metadata
language:
- en
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:80
- loss:CoSENTLoss
base_model: abdeljalilELmajjodi/model
widget:
- source_sentence: A man, woman, and child enjoying themselves on a beach.
sentences:
- A family of three is at the beach.
- There are two woman in this picture.
- There are children present
- source_sentence: >-
Woman in white in foreground and a man slightly behind walking with a sign
for John's Pizza and Gyro in the background.
sentences:
- A married couple is walking next to each other.
- A man in a restaurant is waiting for his meal to arrive.
- The woman is waiting for a friend.
- source_sentence: >-
A woman is walking across the street eating a banana, while a man is
following with his briefcase.
sentences:
- Nobody has food.
- The woman is wearing black.
- A person eating.
- source_sentence: People waiting to get on a train or just getting off.
sentences:
- There are people just getting on a train
- There are people waiting on a train.
- Two women hug each other.
- source_sentence: >-
Woman in white in foreground and a man slightly behind walking with a sign
for John's Pizza and Gyro in the background.
sentences:
- Two adults walk across a street.
- The woman is nake.
- A woman ordering pizza.
datasets:
- sentence-transformers/all-nli
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: SentenceTransformer based on abdeljalilELmajjodi/model
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: pair score evaluator dev
type: pair-score-evaluator-dev
metrics:
- type: pearson_cosine
value: -0.21785154941974993
name: Pearson Cosine
- type: spearman_cosine
value: 0.04296719836868375
name: Spearman Cosine
SentenceTransformer based on abdeljalilELmajjodi/model
This is a sentence-transformers model finetuned from abdeljalilELmajjodi/model on the all-nli dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: abdeljalilELmajjodi/model
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
"Woman in white in foreground and a man slightly behind walking with a sign for John's Pizza and Gyro in the background.",
'A woman ordering pizza.',
'Two adults walk across a street.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
pair-score-evaluator-dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | -0.2179 |
spearman_cosine | 0.043 |
Training Details
Training Dataset
all-nli
- Dataset: all-nli at d482672
- Size: 80 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 80 samples:
sentence1 sentence2 score type string string float details - min: 10 tokens
- mean: 26.59 tokens
- max: 52 tokens
- min: 5 tokens
- mean: 12.24 tokens
- max: 29 tokens
- min: 0.0
- mean: 0.47
- max: 1.0
- Samples:
sentence1 sentence2 score High fashion ladies wait outside a tram beside a crowd of people in the city.
The women do not care what clothes they wear.
0.0
Two adults, one female in white, with shades and one male, gray clothes, walking across a street, away from a eatery with a blurred image of a dark colored red shirted person in the foreground.
Two adults swimming in water
0.0
A couple playing with a little boy on the beach.
A couple are playing with a young child outside.
1.0
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Evaluation Dataset
all-nli
- Dataset: all-nli at d482672
- Size: 20 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 20 samples:
sentence1 sentence2 score type string string float details - min: 10 tokens
- mean: 22.3 tokens
- max: 52 tokens
- min: 6 tokens
- mean: 10.95 tokens
- max: 25 tokens
- min: 0.0
- mean: 0.62
- max: 1.0
- Samples:
sentence1 sentence2 score Woman in white in foreground and a man slightly behind walking with a sign for John's Pizza and Gyro in the background.
The woman is wearing black.
0.0
Children smiling and waving at camera
There are children present
1.0
A woman in a green jacket and hood over her head looking towards a valley.
The woman is nake.
0.0
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsnum_train_epochs
: 1warmup_ratio
: 0.05fp16
: Truefp16_full_eval
: Trueload_best_model_at_end
: Truepush_to_hub
: Truegradient_checkpointing
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.05warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Truetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Trueresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Truegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | pair-score-evaluator-dev_spearman_cosine |
---|---|---|---|---|
0.1 | 1 | 3.0431 | - | - |
0.5 | 5 | 3.1613 | - | - |
1.0 | 10 | 5.9411 | 5.8802 | 0.043 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.12
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}