haipradana's picture
Update README.md
6efe33f verified
metadata
license: mit
datasets:
  - haipradana/indonesian-twitter-hate-speech-cleaned
language:
  - id
tags:
  - bert
  - RoBERTa
  - tweet
  - hate
  - twitter
base_model:
  - cardiffnlp/twitter-roberta-base-sentiment-latest

Fine-tuned RoBERTa pre-trained model to classify Indonesian hate tweet(s)

Just check GitHub for full-code and Google Colab: https://github.com/haipradana/RoBERTa-Indonesian-Hate-Tweet-Classification/tree/main

This project fine-tunes a RoBERTa model from cardiffnlp/twitter-roberta-base-sentiment-latest to classify Indonesian tweets as either neutral or hate speech.

How to use this model?

from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch

# Load model
tokenizer = AutoTokenizer.from_pretrained('./model')
model = AutoModelForSequenceClassification.from_pretrained('./model')

# Predict
def predict(text):
    inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=511)
    with torch.no_grad():
        outputs = model(**inputs)
    prediction = torch.argmax(outputs.logits, dim=1).item()
    return 'hate' if prediction == 1 else 'neutral'

# Example
result = predict("Paru-parumu terbuat dari batu ya? udah sakit gini masih aja merokok!")
print(result)  # Output: hate

Or just using the script in the GitHub Repos

cd scripts
python predict.py

Performance Metrics

Accuracy:  82.01%
Precision: 82.68%
Recall:    81.72%
F1-Score:  82.19%