gokuls's picture
End of training
bd682a3
metadata
base_model: gokuls/model_v1_complete_training_wt_init_48_tiny_freeze_new_ffn_2
tags:
  - generated_from_trainer
datasets:
  - emotion
metrics:
  - accuracy
model-index:
  - name: hbertv1-emotion-logit_KD-tiny_ffn_2
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: emotion
          type: emotion
          config: split
          split: validation
          args: split
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9005

hbertv1-emotion-logit_KD-tiny_ffn_2

This model is a fine-tuned version of gokuls/model_v1_complete_training_wt_init_48_tiny_freeze_new_ffn_2 on the emotion dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4740
  • Accuracy: 0.9005

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 33
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.1189 1.0 250 2.6103 0.514
2.0804 2.0 500 1.4939 0.7695
1.2677 3.0 750 0.8999 0.8445
0.8885 4.0 1000 0.6887 0.874
0.7023 5.0 1250 0.5821 0.889
0.5796 6.0 1500 0.5364 0.8875
0.5106 7.0 1750 0.5043 0.89
0.4603 8.0 2000 0.5055 0.889
0.405 9.0 2250 0.4903 0.89
0.3782 10.0 2500 0.4793 0.8965
0.3488 11.0 2750 0.4832 0.8945
0.3301 12.0 3000 0.4740 0.9005
0.3163 13.0 3250 0.4768 0.89
0.2983 14.0 3500 0.4925 0.887
0.2835 15.0 3750 0.4764 0.898
0.2702 16.0 4000 0.4856 0.8905
0.2522 17.0 4250 0.4829 0.897

Framework versions

  • Transformers 4.35.2
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.15.0
  • Tokenizers 0.15.0