overall_binary

This model is a fine-tuned version of answerdotai/ModernBERT-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8529
  • Classification Report: {'0': {'precision': 0.6190476190476191, 'recall': 0.5909090909090909, 'f1-score': 0.6046511627906976, 'support': 22.0}, '1': {'precision': 0.7272727272727273, 'recall': 0.75, 'f1-score': 0.7384615384615385, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6731601731601732, 'recall': 0.6704545454545454, 'f1-score': 0.6715563506261181, 'support': 54.0}, 'weighted avg': {'precision': 0.6831810165143499, 'recall': 0.6851851851851852, 'f1-score': 0.6839462002252701, 'support': 54.0}}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 6
  • total_train_batch_size: 96
  • total_eval_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 200

Training results

Training Loss Epoch Step Validation Loss Classification Report
No log 1.0 2 0.7209 {'0': {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 22.0}, '1': {'precision': 0.5925925925925926, 'recall': 1.0, 'f1-score': 0.7441860465116279, 'support': 32.0}, 'accuracy': 0.5925925925925926, 'macro avg': {'precision': 0.2962962962962963, 'recall': 0.5, 'f1-score': 0.37209302325581395, 'support': 54.0}, 'weighted avg': {'precision': 0.3511659807956104, 'recall': 0.5925925925925926, 'f1-score': 0.4409991386735573, 'support': 54.0}}
No log 2.0 4 0.6979 {'0': {'precision': 0.37037037037037035, 'recall': 0.45454545454545453, 'f1-score': 0.40816326530612246, 'support': 22.0}, '1': {'precision': 0.5555555555555556, 'recall': 0.46875, 'f1-score': 0.5084745762711864, 'support': 32.0}, 'accuracy': 0.46296296296296297, 'macro avg': {'precision': 0.46296296296296297, 'recall': 0.4616477272727273, 'f1-score': 0.45831892078865444, 'support': 54.0}, 'weighted avg': {'precision': 0.4801097393689986, 'recall': 0.46296296296296297, 'f1-score': 0.4676070051372715, 'support': 54.0}}
No log 3.0 6 0.6671 {'0': {'precision': 0.5833333333333334, 'recall': 0.3181818181818182, 'f1-score': 0.4117647058823529, 'support': 22.0}, '1': {'precision': 0.6428571428571429, 'recall': 0.84375, 'f1-score': 0.7297297297297297, 'support': 32.0}, 'accuracy': 0.6296296296296297, 'macro avg': {'precision': 0.6130952380952381, 'recall': 0.5809659090909091, 'f1-score': 0.5707472178060413, 'support': 54.0}, 'weighted avg': {'precision': 0.6186067019400353, 'recall': 0.6296296296296297, 'f1-score': 0.6001884237178354, 'support': 54.0}}
No log 4.0 8 0.6354 {'0': {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 22.0}, '1': {'precision': 0.5925925925925926, 'recall': 1.0, 'f1-score': 0.7441860465116279, 'support': 32.0}, 'accuracy': 0.5925925925925926, 'macro avg': {'precision': 0.2962962962962963, 'recall': 0.5, 'f1-score': 0.37209302325581395, 'support': 54.0}, 'weighted avg': {'precision': 0.3511659807956104, 'recall': 0.5925925925925926, 'f1-score': 0.4409991386735573, 'support': 54.0}}
No log 5.0 10 0.6677 {'0': {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 22.0}, '1': {'precision': 0.5925925925925926, 'recall': 1.0, 'f1-score': 0.7441860465116279, 'support': 32.0}, 'accuracy': 0.5925925925925926, 'macro avg': {'precision': 0.2962962962962963, 'recall': 0.5, 'f1-score': 0.37209302325581395, 'support': 54.0}, 'weighted avg': {'precision': 0.3511659807956104, 'recall': 0.5925925925925926, 'f1-score': 0.4409991386735573, 'support': 54.0}}
No log 6.0 12 0.6094 {'0': {'precision': 0.5757575757575758, 'recall': 0.8636363636363636, 'f1-score': 0.6909090909090909, 'support': 22.0}, '1': {'precision': 0.8571428571428571, 'recall': 0.5625, 'f1-score': 0.6792452830188679, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7164502164502164, 'recall': 0.7130681818181819, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.7425044091710759, 'recall': 0.6851851851851852, 'f1-score': 0.6839972047519217, 'support': 54.0}}
No log 7.0 14 0.5932 {'0': {'precision': 0.5882352941176471, 'recall': 0.9090909090909091, 'f1-score': 0.7142857142857143, 'support': 22.0}, '1': {'precision': 0.9, 'recall': 0.5625, 'f1-score': 0.6923076923076923, 'support': 32.0}, 'accuracy': 0.7037037037037037, 'macro avg': {'precision': 0.7441176470588236, 'recall': 0.7357954545454546, 'f1-score': 0.7032967032967032, 'support': 54.0}, 'weighted avg': {'precision': 0.7729847494553377, 'recall': 0.7037037037037037, 'f1-score': 0.7012617012617013, 'support': 54.0}}
No log 8.0 16 0.5522 {'0': {'precision': 0.6, 'recall': 0.5454545454545454, 'f1-score': 0.5714285714285714, 'support': 22.0}, '1': {'precision': 0.7058823529411765, 'recall': 0.75, 'f1-score': 0.7272727272727273, 'support': 32.0}, 'accuracy': 0.6666666666666666, 'macro avg': {'precision': 0.6529411764705882, 'recall': 0.6477272727272727, 'f1-score': 0.6493506493506493, 'support': 54.0}, 'weighted avg': {'precision': 0.6627450980392157, 'recall': 0.6666666666666666, 'f1-score': 0.6637806637806638, 'support': 54.0}}
No log 9.0 18 0.5464 {'0': {'precision': 0.59375, 'recall': 0.8636363636363636, 'f1-score': 0.7037037037037037, 'support': 22.0}, '1': {'precision': 0.8636363636363636, 'recall': 0.59375, 'f1-score': 0.7037037037037037, 'support': 32.0}, 'accuracy': 0.7037037037037037, 'macro avg': {'precision': 0.7286931818181819, 'recall': 0.7286931818181819, 'f1-score': 0.7037037037037037, 'support': 54.0}, 'weighted avg': {'precision': 0.75368265993266, 'recall': 0.7037037037037037, 'f1-score': 0.7037037037037037, 'support': 54.0}}
No log 10.0 20 0.5100 {'0': {'precision': 0.6818181818181818, 'recall': 0.6818181818181818, 'f1-score': 0.6818181818181818, 'support': 22.0}, '1': {'precision': 0.78125, 'recall': 0.78125, 'f1-score': 0.78125, 'support': 32.0}, 'accuracy': 0.7407407407407407, 'macro avg': {'precision': 0.7315340909090908, 'recall': 0.7315340909090908, 'f1-score': 0.7315340909090908, 'support': 54.0}, 'weighted avg': {'precision': 0.7407407407407407, 'recall': 0.7407407407407407, 'f1-score': 0.7407407407407407, 'support': 54.0}}
No log 11.0 22 0.6511 {'0': {'precision': 0.5526315789473685, 'recall': 0.9545454545454546, 'f1-score': 0.7, 'support': 22.0}, '1': {'precision': 0.9375, 'recall': 0.46875, 'f1-score': 0.625, 'support': 32.0}, 'accuracy': 0.6666666666666666, 'macro avg': {'precision': 0.7450657894736843, 'recall': 0.7116477272727273, 'f1-score': 0.6625, 'support': 54.0}, 'weighted avg': {'precision': 0.780701754385965, 'recall': 0.6666666666666666, 'f1-score': 0.6555555555555556, 'support': 54.0}}
No log 12.0 24 0.5125 {'0': {'precision': 0.5909090909090909, 'recall': 0.5909090909090909, 'f1-score': 0.5909090909090909, 'support': 22.0}, '1': {'precision': 0.71875, 'recall': 0.71875, 'f1-score': 0.71875, 'support': 32.0}, 'accuracy': 0.6666666666666666, 'macro avg': {'precision': 0.6548295454545454, 'recall': 0.6548295454545454, 'f1-score': 0.6548295454545454, 'support': 54.0}, 'weighted avg': {'precision': 0.6666666666666666, 'recall': 0.6666666666666666, 'f1-score': 0.6666666666666666, 'support': 54.0}}
