See axolotl config
axolotl version: 0.9.2
base_model: giux78/test_544000
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name
strict: false
chat_template: qwen3
datasets:
- path: FairMind/bank-gpt-sft-alpha-v0.1.3
type: chat_template
field_messages: conversations
message_property_mappings:
role: from
content: value
val_set_size: 0.01
output_dir: ./ale_outputs/pre-bankgpt-v1
#do_bench_eval: true
#bench_dataset: /leonardo_work/EUHPC_A04_045/training/examples/qwen3/eval_mix_train.json
sequence_len: 4096
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 2
#max_steps: 50
optimizer: adamw_torch_fused
lr_scheduler: cosine
learning_rate: 4e-5
bf16: auto
tf32: true
wandb_mode: "offline"
wandb_project: pre-bankgpt-v1
wandb_entity: mii-llm
wandb_name: sft
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
resume_from_checkpoint:
logging_steps: 1
flash_attention: true
warmup_ratio: 0.1
evals_per_epoch: 5
saves_per_epoch: 5
weight_decay: 0.01
fsdp:
- full_shard
- auto_wrap
fsdp_config:
fsdp_limit_all_gathers: true
fsdp_sync_module_states: true
fsdp_offload_params: true
fsdp_use_orig_params: false
fsdp_cpu_ram_efficient_loading: true
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
fsdp_state_dict_type: FULL_STATE_DICT
fsdp_sharding_strategy: FULL_SHARD
special_tokens:
pad_token: <|end_of_text|>
ale_outputs/pre-bankgpt-v1
This model is a fine-tuned version of giux78/test_544000 on the FairMind/bank-gpt-sft-alpha-v0.1.3 dataset. It achieves the following results on the evaluation set:
- Loss: nan
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 32
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 34
- num_epochs: 2.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.5521 | 0.0057 | 1 | nan |
3.4578 | 0.2001 | 35 | nan |
3.0539 | 0.4003 | 70 | nan |
2.9865 | 0.6004 | 105 | nan |
2.8058 | 0.8006 | 140 | nan |
5.5672 | 1.0057 | 175 | nan |
2.7383 | 1.2059 | 210 | nan |
2.7784 | 1.4060 | 245 | nan |
2.744 | 1.6061 | 280 | nan |
2.6877 | 1.8063 | 315 | nan |
Framework versions
- Transformers 4.51.3
- Pytorch 2.5.1+cu121
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 14
Model tree for giux78/pre-bgpt-v.0.1
Base model
giux78/test_544000