Aeon logo

AEON

AEON is portable, private, and capable of operating fully offline. It democratizes access to powerful, dynamic AI capabilities for a wider audience, regardless of their hardware.

The finetuned model was build to be like a "friend" for RAG personal files and work with insights.

Docs

Using Aeon

AEON uses Python with virtual environment and git lfs installed.

/$ git lfs install

# With plugins
/$ git clone --recurse-submodules https://github.com/gustavokuklinski/aeon.ai.git

# Without plugins
/$ git clone https://github.com/gustavokuklinski/aeon.ai.git
# Create .venv
/$ python -m venv .venv

# Start virtual env
/$ source .venv/bin/activate

# Run check and install dependencies
/$ python3 scripts/install.py 

# Start AEON
/$ python3 aeon.py

Using Docker

docker build -t aeon .

docker run -it --rm -p 7860:7860 -v "$(pwd):/app" aeon

SFT

Aeon chart Loss

Tested on

OS CPU GPU RAM
Ubuntu 24.04.2 LTS Intel i7-10510U Intel CometLake-U GT2 16GB
Windows 11 Home Edition Intel i7-10510U Intel CometLake-U GT2 8GB
Downloads last month
39
Safetensors
Model size
0.4B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for gustavokuklinski/aeon-360M

Finetuned
(73)
this model
Quantizations
3 models

Datasets used to train gustavokuklinski/aeon-360M

Space using gustavokuklinski/aeon-360M 1

Collection including gustavokuklinski/aeon-360M