No log 13.0 26 0.8356 {'0': {'precision': 0.4883720930232558, 'recall': 0.9545454545454546, 'f1-score': 0.6461538461538462, 'support': 22.0}, '1': {'precision': 0.9090909090909091, 'recall': 0.3125, 'f1-score': 0.46511627906976744, 'support': 32.0}, 'accuracy': 0.5740740740740741, 'macro avg': {'precision': 0.6987315010570825, 'recall': 0.6335227272727273, 'f1-score': 0.5556350626118068, 'support': 54.0}, 'weighted avg': {'precision': 0.7376869469892725, 'recall': 0.5740740740740741, 'f1-score': 0.5388723249188365, 'support': 54.0}}
No log 14.0 28 0.5437 {'0': {'precision': 0.6, 'recall': 0.8181818181818182, 'f1-score': 0.6923076923076923, 'support': 22.0}, '1': {'precision': 0.8333333333333334, 'recall': 0.625, 'f1-score': 0.7142857142857143, 'support': 32.0}, 'accuracy': 0.7037037037037037, 'macro avg': {'precision': 0.7166666666666667, 'recall': 0.7215909090909092, 'f1-score': 0.7032967032967032, 'support': 54.0}, 'weighted avg': {'precision': 0.7382716049382716, 'recall': 0.7037037037037037, 'f1-score': 0.7053317053317053, 'support': 54.0}}
No log 15.0 30 1.0100 {'0': {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 22.0}, '1': {'precision': 0.5925925925925926, 'recall': 1.0, 'f1-score': 0.7441860465116279, 'support': 32.0}, 'accuracy': 0.5925925925925926, 'macro avg': {'precision': 0.2962962962962963, 'recall': 0.5, 'f1-score': 0.37209302325581395, 'support': 54.0}, 'weighted avg': {'precision': 0.3511659807956104, 'recall': 0.5925925925925926, 'f1-score': 0.4409991386735573, 'support': 54.0}}
No log 16.0 32 0.5221 {'0': {'precision': 0.6538461538461539, 'recall': 0.7727272727272727, 'f1-score': 0.7083333333333334, 'support': 22.0}, '1': {'precision': 0.8214285714285714, 'recall': 0.71875, 'f1-score': 0.7666666666666667, 'support': 32.0}, 'accuracy': 0.7407407407407407, 'macro avg': {'precision': 0.7376373626373627, 'recall': 0.7457386363636364, 'f1-score': 0.7375, 'support': 54.0}, 'weighted avg': {'precision': 0.7531542531542532, 'recall': 0.7407407407407407, 'f1-score': 0.7429012345679012, 'support': 54.0}}
No log 17.0 34 0.9995 {'0': {'precision': 0.46808510638297873, 'recall': 1.0, 'f1-score': 0.6376811594202898, 'support': 22.0}, '1': {'precision': 1.0, 'recall': 0.21875, 'f1-score': 0.358974358974359, 'support': 32.0}, 'accuracy': 0.5370370370370371, 'macro avg': {'precision': 0.7340425531914894, 'recall': 0.609375, 'f1-score': 0.4983277591973244, 'support': 54.0}, 'weighted avg': {'precision': 0.7832939322301024, 'recall': 0.5370370370370371, 'f1-score': 0.4725215739708493, 'support': 54.0}}
No log 18.0 36 0.5530 {'0': {'precision': 0.625, 'recall': 0.6818181818181818, 'f1-score': 0.6521739130434783, 'support': 22.0}, '1': {'precision': 0.7666666666666667, 'recall': 0.71875, 'f1-score': 0.7419354838709677, 'support': 32.0}, 'accuracy': 0.7037037037037037, 'macro avg': {'precision': 0.6958333333333333, 'recall': 0.7002840909090908, 'f1-score': 0.697054698457223, 'support': 54.0}, 'weighted avg': {'precision': 0.7089506172839506, 'recall': 0.7037037037037037, 'f1-score': 0.705365955015324, 'support': 54.0}}
No log 19.0 38 0.9546 {'0': {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 22.0}, '1': {'precision': 0.5925925925925926, 'recall': 1.0, 'f1-score': 0.7441860465116279, 'support': 32.0}, 'accuracy': 0.5925925925925926, 'macro avg': {'precision': 0.2962962962962963, 'recall': 0.5, 'f1-score': 0.37209302325581395, 'support': 54.0}, 'weighted avg': {'precision': 0.3511659807956104, 'recall': 0.5925925925925926, 'f1-score': 0.4409991386735573, 'support': 54.0}}
No log 20.0 40 0.6552 {'0': {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 22.0}, '1': {'precision': 0.5925925925925926, 'recall': 1.0, 'f1-score': 0.7441860465116279, 'support': 32.0}, 'accuracy': 0.5925925925925926, 'macro avg': {'precision': 0.2962962962962963, 'recall': 0.5, 'f1-score': 0.37209302325581395, 'support': 54.0}, 'weighted avg': {'precision': 0.3511659807956104, 'recall': 0.5925925925925926, 'f1-score': 0.4409991386735573, 'support': 54.0}}
No log 21.0 42 0.8746 {'0': {'precision': 0.4230769230769231, 'recall': 1.0, 'f1-score': 0.5945945945945946, 'support': 22.0}, '1': {'precision': 1.0, 'recall': 0.0625, 'f1-score': 0.11764705882352941, 'support': 32.0}, 'accuracy': 0.4444444444444444, 'macro avg': {'precision': 0.7115384615384616, 'recall': 0.53125, 'f1-score': 0.35612082670906203, 'support': 54.0}, 'weighted avg': {'precision': 0.7649572649572649, 'recall': 0.4444444444444444, 'f1-score': 0.3119590178413708, 'support': 54.0}}
No log 22.0 44 1.0083 {'0': {'precision': 0.41509433962264153, 'recall': 1.0, 'f1-score': 0.5866666666666667, 'support': 22.0}, '1': {'precision': 1.0, 'recall': 0.03125, 'f1-score': 0.06060606060606061, 'support': 32.0}, 'accuracy': 0.42592592592592593, 'macro avg': {'precision': 0.7075471698113207, 'recall': 0.515625, 'f1-score': 0.3236363636363636, 'support': 54.0}, 'weighted avg': {'precision': 0.7617051013277428, 'recall': 0.42592592592592593, 'f1-score': 0.2749270482603816, 'support': 54.0}}
No log 23.0 46 0.5660 {'0': {'precision': 0.6, 'recall': 0.5454545454545454, 'f1-score': 0.5714285714285714, 'support': 22.0}, '1': {'precision': 0.7058823529411765, 'recall': 0.75, 'f1-score': 0.7272727272727273, 'support': 32.0}, 'accuracy': 0.6666666666666666, 'macro avg': {'precision': 0.6529411764705882, 'recall': 0.6477272727272727, 'f1-score': 0.6493506493506493, 'support': 54.0}, 'weighted avg': {'precision': 0.6627450980392157, 'recall': 0.6666666666666666, 'f1-score': 0.6637806637806638, 'support': 54.0}}
No log 24.0 48 0.6164 {'0': {'precision': 1.0, 'recall': 0.09090909090909091, 'f1-score': 0.16666666666666666, 'support': 22.0}, '1': {'precision': 0.6153846153846154, 'recall': 1.0, 'f1-score': 0.7619047619047619, 'support': 32.0}, 'accuracy': 0.6296296296296297, 'macro avg': {'precision': 0.8076923076923077, 'recall': 0.5454545454545454, 'f1-score': 0.46428571428571425, 'support': 54.0}, 'weighted avg': {'precision': 0.7720797720797721, 'recall': 0.6296296296296297, 'f1-score': 0.519400352733686, 'support': 54.0}}
No log 25.0 50 0.6519 {'0': {'precision': 0.4883720930232558, 'recall': 0.9545454545454546, 'f1-score': 0.6461538461538462, 'support': 22.0}, '1': {'precision': 0.9090909090909091, 'recall': 0.3125, 'f1-score': 0.46511627906976744, 'support': 32.0}, 'accuracy': 0.5740740740740741, 'macro avg': {'precision': 0.6987315010570825, 'recall': 0.6335227272727273, 'f1-score': 0.5556350626118068, 'support': 54.0}, 'weighted avg': {'precision': 0.7376869469892725, 'recall': 0.5740740740740741, 'f1-score': 0.5388723249188365, 'support': 54.0}}
