yolov5m_kvasir_polyp
This model is a fine-tuned version of ultralytics/yolov5m on COCO dataset. It achieves the following results on the evaluation set in last epoch:
- Recall: 0.88479
- Precision: 0.9072
- mAP@50: 0.9328
- mAP@50-95: 0.7778
- Box Loss: 0.6825
- Cls Loss: 0.5279
- Dfl Loss: 1.1337
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
Kvasir dataset is an open-access collection focused on gastrointestinal polyps. It includes 1000 images, each accompanied by corresponding segmentation masks and bounding box annotations. The image resolutions within the dataset vary, ranging from 332x487 to 1920x1072 pixels. For our purposes, we randomly partitioned the images and their associated segmentation masks into training and testing sets, using an 80% allocation for training and 20% for testing.
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.01
- learning_rate_factor: 0.01
- Optimizer: SGD
- train_batch_size: 16
- eval_batch_size: 16
- seed: 0
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Epoch | Train Box Loss | Train Cls Loss | Train DFL Loss | Precision | Recall | mAP@50 | mAP@50-95 | Valid Box Loss | Valid Cls Loss | Valid DFL Loss |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1.17657 | 2.36345 | 1.55172 | 0.39236 | 0.51152 | 0.42826 | 0.23057 | 1.42345 | 5.57235 | 2.02122 |
2 | 1.38219 | 1.78941 | 1.6711 | 0.08378 | 0.05991 | 0.02744 | 0.01038 | 3.19306 | 5.65541 | 3.36131 |
3 | 1.4393 | 1.80771 | 1.71444 | 0.17791 | 0.26728 | 0.11554 | 0.04333 | 2.31542 | 22.191 | 3.33876 |
4 | 1.46508 | 1.77948 | 1.72477 | 0.30202 | 0.25806 | 0.20997 | 0.10152 | 1.94347 | 5.65863 | 2.24456 |
5 | 1.41696 | 1.65393 | 1.68869 | 0.44164 | 0.20737 | 0.21563 | 0.12201 | 2.44439 | 2.57283 | 2.70957 |
6 | 1.34625 | 1.63672 | 1.64062 | 0.6144 | 0.64516 | 0.64903 | 0.40923 | 1.13771 | 3.31983 | 1.54363 |
7 | 1.31722 | 1.49886 | 1.62423 | 0.43942 | 0.34562 | 0.34845 | 0.15524 | 1.85409 | 3.20515 | 2.2562 |
8 | 1.27748 | 1.5087 | 1.58922 | 0.72454 | 0.65899 | 0.71588 | 0.4329 | 1.19252 | 1.82616 | 1.53101 |
9 | 1.22438 | 1.42816 | 1.55159 | 0.68385 | 0.63797 | 0.69648 | 0.43722 | 1.18662 | 1.50596 | 1.52833 |
10 | 1.21536 | 1.43968 | 1.5354 | 0.64495 | 0.59908 | 0.63943 | 0.43225 | 1.15523 | 2.03383 | 1.49961 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
41 | 0.73798 | 0.72353 | 1.20674 | 0.89355 | 0.84793 | 0.91711 | 0.73377 | 0.74772 | 0.68238 | 1.18388 |
42 | 0.70322 | 0.6215 | 1.17143 | 0.92202 | 0.84793 | 0.93047 | 0.74775 | 0.75578 | 0.61033 | 1.16188 |
43 | 0.69534 | 0.60391 | 1.16855 | 0.89488 | 0.86636 | 0.91829 | 0.73852 | 0.73135 | 0.62313 | 1.16575 |
44 | 0.72092 | 0.60997 | 1.19525 | 0.95241 | 0.83871 | 0.93116 | 0.75469 | 0.71709 | 0.58623 | 1.15658 |
45 | 0.67487 | 0.58592 | 1.15733 | 0.91481 | 0.84127 | 0.92245 | 0.74524 | 0.72996 | 0.5617 | 1.19229 |
46 | 0.70238 | 0.60048 | 1.19095 | 0.9224 | 0.87637 | 0.93562 | 0.75929 | 0.71903 | 0.54975 | 1.16705 |
47 | 0.63896 | 0.53985 | 1.14029 | 0.90244 | 0.90323 | 0.9365 | 0.76503 | 0.73252 | 0.54194 | 1.16863 |
48 | 0.63148 | 0.53112 | 1.1346 | 0.92686 | 0.88479 | 0.93843 | 0.76868 | 0.69789 | 0.53396 | 1.15055 |
49 | 0.61857 | 0.4978 | 1.11717 | 0.92212 | 0.87305 | 0.93688 | 0.77648 | 0.68321 | 0.53224 | 1.13785 |
50 | 0.59229 | 0.49861 | 1.08749 | 0.90728 | 0.88479 | 0.93281 | 0.77785 | 0.68251 | 0.52791 | 1.13379 |
Framework versions
- Numpy 2.0.2
- PIL 11.2.1
- Sklearn 1.6.1
- Ultralytics 8.3.120
- PyTorch 2.6.0+cu124
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for goktug14/yolov5_kvasir_polyp
Base model
Ultralytics/YOLOv5