result_model / README.md
haf1g's picture
haf1g/result_model
0c95555 verified
metadata
language:
  - en
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:80
  - loss:CoSENTLoss
base_model: abdeljalilELmajjodi/model
widget:
  - source_sentence: A man, woman, and child enjoying themselves on a beach.
    sentences:
      - A family of three is at the beach.
      - There are two woman in this picture.
      - There are children present
  - source_sentence: >-
      Woman in white in foreground and a man slightly behind walking with a sign
      for John's Pizza and Gyro in the background.
    sentences:
      - A married couple is walking next to each other.
      - A man in a restaurant is waiting for his meal to arrive.
      - The woman is waiting for a friend.
  - source_sentence: >-
      A woman is walking across the street eating a banana, while a man is
      following with his briefcase.
    sentences:
      - Nobody has food.
      - The woman is wearing black.
      - A person eating.
  - source_sentence: People waiting to get on a train or just getting off.
    sentences:
      - There are people just getting on a train
      - There are people waiting on a train.
      - Two women hug each other.
  - source_sentence: >-
      Woman in white in foreground and a man slightly behind walking with a sign
      for John's Pizza and Gyro in the background.
    sentences:
      - Two adults walk across a street.
      - The woman is nake.
      - A woman ordering pizza.
datasets:
  - sentence-transformers/all-nli
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - pearson_cosine
  - spearman_cosine
model-index:
  - name: SentenceTransformer based on abdeljalilELmajjodi/model
    results:
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: pair score evaluator dev
          type: pair-score-evaluator-dev
        metrics:
          - type: pearson_cosine
            value: -0.21785154941974993
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.04296719836868375
            name: Spearman Cosine

SentenceTransformer based on abdeljalilELmajjodi/model

This is a sentence-transformers model finetuned from abdeljalilELmajjodi/model on the all-nli dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: abdeljalilELmajjodi/model
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 1024 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
  • Language: en

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    "Woman in white in foreground and a man slightly behind walking with a sign for John's Pizza and Gyro in the background.",
    'A woman ordering pizza.',
    'Two adults walk across a street.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine -0.2179
spearman_cosine 0.043

Training Details

Training Dataset

all-nli

  • Dataset: all-nli at d482672
  • Size: 80 training samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 80 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 10 tokens
    • mean: 26.59 tokens
    • max: 52 tokens
    • min: 5 tokens
    • mean: 12.24 tokens
    • max: 29 tokens
    • min: 0.0
    • mean: 0.47
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    High fashion ladies wait outside a tram beside a crowd of people in the city. The women do not care what clothes they wear. 0.0
    Two adults, one female in white, with shades and one male, gray clothes, walking across a street, away from a eatery with a blurred image of a dark colored red shirted person in the foreground. Two adults swimming in water 0.0
    A couple playing with a little boy on the beach. A couple are playing with a young child outside. 1.0
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    

Evaluation Dataset

all-nli

  • Dataset: all-nli at d482672
  • Size: 20 evaluation samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 20 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 10 tokens
    • mean: 22.3 tokens
    • max: 52 tokens
    • min: 6 tokens
    • mean: 10.95 tokens
    • max: 25 tokens
    • min: 0.0
    • mean: 0.62
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    Woman in white in foreground and a man slightly behind walking with a sign for John's Pizza and Gyro in the background. The woman is wearing black. 0.0
    Children smiling and waving at camera There are children present 1.0
    A woman in a green jacket and hood over her head looking towards a valley. The woman is nake. 0.0
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • num_train_epochs: 1
  • warmup_ratio: 0.05
  • fp16: True
  • fp16_full_eval: True
  • load_best_model_at_end: True
  • push_to_hub: True
  • gradient_checkpointing: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 8
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.05
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: True
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • tp_size: 0
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: True
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: True
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss pair-score-evaluator-dev_spearman_cosine
0.1 1 3.0431 - -
0.5 5 3.1613 - -
1.0 10 5.9411 5.8802 0.043
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.11.12
  • Sentence Transformers: 4.1.0
  • Transformers: 4.51.3
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.6.0
  • Datasets: 3.6.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

CoSENTLoss

@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}