No log 26.0 52 0.6560 {'0': {'precision': 0.5, 'recall': 0.9545454545454546, 'f1-score': 0.65625, 'support': 22.0}, '1': {'precision': 0.9166666666666666, 'recall': 0.34375, 'f1-score': 0.5, 'support': 32.0}, 'accuracy': 0.5925925925925926, 'macro avg': {'precision': 0.7083333333333333, 'recall': 0.6491477272727273, 'f1-score': 0.578125, 'support': 54.0}, 'weighted avg': {'precision': 0.7469135802469135, 'recall': 0.5925925925925926, 'f1-score': 0.5636574074074074, 'support': 54.0}}
No log 27.0 54 0.5364 {'0': {'precision': 0.6470588235294118, 'recall': 0.5, 'f1-score': 0.5641025641025641, 'support': 22.0}, '1': {'precision': 0.7027027027027027, 'recall': 0.8125, 'f1-score': 0.7536231884057971, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6748807631160573, 'recall': 0.65625, 'f1-score': 0.6588628762541806, 'support': 54.0}, 'weighted avg': {'precision': 0.6800329741506212, 'recall': 0.6851851851851852, 'f1-score': 0.6764110822081837, 'support': 54.0}}
No log 28.0 56 0.5465 {'0': {'precision': 0.6129032258064516, 'recall': 0.8636363636363636, 'f1-score': 0.7169811320754716, 'support': 22.0}, '1': {'precision': 0.8695652173913043, 'recall': 0.625, 'f1-score': 0.7272727272727273, 'support': 32.0}, 'accuracy': 0.7222222222222222, 'macro avg': {'precision': 0.741234221598878, 'recall': 0.7443181818181819, 'f1-score': 0.7221269296740995, 'support': 54.0}, 'weighted avg': {'precision': 0.7649992208196976, 'recall': 0.7222222222222222, 'f1-score': 0.7230798551553269, 'support': 54.0}}
No log 29.0 58 0.5741 {'0': {'precision': 0.5882352941176471, 'recall': 0.9090909090909091, 'f1-score': 0.7142857142857143, 'support': 22.0}, '1': {'precision': 0.9, 'recall': 0.5625, 'f1-score': 0.6923076923076923, 'support': 32.0}, 'accuracy': 0.7037037037037037, 'macro avg': {'precision': 0.7441176470588236, 'recall': 0.7357954545454546, 'f1-score': 0.7032967032967032, 'support': 54.0}, 'weighted avg': {'precision': 0.7729847494553377, 'recall': 0.7037037037037037, 'f1-score': 0.7012617012617013, 'support': 54.0}}
No log 30.0 60 0.5584 {'0': {'precision': 0.7692307692307693, 'recall': 0.45454545454545453, 'f1-score': 0.5714285714285714, 'support': 22.0}, '1': {'precision': 0.7073170731707317, 'recall': 0.90625, 'f1-score': 0.7945205479452054, 'support': 32.0}, 'accuracy': 0.7222222222222222, 'macro avg': {'precision': 0.7382739212007505, 'recall': 0.6803977272727273, 'f1-score': 0.6829745596868884, 'support': 54.0}, 'weighted avg': {'precision': 0.7325411715655619, 'recall': 0.7222222222222222, 'f1-score': 0.7036312241791693, 'support': 54.0}}
No log 31.0 62 0.6725 {'0': {'precision': 0.5121951219512195, 'recall': 0.9545454545454546, 'f1-score': 0.6666666666666666, 'support': 22.0}, '1': {'precision': 0.9230769230769231, 'recall': 0.375, 'f1-score': 0.5333333333333333, 'support': 32.0}, 'accuracy': 0.6111111111111112, 'macro avg': {'precision': 0.7176360225140713, 'recall': 0.6647727272727273, 'f1-score': 0.6, 'support': 54.0}, 'weighted avg': {'precision': 0.7556806337294143, 'recall': 0.6111111111111112, 'f1-score': 0.5876543209876544, 'support': 54.0}}
No log 32.0 64 0.6997 {'0': {'precision': 0.5121951219512195, 'recall': 0.9545454545454546, 'f1-score': 0.6666666666666666, 'support': 22.0}, '1': {'precision': 0.9230769230769231, 'recall': 0.375, 'f1-score': 0.5333333333333333, 'support': 32.0}, 'accuracy': 0.6111111111111112, 'macro avg': {'precision': 0.7176360225140713, 'recall': 0.6647727272727273, 'f1-score': 0.6, 'support': 54.0}, 'weighted avg': {'precision': 0.7556806337294143, 'recall': 0.6111111111111112, 'f1-score': 0.5876543209876544, 'support': 54.0}}
No log 33.0 66 0.5377 {'0': {'precision': 0.7333333333333333, 'recall': 0.5, 'f1-score': 0.5945945945945946, 'support': 22.0}, '1': {'precision': 0.717948717948718, 'recall': 0.875, 'f1-score': 0.7887323943661971, 'support': 32.0}, 'accuracy': 0.7222222222222222, 'macro avg': {'precision': 0.7256410256410256, 'recall': 0.6875, 'f1-score': 0.6916634944803959, 'support': 54.0}, 'weighted avg': {'precision': 0.7242165242165242, 'recall': 0.7222222222222222, 'f1-score': 0.7096392166814702, 'support': 54.0}}
No log 34.0 68 0.5292 {'0': {'precision': 0.6842105263157895, 'recall': 0.5909090909090909, 'f1-score': 0.6341463414634146, 'support': 22.0}, '1': {'precision': 0.7428571428571429, 'recall': 0.8125, 'f1-score': 0.7761194029850746, 'support': 32.0}, 'accuracy': 0.7222222222222222, 'macro avg': {'precision': 0.7135338345864661, 'recall': 0.7017045454545454, 'f1-score': 0.7051328722242447, 'support': 54.0}, 'weighted avg': {'precision': 0.7189640768588137, 'recall': 0.7222222222222222, 'f1-score': 0.7182785260688428, 'support': 54.0}}
No log 35.0 70 0.5622 {'0': {'precision': 0.6, 'recall': 0.8181818181818182, 'f1-score': 0.6923076923076923, 'support': 22.0}, '1': {'precision': 0.8333333333333334, 'recall': 0.625, 'f1-score': 0.7142857142857143, 'support': 32.0}, 'accuracy': 0.7037037037037037, 'macro avg': {'precision': 0.7166666666666667, 'recall': 0.7215909090909092, 'f1-score': 0.7032967032967032, 'support': 54.0}, 'weighted avg': {'precision': 0.7382716049382716, 'recall': 0.7037037037037037, 'f1-score': 0.7053317053317053, 'support': 54.0}}
No log 36.0 72 0.5362 {'0': {'precision': 0.6071428571428571, 'recall': 0.7727272727272727, 'f1-score': 0.68, 'support': 22.0}, '1': {'precision': 0.8076923076923077, 'recall': 0.65625, 'f1-score': 0.7241379310344828, 'support': 32.0}, 'accuracy': 0.7037037037037037, 'macro avg': {'precision': 0.7074175824175823, 'recall': 0.7144886363636364, 'f1-score': 0.7020689655172414, 'support': 54.0}, 'weighted avg': {'precision': 0.7259869759869759, 'recall': 0.7037037037037037, 'f1-score': 0.7061558109833973, 'support': 54.0}}
No log 37.0 74 0.5145 {'0': {'precision': 0.6190476190476191, 'recall': 0.5909090909090909, 'f1-score': 0.6046511627906976, 'support': 22.0}, '1': {'precision': 0.7272727272727273, 'recall': 0.75, 'f1-score': 0.7384615384615385, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6731601731601732, 'recall': 0.6704545454545454, 'f1-score': 0.6715563506261181, 'support': 54.0}, 'weighted avg': {'precision': 0.6831810165143499, 'recall': 0.6851851851851852, 'f1-score': 0.6839462002252701, 'support': 54.0}}
No log 38.0 76 0.5138 {'0': {'precision': 0.6, 'recall': 0.5454545454545454, 'f1-score': 0.5714285714285714, 'support': 22.0}, '1': {'precision': 0.7058823529411765, 'recall': 0.75, 'f1-score': 0.7272727272727273, 'support': 32.0}, 'accuracy': 0.6666666666666666, 'macro avg': {'precision': 0.6529411764705882, 'recall': 0.6477272727272727, 'f1-score': 0.6493506493506493, 'support': 54.0}, 'weighted avg': {'precision': 0.6627450980392157, 'recall': 0.6666666666666666, 'f1-score': 0.6637806637806638, 'support': 54.0}}
