HBERTv1_48_L2_H128_A2_massive

This model is a fine-tuned version of gokuls/HBERTv1_48_L2_H128_A2 on the massive dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0382
  • Accuracy: 0.7413

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 33
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.7441 1.0 180 3.2836 0.2022
2.9759 2.0 360 2.5939 0.3586
2.3963 3.0 540 2.0958 0.4786
1.9807 4.0 720 1.7821 0.5711
1.6992 5.0 900 1.5545 0.6104
1.4956 6.0 1080 1.4044 0.6399
1.3435 7.0 1260 1.2924 0.6778
1.2315 8.0 1440 1.2195 0.6945
1.1387 9.0 1620 1.1671 0.7088
1.0708 10.0 1800 1.1236 0.7186
1.0222 11.0 1980 1.0898 0.7265
0.9834 12.0 2160 1.0719 0.7314
0.9504 13.0 2340 1.0573 0.7388
0.9317 14.0 2520 1.0442 0.7378
0.9184 15.0 2700 1.0382 0.7413

Framework versions

  • Transformers 4.34.0
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.14.5
  • Tokenizers 0.14.0
Downloads last month
9
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for gokuls/HBERTv1_48_L2_H128_A2_massive

Finetuned
(2)
this model

Evaluation results