SegForCoral-b2-2025_06_03_30567-bs16_refine is a fine-tuned version of nvidia/mit-b2.


Model description

SegForCoral-b2-2025_06_03_30567-bs16_refine is a model built on top of nvidia/mit-b2 model for underwater multilabel image classification.The classification head is a combination of linear, ReLU, batch normalization, and dropout layers.

The source code for training the model can be found in this Git repository.


Intended uses & limitations

You can use the raw model for classify diverse marine species, encompassing coral morphotypes classes taken from the Global Coral Reef Monitoring Network (GCRMN), habitats classes and seagrass species.


Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • Number of Epochs: 32.0
  • Learning Rate: 1e-05
  • Train Batch Size: 16
  • Eval Batch Size: 16
  • Optimizer: Adam
  • LR Scheduler Type: ReduceLROnPlateau with a patience of 5 epochs and a factor of 0.1
  • Freeze Encoder: No
  • Data Augmentation: No

Training results

Epoch Validation Loss Learning Rate
1 0.7078850269317627 1e-05
2 0.6609442234039307 1e-05
3 0.6220470666885376 1e-05
4 0.5949200987815857 1e-05
5 0.5844070315361023 1e-05
6 0.5725482702255249 1e-05
7 0.5633664131164551 1e-05
8 0.5647215247154236 1e-05
9 0.5570588707923889 1e-05
10 0.5523818135261536 1e-05
11 0.5505710244178772 1e-05
12 0.5467283725738525 1e-05
13 0.5548911094665527 1e-05
14 0.545318067073822 1e-05
15 0.5459777116775513 1e-05
16 0.5529848337173462 1e-05
17 0.5465011596679688 1e-05
18 0.5460110902786255 1e-05
19 0.5581657290458679 1e-05
20 0.5426208972930908 1e-05
21 0.5669962167739868 1e-05
22 0.5413931608200073 1e-05
23 0.560343325138092 1e-05
24 0.5521411895751953 1e-05
25 0.5587380528450012 1e-05
26 0.5514724850654602 1e-05
27 0.552064061164856 1e-05
28 0.5605921745300293 1e-05
29 0.5458650588989258 1.0000000000000002e-06
30 0.5459087491035461 1.0000000000000002e-06
31 0.547154426574707 1.0000000000000002e-06
32 0.545670747756958 1.0000000000000002e-06

Test results

See https://github.com/SeatizenDOI/the-point-is-the-mask/blob/master/config_base.json to get all the data to perform the same results. Use python train.py -oe

πŸ“Š Evaluating zone: config/drone_test_polygon_troudeau.geojson

βœ… Pixel Accuracy: 0.9297

βœ… Mean Accuracy : 0.8092

βœ… Mean IoU : 0.5609

Pixel Accuracy Per Class:

  • Acropore_branched: 0.8005
  • Acropore_tabular: 0.8930
  • No_acropore_massive: 0.8727
  • No_acropore_sub_massive: 0.5100
  • Sand: 0.9695

IoU Per Class:

  • Acropore_branched: 0.2471
  • Acropore_tabular: 0.5531
  • No_acropore_massive: 0.5913
  • No_acropore_sub_massive: 0.4544
  • Sand: 0.9586

πŸ“Š Evaluating zone: config/drone_test_polygon_stleu.geojson

βœ… Pixel Accuracy: 0.8016

βœ… Mean Accuracy : 0.7548

βœ… Mean IoU : 0.5354

Pixel Accuracy Per Class:

  • Acropore_branched: 0.7272
  • Acropore_tabular: 0.0000
  • No_acropore_massive: 0.9735
  • No_acropore_sub_massive: 0.3808
  • Sand: 0.9376

IoU Per Class:

  • Acropore_branched: 0.4750
  • Acropore_tabular: 0.0000
  • No_acropore_massive: 0.4427
  • No_acropore_sub_massive: 0.3150
  • Sand: 0.9089

πŸ“¦ Micro-Averaged Metrics Across Zones (all pixels):

Pixel Accuracy Per Class:

  • Acropore_branched: 0.7312
  • Acropore_tabular: 0.8930
  • No_acropore_massive: 0.9434
  • No_acropore_sub_massive: 0.4130
  • Sand: 0.9549

IoU Per Class:

  • Acropore_branched: 0.4505
  • Acropore_tabular: 0.4017
  • No_acropore_massive: 0.4757
  • No_acropore_sub_massive: 0.3479
  • Sand: 0.9356

βœ… Pixel Accuracy: 0.8607

βœ… Mean Accuracy : 0.7871

βœ… Mean IoU : 0.5223


Framework Versions

  • Transformers: 4.51.3
  • Pytorch: 2.6.0+cu124
  • Datasets: 3.6.0
  • Tokenizers: 0.21.1
Downloads last month
423
Safetensors
Model size
27.4M params
Tensor type
F32
Β·
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support