Version3_ASAP_FineTuningBERT_AugV12_k1_task1_organization_k1_k1_fold2
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6795
- Qwk: 0.5460
- Mse: 0.6793
- Rmse: 0.8242
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 1.0 | 2 | 9.2162 | 0.0 | 9.2166 | 3.0359 |
No log | 2.0 | 4 | 8.2870 | 0.0 | 8.2873 | 2.8788 |
No log | 3.0 | 6 | 7.0289 | 0.0 | 7.0291 | 2.6513 |
No log | 4.0 | 8 | 5.7733 | 0.0623 | 5.7736 | 2.4028 |
No log | 5.0 | 10 | 4.7573 | 0.0 | 4.7576 | 2.1812 |
No log | 6.0 | 12 | 4.0067 | 0.0 | 4.0071 | 2.0018 |
No log | 7.0 | 14 | 3.2408 | 0.0 | 3.2412 | 1.8003 |
No log | 8.0 | 16 | 2.5657 | 0.0 | 2.5661 | 1.6019 |
No log | 9.0 | 18 | 2.0549 | 0.0665 | 2.0553 | 1.4336 |
No log | 10.0 | 20 | 1.6343 | 0.0107 | 1.6348 | 1.2786 |
No log | 11.0 | 22 | 1.3372 | 0.0 | 1.3377 | 1.1566 |
No log | 12.0 | 24 | 1.1203 | 0.0 | 1.1207 | 1.0586 |
No log | 13.0 | 26 | 0.9478 | 0.0 | 0.9482 | 0.9738 |
No log | 14.0 | 28 | 0.8230 | 0.4023 | 0.8233 | 0.9074 |
No log | 15.0 | 30 | 0.7254 | 0.4232 | 0.7257 | 0.8519 |
No log | 16.0 | 32 | 0.6006 | 0.4798 | 0.6007 | 0.7751 |
No log | 17.0 | 34 | 0.5426 | 0.5351 | 0.5427 | 0.7367 |
No log | 18.0 | 36 | 0.5185 | 0.5603 | 0.5186 | 0.7202 |
No log | 19.0 | 38 | 0.6575 | 0.5292 | 0.6577 | 0.8110 |
No log | 20.0 | 40 | 0.4827 | 0.5476 | 0.4827 | 0.6948 |
No log | 21.0 | 42 | 0.4380 | 0.5656 | 0.4380 | 0.6618 |
No log | 22.0 | 44 | 0.6268 | 0.5250 | 0.6270 | 0.7918 |
No log | 23.0 | 46 | 0.4378 | 0.5540 | 0.4379 | 0.6618 |
No log | 24.0 | 48 | 0.5257 | 0.5116 | 0.5258 | 0.7251 |
No log | 25.0 | 50 | 0.5988 | 0.4482 | 0.5989 | 0.7739 |
No log | 26.0 | 52 | 0.6026 | 0.4725 | 0.6026 | 0.7763 |
No log | 27.0 | 54 | 0.5033 | 0.5905 | 0.5034 | 0.7095 |
No log | 28.0 | 56 | 0.7774 | 0.4707 | 0.7773 | 0.8817 |
No log | 29.0 | 58 | 0.5842 | 0.5668 | 0.5842 | 0.7643 |
No log | 30.0 | 60 | 0.7053 | 0.4990 | 0.7051 | 0.8397 |
No log | 31.0 | 62 | 0.7444 | 0.4921 | 0.7440 | 0.8626 |
No log | 32.0 | 64 | 0.7124 | 0.4980 | 0.7120 | 0.8438 |
No log | 33.0 | 66 | 0.6906 | 0.4891 | 0.6902 | 0.8308 |
No log | 34.0 | 68 | 0.7415 | 0.4708 | 0.7411 | 0.8609 |
No log | 35.0 | 70 | 0.7536 | 0.4140 | 0.7531 | 0.8678 |
No log | 36.0 | 72 | 0.7869 | 0.3921 | 0.7865 | 0.8869 |
No log | 37.0 | 74 | 0.8030 | 0.3896 | 0.8027 | 0.8959 |
No log | 38.0 | 76 | 0.7640 | 0.4287 | 0.7638 | 0.8739 |
No log | 39.0 | 78 | 0.7232 | 0.4563 | 0.7230 | 0.8503 |
No log | 40.0 | 80 | 0.7644 | 0.4063 | 0.7643 | 0.8742 |
No log | 41.0 | 82 | 0.8053 | 0.3835 | 0.8052 | 0.8973 |
No log | 42.0 | 84 | 0.8455 | 0.4149 | 0.8454 | 0.9194 |
No log | 43.0 | 86 | 0.7926 | 0.4417 | 0.7925 | 0.8902 |
No log | 44.0 | 88 | 0.8038 | 0.4878 | 0.8036 | 0.8964 |
No log | 45.0 | 90 | 0.7471 | 0.5357 | 0.7469 | 0.8642 |
No log | 46.0 | 92 | 0.6811 | 0.5262 | 0.6810 | 0.8252 |
No log | 47.0 | 94 | 0.6795 | 0.5460 | 0.6793 | 0.8242 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 3
Model tree for genki10/Version3_ASAP_FineTuningBERT_AugV12_k1_task1_organization_k1_k1_fold2
Base model
google-bert/bert-base-uncased