FinBERT Model Card
Model Details
- Model Name: FinBERT
- Model Type: BERT (bert-base-uncased)
- Task: Sentiment Analysis (Stock Market)
- Number of Labels: 3 (positive, negative, neutral)
- Intended Use: Predict sentiment of financial news and social media posts related to the Indian stock market.
How to Use
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("harixn/IN-finbert")
model = AutoModelForSequenceClassification.from_pretrained("harixn/IN-finbert")
text = "The stock price of XYZ surged today."
inputs = tokenizer(text, return_tensors="pt")
outputs = model(**inputs)
# Get probabilities
probs = torch.softmax(outputs.logits, dim=1)
print("Probabilities:", probs)
# Get predicted class
pred_class = torch.argmax(probs, dim=1).item()
classes = ["negative", "neutral", "positive"]
print("Predicted class:", classes[pred_class])
Training Data
- Fine-tuned on labeled Indian stock market news and social media datasets.
- Labels: positive, negative, neutral.
Limitations and Risks
- Trained specifically for Indian stock market context.
- May not generalize well to other financial markets.
- Predictions should not be used as financial advice.
Evaluation
- Evaluated on held-out validation set of Indian stock market texts.
- Metrics: Accuracy, F1-score per class.
Model Files
pytorch_model.bin
: Trained model weightsconfig.json
: Model configurationvocab.txt
,tokenizer_config.json
,special_tokens_map.json
,tokenizer.json
: Tokenizer files
Citation
If you use this model, please cite it as:
FinBERT: Sentiment Analysis Model for Indian Stock Market, harixn, 2025
- Downloads last month
- 34
Model tree for harixn/IN-finbert
Base model
google-bert/bert-base-uncased