Version3_ASAP_FineTuningBERT_AugV12_k1_task1_organization_k1_k1_fold4

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3830
  • Qwk: 0.3806
  • Mse: 1.3830
  • Rmse: 1.1760

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 1.0 2 11.1124 -0.0121 11.1124 3.3335
No log 2.0 4 10.1931 0.0018 10.1931 3.1927
No log 3.0 6 8.8145 0.0 8.8145 2.9689
No log 4.0 8 8.0698 0.0 8.0698 2.8407
No log 5.0 10 7.8313 0.0 7.8313 2.7984
No log 6.0 12 7.6419 0.0 7.6419 2.7644
No log 7.0 14 7.4386 0.0 7.4386 2.7274
No log 8.0 16 7.1972 0.0 7.1972 2.6828
No log 9.0 18 6.8721 0.0 6.8721 2.6215
No log 10.0 20 6.3363 0.0 6.3363 2.5172
No log 11.0 22 5.3480 0.0061 5.3480 2.3126
No log 12.0 24 4.0364 0.0079 4.0364 2.0091
No log 13.0 26 3.5051 0.0040 3.5051 1.8722
No log 14.0 28 2.7296 0.0040 2.7296 1.6521
No log 15.0 30 1.9342 0.0531 1.9342 1.3908
No log 16.0 32 1.5910 0.0331 1.5910 1.2613
No log 17.0 34 1.2803 0.0317 1.2803 1.1315
No log 18.0 36 1.1361 0.0317 1.1361 1.0659
No log 19.0 38 0.9506 0.1337 0.9506 0.9750
No log 20.0 40 0.9411 0.1861 0.9411 0.9701
No log 21.0 42 0.8730 0.2310 0.8730 0.9343
No log 22.0 44 0.8835 0.2143 0.8835 0.9400
No log 23.0 46 0.8870 0.2246 0.8870 0.9418
No log 24.0 48 0.9075 0.2385 0.9075 0.9527
No log 25.0 50 0.9203 0.2875 0.9203 0.9593
No log 26.0 52 0.9412 0.2470 0.9412 0.9702
No log 27.0 54 0.9338 0.3184 0.9338 0.9663
No log 28.0 56 1.0386 0.2807 1.0386 1.0191
No log 29.0 58 1.1482 0.3061 1.1482 1.0715
No log 30.0 60 1.0317 0.3613 1.0317 1.0158
No log 31.0 62 1.0118 0.3942 1.0118 1.0059
No log 32.0 64 1.1456 0.3317 1.1456 1.0703
No log 33.0 66 1.1345 0.3196 1.1345 1.0651
No log 34.0 68 1.1601 0.3670 1.1601 1.0771
No log 35.0 70 1.3330 0.3167 1.3330 1.1546
No log 36.0 72 1.3657 0.3260 1.3657 1.1686
No log 37.0 74 1.2961 0.3766 1.2961 1.1385
No log 38.0 76 1.4363 0.3091 1.4363 1.1985
No log 39.0 78 1.4064 0.2985 1.4064 1.1859
No log 40.0 80 1.3454 0.3556 1.3454 1.1599
No log 41.0 82 1.4272 0.3368 1.4272 1.1946
No log 42.0 84 1.4477 0.3561 1.4477 1.2032
No log 43.0 86 1.4441 0.3347 1.4441 1.2017
No log 44.0 88 1.3651 0.3643 1.3651 1.1684
No log 45.0 90 1.4164 0.3362 1.4164 1.1901
No log 46.0 92 1.4460 0.3419 1.4460 1.2025
No log 47.0 94 1.5767 0.3341 1.5767 1.2557
No log 48.0 96 1.5773 0.3565 1.5773 1.2559
No log 49.0 98 1.5403 0.3444 1.5403 1.2411
No log 50.0 100 1.4319 0.3561 1.4319 1.1966
No log 51.0 102 1.3830 0.3806 1.3830 1.1760

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
1
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for genki10/Version3_ASAP_FineTuningBERT_AugV12_k1_task1_organization_k1_k1_fold4

Finetuned
(5857)
this model