Version_Test_ASAP_FineTuningBERT_AugV14_k10_task1_organization_k10_k10_fold0

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5475
  • Qwk: 0.5412
  • Mse: 0.5475
  • Rmse: 0.7399

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 1.0 7 6.2769 -0.0010 6.2769 2.5054
No log 2.0 14 3.2949 0.0 3.2949 1.8152
No log 3.0 21 1.3402 0.0316 1.3402 1.1577
No log 4.0 28 0.7525 0.1169 0.7525 0.8675
No log 5.0 35 0.9424 0.0689 0.9424 0.9708
No log 6.0 42 0.5171 0.4477 0.5171 0.7191
No log 7.0 49 0.5033 0.4620 0.5033 0.7095
No log 8.0 56 0.4756 0.5118 0.4756 0.6897
No log 9.0 63 0.4791 0.5044 0.4791 0.6922
No log 10.0 70 0.5121 0.5567 0.5121 0.7156
No log 11.0 77 0.8750 0.3946 0.8750 0.9354
No log 12.0 84 0.5732 0.5192 0.5732 0.7571
No log 13.0 91 0.6590 0.5295 0.6590 0.8118
No log 14.0 98 0.5113 0.5432 0.5113 0.7150
No log 15.0 105 0.6464 0.5021 0.6464 0.8040
No log 16.0 112 0.4853 0.5780 0.4853 0.6966
No log 17.0 119 0.6165 0.5465 0.6165 0.7851
No log 18.0 126 0.5927 0.5029 0.5927 0.7698
No log 19.0 133 0.7444 0.4677 0.7444 0.8628
No log 20.0 140 0.7202 0.5220 0.7202 0.8487
No log 21.0 147 0.6528 0.4862 0.6528 0.8080
No log 22.0 154 0.5971 0.5250 0.5971 0.7727
No log 23.0 161 0.6178 0.5447 0.6178 0.7860
No log 24.0 168 0.5620 0.5400 0.5620 0.7497
No log 25.0 175 0.5609 0.5334 0.5609 0.7489
No log 26.0 182 0.5293 0.5565 0.5293 0.7275
No log 27.0 189 0.5519 0.5387 0.5519 0.7429
No log 28.0 196 0.5604 0.5157 0.5604 0.7486
No log 29.0 203 0.5643 0.5668 0.5643 0.7512
No log 30.0 210 0.5627 0.5602 0.5627 0.7501
No log 31.0 217 0.5852 0.5535 0.5852 0.7650
No log 32.0 224 0.6176 0.5525 0.6176 0.7859
No log 33.0 231 0.5759 0.5799 0.5759 0.7589
No log 34.0 238 0.5550 0.5423 0.5550 0.7450
No log 35.0 245 0.5857 0.5522 0.5857 0.7653
No log 36.0 252 0.5577 0.5217 0.5577 0.7468
No log 37.0 259 0.5358 0.5701 0.5358 0.7320
No log 38.0 266 0.5959 0.5336 0.5959 0.7719
No log 39.0 273 0.5576 0.5472 0.5576 0.7467
No log 40.0 280 0.5265 0.5480 0.5265 0.7256
No log 41.0 287 0.7291 0.4986 0.7291 0.8539
No log 42.0 294 0.6184 0.5361 0.6184 0.7864
No log 43.0 301 0.5429 0.5488 0.5429 0.7368
No log 44.0 308 0.5375 0.5854 0.5375 0.7331
No log 45.0 315 0.5435 0.5193 0.5435 0.7372
No log 46.0 322 0.5452 0.5506 0.5452 0.7384
No log 47.0 329 0.5467 0.5527 0.5467 0.7394
No log 48.0 336 0.5557 0.5222 0.5557 0.7455
No log 49.0 343 0.5465 0.5334 0.5465 0.7392
No log 50.0 350 0.5537 0.5240 0.5537 0.7441
No log 51.0 357 0.5374 0.5713 0.5374 0.7330
No log 52.0 364 0.5366 0.5035 0.5366 0.7326
No log 53.0 371 0.5420 0.5193 0.5420 0.7362
No log 54.0 378 0.5166 0.5577 0.5166 0.7188
No log 55.0 385 0.5205 0.5569 0.5205 0.7214
No log 56.0 392 0.5336 0.5398 0.5336 0.7305
No log 57.0 399 0.5539 0.5279 0.5539 0.7443
No log 58.0 406 0.5689 0.5199 0.5689 0.7543
No log 59.0 413 0.5949 0.5184 0.5949 0.7713
No log 60.0 420 0.5280 0.5301 0.5280 0.7266
No log 61.0 427 0.5396 0.5463 0.5396 0.7345
No log 62.0 434 0.5438 0.5129 0.5438 0.7374
No log 63.0 441 0.5459 0.5209 0.5459 0.7388
No log 64.0 448 0.5475 0.5412 0.5475 0.7399

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
3
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for genki10/Version_Test_ASAP_FineTuningBERT_AugV14_k10_task1_organization_k10_k10_fold0

Finetuned
(5847)
this model