No log 39.0 78 0.5959 {'0': {'precision': 0.59375, 'recall': 0.8636363636363636, 'f1-score': 0.7037037037037037, 'support': 22.0}, '1': {'precision': 0.8636363636363636, 'recall': 0.59375, 'f1-score': 0.7037037037037037, 'support': 32.0}, 'accuracy': 0.7037037037037037, 'macro avg': {'precision': 0.7286931818181819, 'recall': 0.7286931818181819, 'f1-score': 0.7037037037037037, 'support': 54.0}, 'weighted avg': {'precision': 0.75368265993266, 'recall': 0.7037037037037037, 'f1-score': 0.7037037037037037, 'support': 54.0}}
No log 40.0 80 0.6088 {'0': {'precision': 0.5757575757575758, 'recall': 0.8636363636363636, 'f1-score': 0.6909090909090909, 'support': 22.0}, '1': {'precision': 0.8571428571428571, 'recall': 0.5625, 'f1-score': 0.6792452830188679, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7164502164502164, 'recall': 0.7130681818181819, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.7425044091710759, 'recall': 0.6851851851851852, 'f1-score': 0.6839972047519217, 'support': 54.0}}
No log 41.0 82 0.5925 {'0': {'precision': 0.6206896551724138, 'recall': 0.8181818181818182, 'f1-score': 0.7058823529411765, 'support': 22.0}, '1': {'precision': 0.84, 'recall': 0.65625, 'f1-score': 0.7368421052631579, 'support': 32.0}, 'accuracy': 0.7222222222222222, 'macro avg': {'precision': 0.7303448275862069, 'recall': 0.7372159090909092, 'f1-score': 0.7213622291021672, 'support': 54.0}, 'weighted avg': {'precision': 0.7506513409961686, 'recall': 0.7222222222222222, 'f1-score': 0.724228872835684, 'support': 54.0}}
No log 42.0 84 0.5495 {'0': {'precision': 0.6296296296296297, 'recall': 0.7727272727272727, 'f1-score': 0.6938775510204082, 'support': 22.0}, '1': {'precision': 0.8148148148148148, 'recall': 0.6875, 'f1-score': 0.7457627118644068, 'support': 32.0}, 'accuracy': 0.7222222222222222, 'macro avg': {'precision': 0.7222222222222222, 'recall': 0.7301136363636364, 'f1-score': 0.7198201314424075, 'support': 54.0}, 'weighted avg': {'precision': 0.7393689986282579, 'recall': 0.7222222222222222, 'f1-score': 0.724624313002037, 'support': 54.0}}
No log 43.0 86 0.5601 {'0': {'precision': 0.7857142857142857, 'recall': 0.5, 'f1-score': 0.6111111111111112, 'support': 22.0}, '1': {'precision': 0.725, 'recall': 0.90625, 'f1-score': 0.8055555555555556, 'support': 32.0}, 'accuracy': 0.7407407407407407, 'macro avg': {'precision': 0.7553571428571428, 'recall': 0.703125, 'f1-score': 0.7083333333333334, 'support': 54.0}, 'weighted avg': {'precision': 0.7497354497354496, 'recall': 0.7407407407407407, 'f1-score': 0.7263374485596709, 'support': 54.0}}
No log 44.0 88 0.6877 {'0': {'precision': 0.5, 'recall': 0.9090909090909091, 'f1-score': 0.6451612903225806, 'support': 22.0}, '1': {'precision': 0.8571428571428571, 'recall': 0.375, 'f1-score': 0.5217391304347826, 'support': 32.0}, 'accuracy': 0.5925925925925926, 'macro avg': {'precision': 0.6785714285714286, 'recall': 0.6420454545454546, 'f1-score': 0.5834502103786816, 'support': 54.0}, 'weighted avg': {'precision': 0.7116402116402116, 'recall': 0.5925925925925926, 'f1-score': 0.5720222326112929, 'support': 54.0}}
No log 45.0 90 0.5248 {'0': {'precision': 0.7142857142857143, 'recall': 0.6818181818181818, 'f1-score': 0.6976744186046512, 'support': 22.0}, '1': {'precision': 0.7878787878787878, 'recall': 0.8125, 'f1-score': 0.8, 'support': 32.0}, 'accuracy': 0.7592592592592593, 'macro avg': {'precision': 0.751082251082251, 'recall': 0.7471590909090908, 'f1-score': 0.7488372093023257, 'support': 54.0}, 'weighted avg': {'precision': 0.7578964245630913, 'recall': 0.7592592592592593, 'f1-score': 0.7583118001722653, 'support': 54.0}}
No log 46.0 92 0.5311 {'0': {'precision': 0.7058823529411765, 'recall': 0.5454545454545454, 'f1-score': 0.6153846153846154, 'support': 22.0}, '1': {'precision': 0.7297297297297297, 'recall': 0.84375, 'f1-score': 0.782608695652174, 'support': 32.0}, 'accuracy': 0.7222222222222222, 'macro avg': {'precision': 0.7178060413354531, 'recall': 0.6946022727272727, 'f1-score': 0.6989966555183946, 'support': 54.0}, 'weighted avg': {'precision': 0.7200141317788378, 'recall': 0.7222222222222222, 'f1-score': 0.7144803666542798, 'support': 54.0}}
No log 47.0 94 0.5751 {'0': {'precision': 0.5862068965517241, 'recall': 0.7727272727272727, 'f1-score': 0.6666666666666666, 'support': 22.0}, '1': {'precision': 0.8, 'recall': 0.625, 'f1-score': 0.7017543859649122, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.693103448275862, 'recall': 0.6988636363636364, 'f1-score': 0.6842105263157894, 'support': 54.0}, 'weighted avg': {'precision': 0.7128991060025542, 'recall': 0.6851851851851852, 'f1-score': 0.6874593892137751, 'support': 54.0}}
No log 48.0 96 0.7343 {'0': {'precision': 0.525, 'recall': 0.9545454545454546, 'f1-score': 0.6774193548387096, 'support': 22.0}, '1': {'precision': 0.9285714285714286, 'recall': 0.40625, 'f1-score': 0.5652173913043478, 'support': 32.0}, 'accuracy': 0.6296296296296297, 'macro avg': {'precision': 0.7267857142857144, 'recall': 0.6803977272727273, 'f1-score': 0.6213183730715287, 'support': 54.0}, 'weighted avg': {'precision': 0.7641534391534393, 'recall': 0.6296296296296297, 'f1-score': 0.6109293023739026, 'support': 54.0}}
No log 49.0 98 0.5835 {'0': {'precision': 0.7333333333333333, 'recall': 0.5, 'f1-score': 0.5945945945945946, 'support': 22.0}, '1': {'precision': 0.717948717948718, 'recall': 0.875, 'f1-score': 0.7887323943661971, 'support': 32.0}, 'accuracy': 0.7222222222222222, 'macro avg': {'precision': 0.7256410256410256, 'recall': 0.6875, 'f1-score': 0.6916634944803959, 'support': 54.0}, 'weighted avg': {'precision': 0.7242165242165242, 'recall': 0.7222222222222222, 'f1-score': 0.7096392166814702, 'support': 54.0}}
No log 50.0 100 0.6479 {'0': {'precision': 0.6, 'recall': 0.8181818181818182, 'f1-score': 0.6923076923076923, 'support': 22.0}, '1': {'precision': 0.8333333333333334, 'recall': 0.625, 'f1-score': 0.7142857142857143, 'support': 32.0}, 'accuracy': 0.7037037037037037, 'macro avg': {'precision': 0.7166666666666667, 'recall': 0.7215909090909092, 'f1-score': 0.7032967032967032, 'support': 54.0}, 'weighted avg': {'precision': 0.7382716049382716, 'recall': 0.7037037037037037, 'f1-score': 0.7053317053317053, 'support': 54.0}}
