hBERTv1_new_pretrain_w_init__mrpc
This model is a fine-tuned version of gokuls/bert_12_layer_model_v1_complete_training_new_wt_init on the GLUE MRPC dataset. It achieves the following results on the evaluation set:
- Loss: 0.6082
- Accuracy: 0.6863
- F1: 0.7895
- Combined Score: 0.7379
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
---|---|---|---|---|---|---|
0.7111 | 1.0 | 29 | 0.6564 | 0.6838 | 0.8122 | 0.7480 |
0.6641 | 2.0 | 58 | 0.6160 | 0.6838 | 0.8122 | 0.7480 |
0.6156 | 3.0 | 87 | 0.6354 | 0.6838 | 0.8122 | 0.7480 |
0.5817 | 4.0 | 116 | 0.6082 | 0.6863 | 0.7895 | 0.7379 |
0.5091 | 5.0 | 145 | 0.7812 | 0.5074 | 0.5157 | 0.5115 |
0.3973 | 6.0 | 174 | 0.7949 | 0.6544 | 0.7565 | 0.7054 |
0.2966 | 7.0 | 203 | 1.0388 | 0.6078 | 0.6887 | 0.6483 |
0.2024 | 8.0 | 232 | 1.0065 | 0.6201 | 0.7124 | 0.6663 |
0.1621 | 9.0 | 261 | 1.3076 | 0.5735 | 0.6575 | 0.6155 |
Framework versions
- Transformers 4.29.2
- Pytorch 1.14.0a0+410ce96
- Datasets 2.12.0
- Tokenizers 0.13.3
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Dataset used to train gokuls/hBERTv1_new_pretrain_w_init__mrpc
Evaluation results
- Accuracy on GLUE MRPCvalidation set self-reported0.686
- F1 on GLUE MRPCvalidation set self-reported0.789