gokulsrinivasagan's picture
End of training
1af6413 verified
---
library_name: transformers
language:
- en
base_model: gokulsrinivasagan/bert_tiny_lda_100_v1
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: bert_tiny_lda_100_v1_sst2
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE SST2
type: glue
args: sst2
metrics:
- name: Accuracy
type: accuracy
value: 0.805045871559633
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert_tiny_lda_100_v1_sst2
This model is a fine-tuned version of [gokulsrinivasagan/bert_tiny_lda_100_v1](https://huggingface.co/gokulsrinivasagan/bert_tiny_lda_100_v1) on the GLUE SST2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4466
- Accuracy: 0.8050
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.4292 | 1.0 | 264 | 0.4466 | 0.8050 |
| 0.2589 | 2.0 | 528 | 0.4592 | 0.8154 |
| 0.2007 | 3.0 | 792 | 0.4953 | 0.8131 |
| 0.1652 | 4.0 | 1056 | 0.5380 | 0.8303 |
| 0.137 | 5.0 | 1320 | 0.5538 | 0.8096 |
| 0.1185 | 6.0 | 1584 | 0.6460 | 0.8096 |
### Framework versions
- Transformers 4.46.3
- Pytorch 2.2.1+cu118
- Datasets 2.17.0
- Tokenizers 0.20.3