SegForCoral-b2-2025_06_24_45583-bs16_refine is a fine-tuned version of nvidia/mit-b2.


Model description

SegForCoral-b2-2025_06_24_45583-bs16_refine is a model built on top of nvidia/mit-b2 model for underwater multilabel image classification.The classification head is a combination of linear, ReLU, batch normalization, and dropout layers.

The source code for training the model can be found in this Git repository.


Intended uses & limitations

You can use the raw model for classify diverse marine species, encompassing coral morphotypes classes taken from the Global Coral Reef Monitoring Network (GCRMN), habitats classes and seagrass species.


Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • Number of Epochs: 22.0
  • Learning Rate: 1e-05
  • Train Batch Size: 16
  • Eval Batch Size: 16
  • Optimizer: Adam
  • LR Scheduler Type: ReduceLROnPlateau with a patience of 5 epochs and a factor of 0.1
  • Freeze Encoder: No
  • Data Augmentation: No

Training results

Epoch Validation Loss Learning Rate
1 0.653289794921875 1e-05
2 0.609367311000824 1e-05
3 0.582149088382721 1e-05
4 0.5670394897460938 1e-05
5 0.554327666759491 1e-05
6 0.5497708320617676 1e-05
7 0.5440376400947571 1e-05
8 0.5385246276855469 1e-05
9 0.5357204079627991 1e-05
10 0.531782865524292 1e-05
11 0.5508688688278198 1e-05
12 0.5295144319534302 1e-05
13 0.5301058292388916 1e-05
14 0.5334520936012268 1e-05
15 0.5511576533317566 1e-05
16 0.5356723666191101 1e-05
17 0.5746968984603882 1e-05
18 0.5447458028793335 1e-05
19 0.5349059700965881 1.0000000000000002e-06
20 0.5344632863998413 1.0000000000000002e-06
21 0.5357407331466675 1.0000000000000002e-06
22 0.5339811444282532 1.0000000000000002e-06

Framework Versions

  • Transformers: 4.51.3
  • Pytorch: 2.6.0+cu124
  • Datasets: 3.6.0
  • Tokenizers: 0.21.1
Downloads last month
43
Safetensors
Model size
27.4M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support