gyr66
Update model
3f3c3fa
metadata
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: Ernie-3.0-base-chinese-finetuned-ner
    results: []

Ernie-3.0-base-chinese-finetuned-ner

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4856
  • Precision: 0.6511
  • Recall: 0.7535
  • F1: 0.6986
  • Accuracy: 0.9053

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0667 1.0 126 0.4589 0.6387 0.7553 0.6921 0.9012
0.0594 2.0 252 0.4656 0.6444 0.7515 0.6939 0.9057
0.053 3.0 378 0.4524 0.6444 0.7477 0.6922 0.9064
0.0473 4.0 504 0.4955 0.6298 0.7568 0.6875 0.9012
0.0461 5.0 630 0.4892 0.6512 0.7505 0.6973 0.9077
0.0438 6.0 756 0.5021 0.6450 0.7528 0.6947 0.9054
0.0428 7.0 882 0.5048 0.6471 0.7576 0.6980 0.9050
0.0583 8.0 1008 0.4990 0.6401 0.7533 0.6921 0.9038
0.0582 9.0 1134 0.4833 0.6457 0.7513 0.6945 0.9064
0.0635 10.0 1260 0.4856 0.6511 0.7535 0.6986 0.9053

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0