No log 51.0 102 0.6786 {'0': {'precision': 0.8888888888888888, 'recall': 0.36363636363636365, 'f1-score': 0.5161290322580645, 'support': 22.0}, '1': {'precision': 0.6888888888888889, 'recall': 0.96875, 'f1-score': 0.8051948051948052, 'support': 32.0}, 'accuracy': 0.7222222222222222, 'macro avg': {'precision': 0.7888888888888889, 'recall': 0.6661931818181819, 'f1-score': 0.6606619187264349, 'support': 54.0}, 'weighted avg': {'precision': 0.7703703703703703, 'recall': 0.7222222222222222, 'f1-score': 0.6874272680724295, 'support': 54.0}}
No log 52.0 104 0.7005 {'0': {'precision': 0.5294117647058824, 'recall': 0.8181818181818182, 'f1-score': 0.6428571428571429, 'support': 22.0}, '1': {'precision': 0.8, 'recall': 0.5, 'f1-score': 0.6153846153846154, 'support': 32.0}, 'accuracy': 0.6296296296296297, 'macro avg': {'precision': 0.6647058823529413, 'recall': 0.6590909090909092, 'f1-score': 0.6291208791208791, 'support': 54.0}, 'weighted avg': {'precision': 0.689760348583878, 'recall': 0.6296296296296297, 'f1-score': 0.6265771265771266, 'support': 54.0}}
No log 53.0 106 0.6526 {'0': {'precision': 0.8333333333333334, 'recall': 0.45454545454545453, 'f1-score': 0.5882352941176471, 'support': 22.0}, '1': {'precision': 0.7142857142857143, 'recall': 0.9375, 'f1-score': 0.8108108108108109, 'support': 32.0}, 'accuracy': 0.7407407407407407, 'macro avg': {'precision': 0.7738095238095238, 'recall': 0.6960227272727273, 'f1-score': 0.699523052464229, 'support': 54.0}, 'weighted avg': {'precision': 0.7627865961199295, 'recall': 0.7407407407407407, 'f1-score': 0.7201318966024849, 'support': 54.0}}
No log 54.0 108 0.6463 {'0': {'precision': 0.5, 'recall': 0.8181818181818182, 'f1-score': 0.6206896551724138, 'support': 22.0}, '1': {'precision': 0.7777777777777778, 'recall': 0.4375, 'f1-score': 0.56, 'support': 32.0}, 'accuracy': 0.5925925925925926, 'macro avg': {'precision': 0.6388888888888888, 'recall': 0.6278409090909092, 'f1-score': 0.5903448275862069, 'support': 54.0}, 'weighted avg': {'precision': 0.6646090534979423, 'recall': 0.5925925925925926, 'f1-score': 0.5847254150702427, 'support': 54.0}}
No log 55.0 110 0.5458 {'0': {'precision': 0.75, 'recall': 0.5454545454545454, 'f1-score': 0.631578947368421, 'support': 22.0}, '1': {'precision': 0.7368421052631579, 'recall': 0.875, 'f1-score': 0.8, 'support': 32.0}, 'accuracy': 0.7407407407407407, 'macro avg': {'precision': 0.743421052631579, 'recall': 0.7102272727272727, 'f1-score': 0.7157894736842105, 'support': 54.0}, 'weighted avg': {'precision': 0.7422027290448343, 'recall': 0.7407407407407407, 'f1-score': 0.7313840155945419, 'support': 54.0}}
No log 56.0 112 0.8544 {'0': {'precision': 0.5, 'recall': 0.9090909090909091, 'f1-score': 0.6451612903225806, 'support': 22.0}, '1': {'precision': 0.8571428571428571, 'recall': 0.375, 'f1-score': 0.5217391304347826, 'support': 32.0}, 'accuracy': 0.5925925925925926, 'macro avg': {'precision': 0.6785714285714286, 'recall': 0.6420454545454546, 'f1-score': 0.5834502103786816, 'support': 54.0}, 'weighted avg': {'precision': 0.7116402116402116, 'recall': 0.5925925925925926, 'f1-score': 0.5720222326112929, 'support': 54.0}}
No log 57.0 114 0.5544 {'0': {'precision': 0.7777777777777778, 'recall': 0.6363636363636364, 'f1-score': 0.7, 'support': 22.0}, '1': {'precision': 0.7777777777777778, 'recall': 0.875, 'f1-score': 0.8235294117647058, 'support': 32.0}, 'accuracy': 0.7777777777777778, 'macro avg': {'precision': 0.7777777777777778, 'recall': 0.7556818181818181, 'f1-score': 0.7617647058823529, 'support': 54.0}, 'weighted avg': {'precision': 0.7777777777777778, 'recall': 0.7777777777777778, 'f1-score': 0.7732026143790849, 'support': 54.0}}
No log 58.0 116 1.0415 {'0': {'precision': 0.5, 'recall': 0.9090909090909091, 'f1-score': 0.6451612903225806, 'support': 22.0}, '1': {'precision': 0.8571428571428571, 'recall': 0.375, 'f1-score': 0.5217391304347826, 'support': 32.0}, 'accuracy': 0.5925925925925926, 'macro avg': {'precision': 0.6785714285714286, 'recall': 0.6420454545454546, 'f1-score': 0.5834502103786816, 'support': 54.0}, 'weighted avg': {'precision': 0.7116402116402116, 'recall': 0.5925925925925926, 'f1-score': 0.5720222326112929, 'support': 54.0}}
No log 59.0 118 0.6777 {'0': {'precision': 0.7647058823529411, 'recall': 0.5909090909090909, 'f1-score': 0.6666666666666666, 'support': 22.0}, '1': {'precision': 0.7567567567567568, 'recall': 0.875, 'f1-score': 0.8115942028985508, 'support': 32.0}, 'accuracy': 0.7592592592592593, 'macro avg': {'precision': 0.760731319554849, 'recall': 0.7329545454545454, 'f1-score': 0.7391304347826086, 'support': 54.0}, 'weighted avg': {'precision': 0.7599952894070541, 'recall': 0.7592592592592593, 'f1-score': 0.7525496511003757, 'support': 54.0}}
No log 60.0 120 1.1707 {'0': {'precision': 0.4878048780487805, 'recall': 0.9090909090909091, 'f1-score': 0.6349206349206349, 'support': 22.0}, '1': {'precision': 0.8461538461538461, 'recall': 0.34375, 'f1-score': 0.4888888888888889, 'support': 32.0}, 'accuracy': 0.5740740740740741, 'macro avg': {'precision': 0.6669793621013134, 'recall': 0.6264204545454546, 'f1-score': 0.5619047619047619, 'support': 54.0}, 'weighted avg': {'precision': 0.7001598221110416, 'recall': 0.5740740740740741, 'f1-score': 0.5483833039388595, 'support': 54.0}}
No log 61.0 122 0.7503 {'0': {'precision': 0.7142857142857143, 'recall': 0.45454545454545453, 'f1-score': 0.5555555555555556, 'support': 22.0}, '1': {'precision': 0.7, 'recall': 0.875, 'f1-score': 0.7777777777777778, 'support': 32.0}, 'accuracy': 0.7037037037037037, 'macro avg': {'precision': 0.7071428571428571, 'recall': 0.6647727272727273, 'f1-score': 0.6666666666666667, 'support': 54.0}, 'weighted avg': {'precision': 0.7058201058201058, 'recall': 0.7037037037037037, 'f1-score': 0.6872427983539096, 'support': 54.0}}
No log 62.0 124 0.9343 {'0': {'precision': 0.5128205128205128, 'recall': 0.9090909090909091, 'f1-score': 0.6557377049180327, 'support': 22.0}, '1': {'precision': 0.8666666666666667, 'recall': 0.40625, 'f1-score': 0.5531914893617021, 'support': 32.0}, 'accuracy': 0.6111111111111112, 'macro avg': {'precision': 0.6897435897435897, 'recall': 0.6576704545454546, 'f1-score': 0.6044645971398674, 'support': 54.0}, 'weighted avg': {'precision': 0.7225071225071226, 'recall': 0.6111111111111112, 'f1-score': 0.5949695771809479, 'support': 54.0}}
No log 63.0 126 0.8613 {'0': {'precision': 0.7, 'recall': 0.3181818181818182, 'f1-score': 0.4375, 'support': 22.0}, '1': {'precision': 0.6590909090909091, 'recall': 0.90625, 'f1-score': 0.7631578947368421, 'support': 32.0}, 'accuracy': 0.6666666666666666, 'macro avg': {'precision': 0.6795454545454545, 'recall': 0.6122159090909091, 'f1-score': 0.600328947368421, 'support': 54.0}, 'weighted avg': {'precision': 0.6757575757575757, 'recall': 0.6666666666666666, 'f1-score': 0.6304824561403508, 'support': 54.0}}
