Version3_ASAP_FineTuningBERT_AugV12_k1_task1_organization_k1_k1_fold2

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6795
  • Qwk: 0.5460
  • Mse: 0.6793
  • Rmse: 0.8242

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 1.0 2 9.2162 0.0 9.2166 3.0359
No log 2.0 4 8.2870 0.0 8.2873 2.8788
No log 3.0 6 7.0289 0.0 7.0291 2.6513
No log 4.0 8 5.7733 0.0623 5.7736 2.4028
No log 5.0 10 4.7573 0.0 4.7576 2.1812
No log 6.0 12 4.0067 0.0 4.0071 2.0018
No log 7.0 14 3.2408 0.0 3.2412 1.8003
No log 8.0 16 2.5657 0.0 2.5661 1.6019
No log 9.0 18 2.0549 0.0665 2.0553 1.4336
No log 10.0 20 1.6343 0.0107 1.6348 1.2786
No log 11.0 22 1.3372 0.0 1.3377 1.1566
No log 12.0 24 1.1203 0.0 1.1207 1.0586
No log 13.0 26 0.9478 0.0 0.9482 0.9738
No log 14.0 28 0.8230 0.4023 0.8233 0.9074
No log 15.0 30 0.7254 0.4232 0.7257 0.8519
No log 16.0 32 0.6006 0.4798 0.6007 0.7751
No log 17.0 34 0.5426 0.5351 0.5427 0.7367
No log 18.0 36 0.5185 0.5603 0.5186 0.7202
No log 19.0 38 0.6575 0.5292 0.6577 0.8110
No log 20.0 40 0.4827 0.5476 0.4827 0.6948
No log 21.0 42 0.4380 0.5656 0.4380 0.6618
No log 22.0 44 0.6268 0.5250 0.6270 0.7918
No log 23.0 46 0.4378 0.5540 0.4379 0.6618
No log 24.0 48 0.5257 0.5116 0.5258 0.7251
No log 25.0 50 0.5988 0.4482 0.5989 0.7739
No log 26.0 52 0.6026 0.4725 0.6026 0.7763
No log 27.0 54 0.5033 0.5905 0.5034 0.7095
No log 28.0 56 0.7774 0.4707 0.7773 0.8817
No log 29.0 58 0.5842 0.5668 0.5842 0.7643
No log 30.0 60 0.7053 0.4990 0.7051 0.8397
No log 31.0 62 0.7444 0.4921 0.7440 0.8626
No log 32.0 64 0.7124 0.4980 0.7120 0.8438
No log 33.0 66 0.6906 0.4891 0.6902 0.8308
No log 34.0 68 0.7415 0.4708 0.7411 0.8609
No log 35.0 70 0.7536 0.4140 0.7531 0.8678
No log 36.0 72 0.7869 0.3921 0.7865 0.8869
No log 37.0 74 0.8030 0.3896 0.8027 0.8959
No log 38.0 76 0.7640 0.4287 0.7638 0.8739
No log 39.0 78 0.7232 0.4563 0.7230 0.8503
No log 40.0 80 0.7644 0.4063 0.7643 0.8742
No log 41.0 82 0.8053 0.3835 0.8052 0.8973
No log 42.0 84 0.8455 0.4149 0.8454 0.9194
No log 43.0 86 0.7926 0.4417 0.7925 0.8902
No log 44.0 88 0.8038 0.4878 0.8036 0.8964
No log 45.0 90 0.7471 0.5357 0.7469 0.8642
No log 46.0 92 0.6811 0.5262 0.6810 0.8252
No log 47.0 94 0.6795 0.5460 0.6793 0.8242

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
3
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for genki10/Version3_ASAP_FineTuningBERT_AugV12_k1_task1_organization_k1_k1_fold2

Finetuned
(5850)
this model