Version3_ASAP_FineTuningBERT_AugV12_k1_task1_organization_k1_k1_fold4
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.3830
- Qwk: 0.3806
- Mse: 1.3830
- Rmse: 1.1760
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 1.0 | 2 | 11.1124 | -0.0121 | 11.1124 | 3.3335 |
No log | 2.0 | 4 | 10.1931 | 0.0018 | 10.1931 | 3.1927 |
No log | 3.0 | 6 | 8.8145 | 0.0 | 8.8145 | 2.9689 |
No log | 4.0 | 8 | 8.0698 | 0.0 | 8.0698 | 2.8407 |
No log | 5.0 | 10 | 7.8313 | 0.0 | 7.8313 | 2.7984 |
No log | 6.0 | 12 | 7.6419 | 0.0 | 7.6419 | 2.7644 |
No log | 7.0 | 14 | 7.4386 | 0.0 | 7.4386 | 2.7274 |
No log | 8.0 | 16 | 7.1972 | 0.0 | 7.1972 | 2.6828 |
No log | 9.0 | 18 | 6.8721 | 0.0 | 6.8721 | 2.6215 |
No log | 10.0 | 20 | 6.3363 | 0.0 | 6.3363 | 2.5172 |
No log | 11.0 | 22 | 5.3480 | 0.0061 | 5.3480 | 2.3126 |
No log | 12.0 | 24 | 4.0364 | 0.0079 | 4.0364 | 2.0091 |
No log | 13.0 | 26 | 3.5051 | 0.0040 | 3.5051 | 1.8722 |
No log | 14.0 | 28 | 2.7296 | 0.0040 | 2.7296 | 1.6521 |
No log | 15.0 | 30 | 1.9342 | 0.0531 | 1.9342 | 1.3908 |
No log | 16.0 | 32 | 1.5910 | 0.0331 | 1.5910 | 1.2613 |
No log | 17.0 | 34 | 1.2803 | 0.0317 | 1.2803 | 1.1315 |
No log | 18.0 | 36 | 1.1361 | 0.0317 | 1.1361 | 1.0659 |
No log | 19.0 | 38 | 0.9506 | 0.1337 | 0.9506 | 0.9750 |
No log | 20.0 | 40 | 0.9411 | 0.1861 | 0.9411 | 0.9701 |
No log | 21.0 | 42 | 0.8730 | 0.2310 | 0.8730 | 0.9343 |
No log | 22.0 | 44 | 0.8835 | 0.2143 | 0.8835 | 0.9400 |
No log | 23.0 | 46 | 0.8870 | 0.2246 | 0.8870 | 0.9418 |
No log | 24.0 | 48 | 0.9075 | 0.2385 | 0.9075 | 0.9527 |
No log | 25.0 | 50 | 0.9203 | 0.2875 | 0.9203 | 0.9593 |
No log | 26.0 | 52 | 0.9412 | 0.2470 | 0.9412 | 0.9702 |
No log | 27.0 | 54 | 0.9338 | 0.3184 | 0.9338 | 0.9663 |
No log | 28.0 | 56 | 1.0386 | 0.2807 | 1.0386 | 1.0191 |
No log | 29.0 | 58 | 1.1482 | 0.3061 | 1.1482 | 1.0715 |
No log | 30.0 | 60 | 1.0317 | 0.3613 | 1.0317 | 1.0158 |
No log | 31.0 | 62 | 1.0118 | 0.3942 | 1.0118 | 1.0059 |
No log | 32.0 | 64 | 1.1456 | 0.3317 | 1.1456 | 1.0703 |
No log | 33.0 | 66 | 1.1345 | 0.3196 | 1.1345 | 1.0651 |
No log | 34.0 | 68 | 1.1601 | 0.3670 | 1.1601 | 1.0771 |
No log | 35.0 | 70 | 1.3330 | 0.3167 | 1.3330 | 1.1546 |
No log | 36.0 | 72 | 1.3657 | 0.3260 | 1.3657 | 1.1686 |
No log | 37.0 | 74 | 1.2961 | 0.3766 | 1.2961 | 1.1385 |
No log | 38.0 | 76 | 1.4363 | 0.3091 | 1.4363 | 1.1985 |
No log | 39.0 | 78 | 1.4064 | 0.2985 | 1.4064 | 1.1859 |
No log | 40.0 | 80 | 1.3454 | 0.3556 | 1.3454 | 1.1599 |
No log | 41.0 | 82 | 1.4272 | 0.3368 | 1.4272 | 1.1946 |
No log | 42.0 | 84 | 1.4477 | 0.3561 | 1.4477 | 1.2032 |
No log | 43.0 | 86 | 1.4441 | 0.3347 | 1.4441 | 1.2017 |
No log | 44.0 | 88 | 1.3651 | 0.3643 | 1.3651 | 1.1684 |
No log | 45.0 | 90 | 1.4164 | 0.3362 | 1.4164 | 1.1901 |
No log | 46.0 | 92 | 1.4460 | 0.3419 | 1.4460 | 1.2025 |
No log | 47.0 | 94 | 1.5767 | 0.3341 | 1.5767 | 1.2557 |
No log | 48.0 | 96 | 1.5773 | 0.3565 | 1.5773 | 1.2559 |
No log | 49.0 | 98 | 1.5403 | 0.3444 | 1.5403 | 1.2411 |
No log | 50.0 | 100 | 1.4319 | 0.3561 | 1.4319 | 1.1966 |
No log | 51.0 | 102 | 1.3830 | 0.3806 | 1.3830 | 1.1760 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 1
Model tree for genki10/Version3_ASAP_FineTuningBERT_AugV12_k1_task1_organization_k1_k1_fold4
Base model
google-bert/bert-base-uncased