kvasir_seg_rtdetr_r18_test_fps
This model is a fine-tuned version of PekingU/rtdetr_r18vd_coco_o365 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 6.4708
- Map: 0.5375
- Map 50: 0.7037
- Map 75: 0.6008
- Map Small: 0.0
- Map Medium: 0.2762
- Map Large: 0.5563
- Mar 1: 0.6024
- Mar 10: 0.8218
- Mar 100: 0.9209
- Mar Small: 0.0
- Mar Medium: 0.78
- Mar Large: 0.9325
- Map Polyp: 0.5375
- Mar 100 Polyp: 0.9209
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 1
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 300
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Polyp | Mar 100 Polyp |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
188.8938 | 1.0 | 100 | 35.3914 | 0.045 | 0.0921 | 0.0405 | 0.0 | 0.0001 | 0.0612 | 0.1175 | 0.3521 | 0.6398 | 0.0 | 0.09 | 0.6705 | 0.045 | 0.6398 |
20.5545 | 2.0 | 200 | 13.3860 | 0.0707 | 0.1207 | 0.0633 | 0.0 | 0.0164 | 0.0763 | 0.2 | 0.5607 | 0.8398 | 0.0 | 0.63 | 0.8545 | 0.0707 | 0.8398 |
12.8462 | 3.0 | 300 | 8.8009 | 0.251 | 0.3922 | 0.2349 | 0.0 | 0.1155 | 0.263 | 0.3758 | 0.7171 | 0.8782 | 0.0 | 0.71 | 0.891 | 0.251 | 0.8782 |
11.3 | 4.0 | 400 | 8.9424 | 0.2968 | 0.4137 | 0.3193 | 0.0 | 0.2263 | 0.3046 | 0.3929 | 0.7687 | 0.9038 | 0.0 | 0.77 | 0.915 | 0.2968 | 0.9038 |
10.3262 | 5.0 | 500 | 7.8881 | 0.2819 | 0.4434 | 0.3041 | 0.0 | 0.2255 | 0.2897 | 0.4223 | 0.7374 | 0.8839 | 0.0 | 0.57 | 0.904 | 0.2819 | 0.8839 |
9.4336 | 6.0 | 600 | 7.9411 | 0.3048 | 0.4533 | 0.3209 | 0.0 | 0.2202 | 0.3159 | 0.4649 | 0.7934 | 0.9024 | 0.0 | 0.76 | 0.914 | 0.3048 | 0.9024 |
8.996 | 7.0 | 700 | 7.2079 | 0.4942 | 0.6964 | 0.5359 | 0.0 | 0.2982 | 0.5086 | 0.5531 | 0.7995 | 0.9171 | 0.0 | 0.74 | 0.9305 | 0.4942 | 0.9171 |
8.3482 | 8.0 | 800 | 6.5042 | 0.4987 | 0.6906 | 0.5471 | 0.0 | 0.2387 | 0.5154 | 0.5768 | 0.8095 | 0.9095 | 0.0 | 0.75 | 0.922 | 0.4987 | 0.9095 |
7.9702 | 9.0 | 900 | 6.4708 | 0.5375 | 0.7037 | 0.6008 | 0.0 | 0.2762 | 0.5563 | 0.6024 | 0.8218 | 0.9209 | 0.0 | 0.78 | 0.9325 | 0.5375 | 0.9209 |
7.7992 | 10.0 | 1000 | 6.3745 | 0.5317 | 0.7162 | 0.5988 | 0.0 | 0.2473 | 0.551 | 0.5953 | 0.8299 | 0.9223 | 0.0 | 0.76 | 0.935 | 0.5317 | 0.9223 |
Framework versions
- Transformers 4.53.0.dev0
- Pytorch 2.7.1+cu126
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 16
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for goodcasper/kvasir_seg_rtdetr_r18_test_fps
Base model
PekingU/rtdetr_r18vd_coco_o365