|  | --- | 
					
						
						|  | language: | 
					
						
						|  | - it | 
					
						
						|  | license: apache-2.0 | 
					
						
						|  | tags: | 
					
						
						|  | - italian | 
					
						
						|  | - sequence-to-sequence | 
					
						
						|  | - style-transfer | 
					
						
						|  | - formality-style-transfer | 
					
						
						|  | datasets: | 
					
						
						|  | - yahoo/xformal_it | 
					
						
						|  | widget: | 
					
						
						|  | - text: "maronn qualcuno mi spieg' CHECCOSA SUCCEDE?!?!" | 
					
						
						|  | - text: "wellaaaaaaa, ma fraté sei proprio troppo simpatiko, grazieeee!!" | 
					
						
						|  | - text: "nn capisco xke tt i ragazzi lo fanno" | 
					
						
						|  | - text: "IT5 è SUPERMEGA BRAVISSIMO a capire tt il vernacolo italiano!!!" | 
					
						
						|  | metrics: | 
					
						
						|  | - rouge | 
					
						
						|  | - bertscore | 
					
						
						|  | model-index: | 
					
						
						|  | - name: mt5-base-informal-to-formal | 
					
						
						|  | results: | 
					
						
						|  | - task: | 
					
						
						|  | type: formality-style-transfer | 
					
						
						|  | name: "Informal-to-formal Style Transfer" | 
					
						
						|  | dataset: | 
					
						
						|  | type: xformal_it | 
					
						
						|  | name: "XFORMAL (Italian Subset)" | 
					
						
						|  | metrics: | 
					
						
						|  | - type: rouge1 | 
					
						
						|  | value: 0.661 | 
					
						
						|  | name: "Avg. Test Rouge1" | 
					
						
						|  | - type: rouge2 | 
					
						
						|  | value: 0.471 | 
					
						
						|  | name: "Avg. Test Rouge2" | 
					
						
						|  | - type: rougeL | 
					
						
						|  | value: 0.642 | 
					
						
						|  | name: "Avg. Test RougeL" | 
					
						
						|  | - type: bertscore | 
					
						
						|  | value: 0.712 | 
					
						
						|  | name: "Avg. Test BERTScore" | 
					
						
						|  | args: | 
					
						
						|  | - model_type: "dbmdz/bert-base-italian-xxl-uncased" | 
					
						
						|  | - lang: "it" | 
					
						
						|  | - num_layers: 10 | 
					
						
						|  | - rescale_with_baseline: True | 
					
						
						|  | - baseline_path: "bertscore_baseline_ita.tsv" | 
					
						
						|  | co2_eq_emissions: | 
					
						
						|  | emissions: "40g" | 
					
						
						|  | source: "Google Cloud Platform Carbon Footprint" | 
					
						
						|  | training_type: "fine-tuning" | 
					
						
						|  | geographical_location: "Eemshaven, Netherlands, Europe" | 
					
						
						|  | hardware_used: "1 TPU v3-8 VM" | 
					
						
						|  | --- | 
					
						
						|  |  | 
					
						
						|  | # mT5 Base for Informal-to-formal Style Transfer 🧐 | 
					
						
						|  |  | 
					
						
						|  | This repository contains the checkpoint for the [mT5 Base](https://huggingface.co/google/mt5-base) model fine-tuned on Informal-to-formal style transfer on the Italian subset of the XFORMAL dataset as part of the experiments of the paper [IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation](https://arxiv.org/abs/2203.03759) by [Gabriele Sarti](https://gsarti.com) and [Malvina Nissim](https://malvinanissim.github.io). | 
					
						
						|  |  | 
					
						
						|  | A comprehensive overview of other released materials is provided in the [gsarti/it5](https://github.com/gsarti/it5) repository. Refer to the paper for additional details concerning the reported scores and the evaluation approach. | 
					
						
						|  |  | 
					
						
						|  | ## Using the model | 
					
						
						|  |  | 
					
						
						|  | Model checkpoints are available for usage in Tensorflow, Pytorch and JAX. They can be used directly with pipelines as: | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | from transformers import pipelines | 
					
						
						|  |  | 
					
						
						|  | i2f = pipeline("text2text-generation", model='it5/mt5-base-informal-to-formal') | 
					
						
						|  | i2f("nn capisco xke tt i ragazzi lo fanno") | 
					
						
						|  | >>> [{"generated_text": "non comprendo perché tutti i ragazzi agiscono così"}] | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | or loaded using autoclasses: | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | 
					
						
						|  |  | 
					
						
						|  | tokenizer = AutoTokenizer.from_pretrained("it5/mt5-base-informal-to-formal") | 
					
						
						|  | model = AutoModelForSeq2SeqLM.from_pretrained("it5/mt5-base-informal-to-formal") | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | If you use this model in your research, please cite our work as: | 
					
						
						|  |  | 
					
						
						|  | ```bibtex | 
					
						
						|  | @article{sarti-nissim-2022-it5, | 
					
						
						|  | title={{IT5}: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation}, | 
					
						
						|  | author={Sarti, Gabriele and Nissim, Malvina}, | 
					
						
						|  | journal={ArXiv preprint 2203.03759}, | 
					
						
						|  | url={https://arxiv.org/abs/2203.03759}, | 
					
						
						|  | year={2022}, | 
					
						
						|  | month={mar} | 
					
						
						|  | } | 
					
						
						|  | ``` |