No log 64.0 128 0.8207 {'0': {'precision': 0.5714285714285714, 'recall': 0.9090909090909091, 'f1-score': 0.7017543859649122, 'support': 22.0}, '1': {'precision': 0.8947368421052632, 'recall': 0.53125, 'f1-score': 0.6666666666666666, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7330827067669172, 'recall': 0.7201704545454546, 'f1-score': 0.6842105263157894, 'support': 54.0}, 'weighted avg': {'precision': 0.7630186577554999, 'recall': 0.6851851851851852, 'f1-score': 0.6809616634178036, 'support': 54.0}}
No log 65.0 130 0.8506 {'0': {'precision': 0.7272727272727273, 'recall': 0.36363636363636365, 'f1-score': 0.48484848484848486, 'support': 22.0}, '1': {'precision': 0.6744186046511628, 'recall': 0.90625, 'f1-score': 0.7733333333333333, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7008456659619451, 'recall': 0.6349431818181819, 'f1-score': 0.6290909090909091, 'support': 54.0}, 'weighted avg': {'precision': 0.6959517657192075, 'recall': 0.6851851851851852, 'f1-score': 0.6558024691358025, 'support': 54.0}}
No log 66.0 132 0.8638 {'0': {'precision': 0.5714285714285714, 'recall': 0.9090909090909091, 'f1-score': 0.7017543859649122, 'support': 22.0}, '1': {'precision': 0.8947368421052632, 'recall': 0.53125, 'f1-score': 0.6666666666666666, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7330827067669172, 'recall': 0.7201704545454546, 'f1-score': 0.6842105263157894, 'support': 54.0}, 'weighted avg': {'precision': 0.7630186577554999, 'recall': 0.6851851851851852, 'f1-score': 0.6809616634178036, 'support': 54.0}}
No log 67.0 134 1.0595 {'0': {'precision': 0.7, 'recall': 0.3181818181818182, 'f1-score': 0.4375, 'support': 22.0}, '1': {'precision': 0.6590909090909091, 'recall': 0.90625, 'f1-score': 0.7631578947368421, 'support': 32.0}, 'accuracy': 0.6666666666666666, 'macro avg': {'precision': 0.6795454545454545, 'recall': 0.6122159090909091, 'f1-score': 0.600328947368421, 'support': 54.0}, 'weighted avg': {'precision': 0.6757575757575757, 'recall': 0.6666666666666666, 'f1-score': 0.6304824561403508, 'support': 54.0}}
No log 68.0 136 0.8218 {'0': {'precision': 0.6129032258064516, 'recall': 0.8636363636363636, 'f1-score': 0.7169811320754716, 'support': 22.0}, '1': {'precision': 0.8695652173913043, 'recall': 0.625, 'f1-score': 0.7272727272727273, 'support': 32.0}, 'accuracy': 0.7222222222222222, 'macro avg': {'precision': 0.741234221598878, 'recall': 0.7443181818181819, 'f1-score': 0.7221269296740995, 'support': 54.0}, 'weighted avg': {'precision': 0.7649992208196976, 'recall': 0.7222222222222222, 'f1-score': 0.7230798551553269, 'support': 54.0}}
No log 69.0 138 1.1223 {'0': {'precision': 0.7, 'recall': 0.3181818181818182, 'f1-score': 0.4375, 'support': 22.0}, '1': {'precision': 0.6590909090909091, 'recall': 0.90625, 'f1-score': 0.7631578947368421, 'support': 32.0}, 'accuracy': 0.6666666666666666, 'macro avg': {'precision': 0.6795454545454545, 'recall': 0.6122159090909091, 'f1-score': 0.600328947368421, 'support': 54.0}, 'weighted avg': {'precision': 0.6757575757575757, 'recall': 0.6666666666666666, 'f1-score': 0.6304824561403508, 'support': 54.0}}
No log 70.0 140 0.9777 {'0': {'precision': 0.5555555555555556, 'recall': 0.9090909090909091, 'f1-score': 0.6896551724137931, 'support': 22.0}, '1': {'precision': 0.8888888888888888, 'recall': 0.5, 'f1-score': 0.64, 'support': 32.0}, 'accuracy': 0.6666666666666666, 'macro avg': {'precision': 0.7222222222222222, 'recall': 0.7045454545454546, 'f1-score': 0.6648275862068966, 'support': 54.0}, 'weighted avg': {'precision': 0.7530864197530863, 'recall': 0.6666666666666666, 'f1-score': 0.6602298850574713, 'support': 54.0}}
No log 71.0 142 1.0496 {'0': {'precision': 0.7272727272727273, 'recall': 0.36363636363636365, 'f1-score': 0.48484848484848486, 'support': 22.0}, '1': {'precision': 0.6744186046511628, 'recall': 0.90625, 'f1-score': 0.7733333333333333, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7008456659619451, 'recall': 0.6349431818181819, 'f1-score': 0.6290909090909091, 'support': 54.0}, 'weighted avg': {'precision': 0.6959517657192075, 'recall': 0.6851851851851852, 'f1-score': 0.6558024691358025, 'support': 54.0}}
No log 72.0 144 1.1527 {'0': {'precision': 0.5405405405405406, 'recall': 0.9090909090909091, 'f1-score': 0.6779661016949152, 'support': 22.0}, '1': {'precision': 0.8823529411764706, 'recall': 0.46875, 'f1-score': 0.6122448979591837, 'support': 32.0}, 'accuracy': 0.6481481481481481, 'macro avg': {'precision': 0.7114467408585056, 'recall': 0.6889204545454546, 'f1-score': 0.6451054998270495, 'support': 54.0}, 'weighted avg': {'precision': 0.7430960372136843, 'recall': 0.6481481481481481, 'f1-score': 0.639020203184852, 'support': 54.0}}
No log 73.0 146 1.1923 {'0': {'precision': 0.75, 'recall': 0.4090909090909091, 'f1-score': 0.5294117647058824, 'support': 22.0}, '1': {'precision': 0.6904761904761905, 'recall': 0.90625, 'f1-score': 0.7837837837837838, 'support': 32.0}, 'accuracy': 0.7037037037037037, 'macro avg': {'precision': 0.7202380952380952, 'recall': 0.6576704545454546, 'f1-score': 0.656597774244833, 'support': 54.0}, 'weighted avg': {'precision': 0.7147266313932981, 'recall': 0.7037037037037037, 'f1-score': 0.6801507389742684, 'support': 54.0}}
No log 74.0 148 1.2597 {'0': {'precision': 0.5757575757575758, 'recall': 0.8636363636363636, 'f1-score': 0.6909090909090909, 'support': 22.0}, '1': {'precision': 0.8571428571428571, 'recall': 0.5625, 'f1-score': 0.6792452830188679, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.7164502164502164, 'recall': 0.7130681818181819, 'f1-score': 0.6850771869639793, 'support': 54.0}, 'weighted avg': {'precision': 0.7425044091710759, 'recall': 0.6851851851851852, 'f1-score': 0.6839972047519217, 'support': 54.0}}
No log 75.0 150 1.5068 {'0': {'precision': 0.75, 'recall': 0.4090909090909091, 'f1-score': 0.5294117647058824, 'support': 22.0}, '1': {'precision': 0.6904761904761905, 'recall': 0.90625, 'f1-score': 0.7837837837837838, 'support': 32.0}, 'accuracy': 0.7037037037037037, 'macro avg': {'precision': 0.7202380952380952, 'recall': 0.6576704545454546, 'f1-score': 0.656597774244833, 'support': 54.0}, 'weighted avg': {'precision': 0.7147266313932981, 'recall': 0.7037037037037037, 'f1-score': 0.6801507389742684, 'support': 54.0}}
No log 76.0 152 1.3156 {'0': {'precision': 0.6, 'recall': 0.8181818181818182, 'f1-score': 0.6923076923076923, 'support': 22.0}, '1': {'precision': 0.8333333333333334, 'recall': 0.625, 'f1-score': 0.7142857142857143, 'support': 32.0}, 'accuracy': 0.7037037037037037, 'macro avg': {'precision': 0.7166666666666667, 'recall': 0.7215909090909092, 'f1-score': 0.7032967032967032, 'support': 54.0}, 'weighted avg': {'precision': 0.7382716049382716, 'recall': 0.7037037037037037, 'f1-score': 0.7053317053317053, 'support': 54.0}}
