my_3rd_model_token_classification-distilbert
This model is a fine-tuned version of distilbert/distilbert-base-uncased on the wnut_17 dataset. It achieves the following results on the evaluation set:
- Loss: 0.2733
- Precision: 0.4699
- Recall: 0.2892
- F1: 0.3580
- Accuracy: 0.9400
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 213 | 0.2933 | 0.3989 | 0.1956 | 0.2624 | 0.9355 |
No log | 2.0 | 426 | 0.2733 | 0.4699 | 0.2892 | 0.3580 | 0.9400 |
Framework versions
- Transformers 4.52.2
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 19
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for harshc/my_3rd_model_token_classification-distilbert
Base model
distilbert/distilbert-base-uncasedDataset used to train harshc/my_3rd_model_token_classification-distilbert
Evaluation results
- Precision on wnut_17test set self-reported0.470
- Recall on wnut_17test set self-reported0.289
- F1 on wnut_17test set self-reported0.358
- Accuracy on wnut_17test set self-reported0.940