See axolotl config
axolotl version: 0.8.0
## model
base_model: hardlyworking/Broth-12B
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
## upload
hub_model_id: hardlyworking/Noodles-12B
hub_strategy: "all_checkpoints"
push_dataset_to_hub:
hf_use_auth_token: true
## qlora COPE
load_in_8bit: false
load_in_4bit: false
strict: false
## data
datasets:
- path: PocketDoc/Dans-MemoryCore-CoreCurriculum-Small
type: dan-chat-advanced
- path: NewEden/Kalo-Opus-Instruct-22k-Refusal-Murdered
type: dan-chat-advanced
- path: Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned
type: dan-chat-advanced
- path: Nitral-AI/Reasoning-1shot_ShareGPT
type: dan-chat-advanced
- path: Nitral-AI/GU_Instruct-ShareGPT
type: dan-chat-advanced
- path: Nitral-AI/Medical_Instruct-ShareGPT
type: dan-chat-advanced
- path: AquaV/Resistance-Sharegpt
type: dan-chat-advanced
- path: AquaV/US-Army-Survival-Sharegpt
type: dan-chat-advanced
- path: Gryphe/Sonnet3.5-SlimOrcaDedupCleaned
type: dan-chat-advanced
shuffle_merged_datasets: true
dataset_prepared_path: dataset_prepared
val_set_size: 0.001
output_dir: outputs/out
## LIGER & CCE
plugins:
- axolotl.integrations.liger.LigerPlugin
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
liger_rope: true
liger_rms_norm: true
liger_layer_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: false
cut_cross_entropy: false
## CTX settings
sequence_len: 8192
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
## Lora
adapter: lora
lora_model_dir:
lora_r: 128
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
peft_use_rslora: true
lora_modules_to_save:
- embed_tokens
- lm_head
## WandB
wandb_project: JoeyBoy
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
## evals
evals_per_epoch: 8
eval_table_size:
eval_max_new_tokens: 128
## hoe params
gradient_accumulation_steps: 2
micro_batch_size: 4
num_epochs: 2
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 2e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:
warmup_steps: 40
saves_per_epoch: 2
debug:
## for ademiamix
deepspeed: ./deepspeed_configs/zero3_bf16.json
## for adamw
#deepspeed: ./deepspeed_configs/zero3_bf16.json
weight_decay: 0.01
fsdp:
fsdp_config:
special_tokens:
pad_token: <pad>
Noodles-12B
This model is a fine-tuned version of hardlyworking/Broth-12B on the PocketDoc/Dans-MemoryCore-CoreCurriculum-Small, the NewEden/Kalo-Opus-Instruct-22k-Refusal-Murdered, the Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned, the Nitral-AI/Reasoning-1shot_ShareGPT, the Nitral-AI/GU_Instruct-ShareGPT, the Nitral-AI/Medical_Instruct-ShareGPT, the AquaV/Resistance-Sharegpt, the AquaV/US-Army-Survival-Sharegpt and the Gryphe/Sonnet3.5-SlimOrcaDedupCleaned datasets. It achieves the following results on the evaluation set:
- Loss: 0.7255
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- total_eval_batch_size: 16
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 40
- num_epochs: 2.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.0128 | 0.0013 | 1 | 1.2742 |
0.8925 | 0.1256 | 94 | 0.8576 |
0.8065 | 0.2512 | 188 | 0.8102 |
0.782 | 0.3768 | 282 | 0.7881 |
0.8135 | 0.5023 | 376 | 0.7755 |
0.7877 | 0.6279 | 470 | 0.7601 |
0.7955 | 0.7535 | 564 | 0.7516 |
0.758 | 0.8791 | 658 | 0.7444 |
0.7362 | 1.0040 | 752 | 0.7402 |
0.7053 | 1.1296 | 846 | 0.7354 |
0.6439 | 1.2552 | 940 | 0.7326 |
0.7445 | 1.3808 | 1034 | 0.7298 |
0.5843 | 1.5063 | 1128 | 0.7288 |
0.6571 | 1.6319 | 1222 | 0.7268 |
0.652 | 1.7575 | 1316 | 0.7257 |
0.6872 | 1.8831 | 1410 | 0.7255 |
Framework versions
- PEFT 0.15.1
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 12
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support