SegForCoral-b2-2025_06_24_45583-bs16_refine is a fine-tuned version of nvidia/mit-b2.
Model description
SegForCoral-b2-2025_06_24_45583-bs16_refine is a model built on top of nvidia/mit-b2 model for underwater multilabel image classification.The classification head is a combination of linear, ReLU, batch normalization, and dropout layers.
The source code for training the model can be found in this Git repository.
- Developed by: lombardata, credits to César Leblanc and Victor Illien
Intended uses & limitations
You can use the raw model for classify diverse marine species, encompassing coral morphotypes classes taken from the Global Coral Reef Monitoring Network (GCRMN), habitats classes and seagrass species.
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- Number of Epochs: 22.0
- Learning Rate: 1e-05
- Train Batch Size: 16
- Eval Batch Size: 16
- Optimizer: Adam
- LR Scheduler Type: ReduceLROnPlateau with a patience of 5 epochs and a factor of 0.1
- Freeze Encoder: No
- Data Augmentation: No
Training results
Epoch | Validation Loss | Learning Rate |
---|---|---|
1 | 0.653289794921875 | 1e-05 |
2 | 0.609367311000824 | 1e-05 |
3 | 0.582149088382721 | 1e-05 |
4 | 0.5670394897460938 | 1e-05 |
5 | 0.554327666759491 | 1e-05 |
6 | 0.5497708320617676 | 1e-05 |
7 | 0.5440376400947571 | 1e-05 |
8 | 0.5385246276855469 | 1e-05 |
9 | 0.5357204079627991 | 1e-05 |
10 | 0.531782865524292 | 1e-05 |
11 | 0.5508688688278198 | 1e-05 |
12 | 0.5295144319534302 | 1e-05 |
13 | 0.5301058292388916 | 1e-05 |
14 | 0.5334520936012268 | 1e-05 |
15 | 0.5511576533317566 | 1e-05 |
16 | 0.5356723666191101 | 1e-05 |
17 | 0.5746968984603882 | 1e-05 |
18 | 0.5447458028793335 | 1e-05 |
19 | 0.5349059700965881 | 1.0000000000000002e-06 |
20 | 0.5344632863998413 | 1.0000000000000002e-06 |
21 | 0.5357407331466675 | 1.0000000000000002e-06 |
22 | 0.5339811444282532 | 1.0000000000000002e-06 |
Framework Versions
- Transformers: 4.51.3
- Pytorch: 2.6.0+cu124
- Datasets: 3.6.0
- Tokenizers: 0.21.1
- Downloads last month
- 43
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support