multilabel_classification

This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1275
  • F1 Micro: 0.8546
  • F1 Macro: 0.5865
  • Accuracy: 0.9780

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss F1 Micro F1 Macro Accuracy
No log 1.0 255 0.2939 0.8282 0.5696 0.9604
0.7587 2.0 510 0.1965 0.8546 0.5865 0.9780
0.7587 3.0 765 0.1275 0.8546 0.5865 0.9780

Framework versions

  • PEFT 0.8.2
  • Transformers 4.37.2
  • Pytorch 2.2.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.2
Downloads last month
3
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for greatakela/multilabel_classification

Adapter
(1242)
this model