vit_itri_gerd

This model is a fine-tuned version of google/vit-large-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8160
  • Accuracy: 0.8802
  • Precision: 0.8811
  • Recall: 0.8802
  • F1: 0.8802

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 24
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.6915 1.0 63 0.4305 0.7904 0.7926 0.7904 0.7901
0.455 2.0 126 0.7307 0.7605 0.7836 0.7605 0.7552
0.372 3.0 189 0.4026 0.8024 0.8123 0.8024 0.8007
0.3159 4.0 252 0.3805 0.8323 0.8340 0.8323 0.8321
0.2906 5.0 315 0.4334 0.8323 0.8326 0.8323 0.8323
0.2589 6.0 378 0.4235 0.8084 0.8232 0.8084 0.8060
0.2024 7.0 441 0.4003 0.8503 0.8516 0.8503 0.8502
0.1218 8.0 504 0.6308 0.8204 0.8270 0.8204 0.8193
0.1226 9.0 567 0.5468 0.8323 0.8353 0.8323 0.8319
0.0627 10.0 630 0.7390 0.8263 0.8286 0.8263 0.8260
0.0374 11.0 693 0.8669 0.8503 0.8503 0.8503 0.8503
0.0389 12.0 756 0.6790 0.8623 0.8627 0.8623 0.8622
0.0122 13.0 819 0.8346 0.8683 0.8701 0.8683 0.8681
0.0064 14.0 882 0.7985 0.8802 0.8804 0.8802 0.8802
0.0071 15.0 945 0.8160 0.8802 0.8811 0.8802 0.8802

Framework versions

  • Transformers 4.53.0.dev0
  • Pytorch 2.7.1+cu126
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
2
Safetensors
Model size
303M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for goodcasper/vit_itri_gerd

Finetuned
(103)
this model

Evaluation results