No log 77.0 154 1.1601 {'0': {'precision': 0.65, 'recall': 0.5909090909090909, 'f1-score': 0.6190476190476191, 'support': 22.0}, '1': {'precision': 0.7352941176470589, 'recall': 0.78125, 'f1-score': 0.7575757575757576, 'support': 32.0}, 'accuracy': 0.7037037037037037, 'macro avg': {'precision': 0.6926470588235294, 'recall': 0.6860795454545454, 'f1-score': 0.6883116883116883, 'support': 54.0}, 'weighted avg': {'precision': 0.7005446623093682, 'recall': 0.7037037037037037, 'f1-score': 0.7011383678050345, 'support': 54.0}}
No log 78.0 156 1.3362 {'0': {'precision': 0.6428571428571429, 'recall': 0.8181818181818182, 'f1-score': 0.72, 'support': 22.0}, '1': {'precision': 0.8461538461538461, 'recall': 0.6875, 'f1-score': 0.7586206896551724, 'support': 32.0}, 'accuracy': 0.7407407407407407, 'macro avg': {'precision': 0.7445054945054945, 'recall': 0.7528409090909092, 'f1-score': 0.7393103448275862, 'support': 54.0}, 'weighted avg': {'precision': 0.7633292633292633, 'recall': 0.7407407407407407, 'f1-score': 0.7428863346104725, 'support': 54.0}}
No log 79.0 158 1.5329 {'0': {'precision': 0.6428571428571429, 'recall': 0.4090909090909091, 'f1-score': 0.5, 'support': 22.0}, '1': {'precision': 0.675, 'recall': 0.84375, 'f1-score': 0.75, 'support': 32.0}, 'accuracy': 0.6666666666666666, 'macro avg': {'precision': 0.6589285714285715, 'recall': 0.6264204545454546, 'f1-score': 0.625, 'support': 54.0}, 'weighted avg': {'precision': 0.661904761904762, 'recall': 0.6666666666666666, 'f1-score': 0.6481481481481481, 'support': 54.0}}
No log 80.0 160 1.3651 {'0': {'precision': 0.625, 'recall': 0.6818181818181818, 'f1-score': 0.6521739130434783, 'support': 22.0}, '1': {'precision': 0.7666666666666667, 'recall': 0.71875, 'f1-score': 0.7419354838709677, 'support': 32.0}, 'accuracy': 0.7037037037037037, 'macro avg': {'precision': 0.6958333333333333, 'recall': 0.7002840909090908, 'f1-score': 0.697054698457223, 'support': 54.0}, 'weighted avg': {'precision': 0.7089506172839506, 'recall': 0.7037037037037037, 'f1-score': 0.705365955015324, 'support': 54.0}}
No log 81.0 162 1.5115 {'0': {'precision': 0.6071428571428571, 'recall': 0.7727272727272727, 'f1-score': 0.68, 'support': 22.0}, '1': {'precision': 0.8076923076923077, 'recall': 0.65625, 'f1-score': 0.7241379310344828, 'support': 32.0}, 'accuracy': 0.7037037037037037, 'macro avg': {'precision': 0.7074175824175823, 'recall': 0.7144886363636364, 'f1-score': 0.7020689655172414, 'support': 54.0}, 'weighted avg': {'precision': 0.7259869759869759, 'recall': 0.7037037037037037, 'f1-score': 0.7061558109833973, 'support': 54.0}}
No log 82.0 164 1.4976 {'0': {'precision': 0.6666666666666666, 'recall': 0.5454545454545454, 'f1-score': 0.6, 'support': 22.0}, '1': {'precision': 0.7222222222222222, 'recall': 0.8125, 'f1-score': 0.7647058823529411, 'support': 32.0}, 'accuracy': 0.7037037037037037, 'macro avg': {'precision': 0.6944444444444444, 'recall': 0.6789772727272727, 'f1-score': 0.6823529411764706, 'support': 54.0}, 'weighted avg': {'precision': 0.6995884773662552, 'recall': 0.7037037037037037, 'f1-score': 0.69760348583878, 'support': 54.0}}
No log 83.0 166 1.7071 {'0': {'precision': 0.7058823529411765, 'recall': 0.5454545454545454, 'f1-score': 0.6153846153846154, 'support': 22.0}, '1': {'precision': 0.7297297297297297, 'recall': 0.84375, 'f1-score': 0.782608695652174, 'support': 32.0}, 'accuracy': 0.7222222222222222, 'macro avg': {'precision': 0.7178060413354531, 'recall': 0.6946022727272727, 'f1-score': 0.6989966555183946, 'support': 54.0}, 'weighted avg': {'precision': 0.7200141317788378, 'recall': 0.7222222222222222, 'f1-score': 0.7144803666542798, 'support': 54.0}}
No log 84.0 168 1.6877 {'0': {'precision': 0.6666666666666666, 'recall': 0.5454545454545454, 'f1-score': 0.6, 'support': 22.0}, '1': {'precision': 0.7222222222222222, 'recall': 0.8125, 'f1-score': 0.7647058823529411, 'support': 32.0}, 'accuracy': 0.7037037037037037, 'macro avg': {'precision': 0.6944444444444444, 'recall': 0.6789772727272727, 'f1-score': 0.6823529411764706, 'support': 54.0}, 'weighted avg': {'precision': 0.6995884773662552, 'recall': 0.7037037037037037, 'f1-score': 0.69760348583878, 'support': 54.0}}
No log 85.0 170 1.6891 {'0': {'precision': 0.64, 'recall': 0.7272727272727273, 'f1-score': 0.6808510638297872, 'support': 22.0}, '1': {'precision': 0.7931034482758621, 'recall': 0.71875, 'f1-score': 0.7540983606557377, 'support': 32.0}, 'accuracy': 0.7222222222222222, 'macro avg': {'precision': 0.7165517241379311, 'recall': 0.7230113636363636, 'f1-score': 0.7174747122427625, 'support': 54.0}, 'weighted avg': {'precision': 0.730727969348659, 'recall': 0.7222222222222222, 'f1-score': 0.7242568693562764, 'support': 54.0}}
No log 86.0 172 1.8116 {'0': {'precision': 0.6206896551724138, 'recall': 0.8181818181818182, 'f1-score': 0.7058823529411765, 'support': 22.0}, '1': {'precision': 0.84, 'recall': 0.65625, 'f1-score': 0.7368421052631579, 'support': 32.0}, 'accuracy': 0.7222222222222222, 'macro avg': {'precision': 0.7303448275862069, 'recall': 0.7372159090909092, 'f1-score': 0.7213622291021672, 'support': 54.0}, 'weighted avg': {'precision': 0.7506513409961686, 'recall': 0.7222222222222222, 'f1-score': 0.724228872835684, 'support': 54.0}}
No log 87.0 174 1.7178 {'0': {'precision': 0.64, 'recall': 0.7272727272727273, 'f1-score': 0.6808510638297872, 'support': 22.0}, '1': {'precision': 0.7931034482758621, 'recall': 0.71875, 'f1-score': 0.7540983606557377, 'support': 32.0}, 'accuracy': 0.7222222222222222, 'macro avg': {'precision': 0.7165517241379311, 'recall': 0.7230113636363636, 'f1-score': 0.7174747122427625, 'support': 54.0}, 'weighted avg': {'precision': 0.730727969348659, 'recall': 0.7222222222222222, 'f1-score': 0.7242568693562764, 'support': 54.0}}
No log 88.0 176 1.8128 {'0': {'precision': 0.6666666666666666, 'recall': 0.5454545454545454, 'f1-score': 0.6, 'support': 22.0}, '1': {'precision': 0.7222222222222222, 'recall': 0.8125, 'f1-score': 0.7647058823529411, 'support': 32.0}, 'accuracy': 0.7037037037037037, 'macro avg': {'precision': 0.6944444444444444, 'recall': 0.6789772727272727, 'f1-score': 0.6823529411764706, 'support': 54.0}, 'weighted avg': {'precision': 0.6995884773662552, 'recall': 0.7037037037037037, 'f1-score': 0.69760348583878, 'support': 54.0}}
No log 89.0 178 2.0186 {'0': {'precision': 0.6875, 'recall': 0.5, 'f1-score': 0.5789473684210527, 'support': 22.0}, '1': {'precision': 0.7105263157894737, 'recall': 0.84375, 'f1-score': 0.7714285714285715, 'support': 32.0}, 'accuracy': 0.7037037037037037, 'macro avg': {'precision': 0.6990131578947368, 'recall': 0.671875, 'f1-score': 0.675187969924812, 'support': 54.0}, 'weighted avg': {'precision': 0.7011452241715399, 'recall': 0.7037037037037037, 'f1-score': 0.6930103035366194, 'support': 54.0}}
