.2496 |
| 0.2969 | 350 | 0.0046 | 0.2485 |
| 0.3393 | 400 | 0.0056 | 0.2538 |
| 0.3817 | 450 | 0.0001 | 0.2543 |
| **0.4241** | **500** | **0.0001** | **0.2443** |
| 0.4665 | 550 | 0.0001 | 0.2472 |
| 0.5089 | 600 | 0.0051 | 0.2655 |
| 0.5513 | 650 | 0.0002 | 0.2646 |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.11.11
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.3.1
- Transformers: 4.48.1
- PyTorch: 2.5.1+cu121
- Datasets: 2.14.4
- Tokenizers: 0.21.0
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->