roberta_reman

This model is a fine-tuned version of ibm/ColD-Fusion on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4272
  • F1: 0.7004
  • Roc Auc: 0.7862
  • Accuracy: 0.4330
  • Recall: 0.6831
  • Precision: 0.7185

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy Recall Precision
No log 1.0 113 0.4673 0.5668 0.6955 0.2990 0.4930 0.6667
No log 2.0 226 0.4187 0.6397 0.7403 0.3918 0.5563 0.7524
No log 3.0 339 0.4272 0.7004 0.7862 0.4330 0.6831 0.7185
No log 4.0 452 0.4191 0.6566 0.7539 0.3918 0.6127 0.7073
0.3529 5.0 565 0.4246 0.6788 0.7706 0.4124 0.6549 0.7045

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.1+rocm5.2
  • Datasets 2.8.0
  • Tokenizers 0.13.2
Downloads last month
12
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support