add_BERT_no_pretrain_mrpc
This model is a fine-tuned version of on the GLUE MRPC dataset. It achieves the following results on the evaluation set:
- Loss: 0.5912
- Accuracy: 0.6961
- F1: 0.7933
- Combined Score: 0.7447
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
---|---|---|---|---|---|---|
0.6854 | 1.0 | 29 | 0.6711 | 0.6838 | 0.8122 | 0.7480 |
0.6496 | 2.0 | 58 | 0.6802 | 0.6838 | 0.8122 | 0.7480 |
0.648 | 3.0 | 87 | 0.6246 | 0.6838 | 0.8122 | 0.7480 |
0.6363 | 4.0 | 116 | 0.6174 | 0.6838 | 0.8122 | 0.7480 |
0.6049 | 5.0 | 145 | 0.6176 | 0.6593 | 0.7459 | 0.7026 |
0.5491 | 6.0 | 174 | 0.6038 | 0.6814 | 0.7950 | 0.7382 |
0.5601 | 7.0 | 203 | 0.5912 | 0.6961 | 0.7933 | 0.7447 |
0.5505 | 8.0 | 232 | 0.6346 | 0.6716 | 0.7781 | 0.7249 |
0.5327 | 9.0 | 261 | 0.6283 | 0.6544 | 0.7531 | 0.7037 |
0.529 | 10.0 | 290 | 0.6341 | 0.6520 | 0.7568 | 0.7044 |
0.5337 | 11.0 | 319 | 0.6285 | 0.6618 | 0.7579 | 0.7098 |
0.5383 | 12.0 | 348 | 0.6322 | 0.6348 | 0.7286 | 0.6817 |
Framework versions
- Transformers 4.30.2
- Pytorch 1.14.0a0+410ce96
- Datasets 2.12.0
- Tokenizers 0.13.3
- Downloads last month
- 10
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Dataset used to train gokuls/add_BERT_no_pretrain_mrpc
Evaluation results
- Accuracy on GLUE MRPCvalidation set self-reported0.696
- F1 on GLUE MRPCvalidation set self-reported0.793