No log 90.0 180 1.9870 {'0': {'precision': 0.6875, 'recall': 0.5, 'f1-score': 0.5789473684210527, 'support': 22.0}, '1': {'precision': 0.7105263157894737, 'recall': 0.84375, 'f1-score': 0.7714285714285715, 'support': 32.0}, 'accuracy': 0.7037037037037037, 'macro avg': {'precision': 0.6990131578947368, 'recall': 0.671875, 'f1-score': 0.675187969924812, 'support': 54.0}, 'weighted avg': {'precision': 0.7011452241715399, 'recall': 0.7037037037037037, 'f1-score': 0.6930103035366194, 'support': 54.0}}
No log 91.0 182 1.8450 {'0': {'precision': 0.6666666666666666, 'recall': 0.5454545454545454, 'f1-score': 0.6, 'support': 22.0}, '1': {'precision': 0.7222222222222222, 'recall': 0.8125, 'f1-score': 0.7647058823529411, 'support': 32.0}, 'accuracy': 0.7037037037037037, 'macro avg': {'precision': 0.6944444444444444, 'recall': 0.6789772727272727, 'f1-score': 0.6823529411764706, 'support': 54.0}, 'weighted avg': {'precision': 0.6995884773662552, 'recall': 0.7037037037037037, 'f1-score': 0.69760348583878, 'support': 54.0}}
No log 92.0 184 1.7591 {'0': {'precision': 0.6, 'recall': 0.5454545454545454, 'f1-score': 0.5714285714285714, 'support': 22.0}, '1': {'precision': 0.7058823529411765, 'recall': 0.75, 'f1-score': 0.7272727272727273, 'support': 32.0}, 'accuracy': 0.6666666666666666, 'macro avg': {'precision': 0.6529411764705882, 'recall': 0.6477272727272727, 'f1-score': 0.6493506493506493, 'support': 54.0}, 'weighted avg': {'precision': 0.6627450980392157, 'recall': 0.6666666666666666, 'f1-score': 0.6637806637806638, 'support': 54.0}}
No log 93.0 186 1.7957 {'0': {'precision': 0.6153846153846154, 'recall': 0.7272727272727273, 'f1-score': 0.6666666666666666, 'support': 22.0}, '1': {'precision': 0.7857142857142857, 'recall': 0.6875, 'f1-score': 0.7333333333333333, 'support': 32.0}, 'accuracy': 0.7037037037037037, 'macro avg': {'precision': 0.7005494505494505, 'recall': 0.7073863636363636, 'f1-score': 0.7, 'support': 54.0}, 'weighted avg': {'precision': 0.7163207163207164, 'recall': 0.7037037037037037, 'f1-score': 0.7061728395061728, 'support': 54.0}}
No log 94.0 188 1.8606 {'0': {'precision': 0.6428571428571429, 'recall': 0.8181818181818182, 'f1-score': 0.72, 'support': 22.0}, '1': {'precision': 0.8461538461538461, 'recall': 0.6875, 'f1-score': 0.7586206896551724, 'support': 32.0}, 'accuracy': 0.7407407407407407, 'macro avg': {'precision': 0.7445054945054945, 'recall': 0.7528409090909092, 'f1-score': 0.7393103448275862, 'support': 54.0}, 'weighted avg': {'precision': 0.7633292633292633, 'recall': 0.7407407407407407, 'f1-score': 0.7428863346104725, 'support': 54.0}}
No log 95.0 190 1.9176 {'0': {'precision': 0.6, 'recall': 0.8181818181818182, 'f1-score': 0.6923076923076923, 'support': 22.0}, '1': {'precision': 0.8333333333333334, 'recall': 0.625, 'f1-score': 0.7142857142857143, 'support': 32.0}, 'accuracy': 0.7037037037037037, 'macro avg': {'precision': 0.7166666666666667, 'recall': 0.7215909090909092, 'f1-score': 0.7032967032967032, 'support': 54.0}, 'weighted avg': {'precision': 0.7382716049382716, 'recall': 0.7037037037037037, 'f1-score': 0.7053317053317053, 'support': 54.0}}
No log 96.0 192 1.9135 {'0': {'precision': 0.6, 'recall': 0.8181818181818182, 'f1-score': 0.6923076923076923, 'support': 22.0}, '1': {'precision': 0.8333333333333334, 'recall': 0.625, 'f1-score': 0.7142857142857143, 'support': 32.0}, 'accuracy': 0.7037037037037037, 'macro avg': {'precision': 0.7166666666666667, 'recall': 0.7215909090909092, 'f1-score': 0.7032967032967032, 'support': 54.0}, 'weighted avg': {'precision': 0.7382716049382716, 'recall': 0.7037037037037037, 'f1-score': 0.7053317053317053, 'support': 54.0}}
No log 97.0 194 1.9007 {'0': {'precision': 0.6206896551724138, 'recall': 0.8181818181818182, 'f1-score': 0.7058823529411765, 'support': 22.0}, '1': {'precision': 0.84, 'recall': 0.65625, 'f1-score': 0.7368421052631579, 'support': 32.0}, 'accuracy': 0.7222222222222222, 'macro avg': {'precision': 0.7303448275862069, 'recall': 0.7372159090909092, 'f1-score': 0.7213622291021672, 'support': 54.0}, 'weighted avg': {'precision': 0.7506513409961686, 'recall': 0.7222222222222222, 'f1-score': 0.724228872835684, 'support': 54.0}}
No log 98.0 196 1.8694 {'0': {'precision': 0.6296296296296297, 'recall': 0.7727272727272727, 'f1-score': 0.6938775510204082, 'support': 22.0}, '1': {'precision': 0.8148148148148148, 'recall': 0.6875, 'f1-score': 0.7457627118644068, 'support': 32.0}, 'accuracy': 0.7222222222222222, 'macro avg': {'precision': 0.7222222222222222, 'recall': 0.7301136363636364, 'f1-score': 0.7198201314424075, 'support': 54.0}, 'weighted avg': {'precision': 0.7393689986282579, 'recall': 0.7222222222222222, 'f1-score': 0.724624313002037, 'support': 54.0}}
No log 99.0 198 1.8401 {'0': {'precision': 0.64, 'recall': 0.7272727272727273, 'f1-score': 0.6808510638297872, 'support': 22.0}, '1': {'precision': 0.7931034482758621, 'recall': 0.71875, 'f1-score': 0.7540983606557377, 'support': 32.0}, 'accuracy': 0.7222222222222222, 'macro avg': {'precision': 0.7165517241379311, 'recall': 0.7230113636363636, 'f1-score': 0.7174747122427625, 'support': 54.0}, 'weighted avg': {'precision': 0.730727969348659, 'recall': 0.7222222222222222, 'f1-score': 0.7242568693562764, 'support': 54.0}}
No log 100.0 200 1.8217 {'0': {'precision': 0.625, 'recall': 0.6818181818181818, 'f1-score': 0.6521739130434783, 'support': 22.0}, '1': {'precision': 0.7666666666666667, 'recall': 0.71875, 'f1-score': 0.7419354838709677, 'support': 32.0}, 'accuracy': 0.7037037037037037, 'macro avg': {'precision': 0.6958333333333333, 'recall': 0.7002840909090908, 'f1-score': 0.697054698457223, 'support': 54.0}, 'weighted avg': {'precision': 0.7089506172839506, 'recall': 0.7037037037037037, 'f1-score': 0.705365955015324, 'support': 54.0}}
No log 101.0 202 1.8243 {'0': {'precision': 0.6521739130434783, 'recall': 0.6818181818181818, 'f1-score': 0.6666666666666666, 'support': 22.0}, '1': {'precision': 0.7741935483870968, 'recall': 0.75, 'f1-score': 0.7619047619047619, 'support': 32.0}, 'accuracy': 0.7222222222222222, 'macro avg': {'precision': 0.7131837307152875, 'recall': 0.7159090909090908, 'f1-score': 0.7142857142857142, 'support': 54.0}, 'weighted avg': {'precision': 0.724481845098956, 'recall': 0.7222222222222222, 'f1-score': 0.7231040564373897, 'support': 54.0}}
No log 102.0 204 1.8071 {'0': {'precision': 0.6363636363636364, 'recall': 0.6363636363636364, 'f1-score': 0.6363636363636364, 'support': 22.0}, '1': {'precision': 0.75, 'recall': 0.75, 'f1-score': 0.75, 'support': 32.0}, 'accuracy': 0.7037037037037037, 'macro avg': {'precision': 0.6931818181818181, 'recall': 0.6931818181818181, 'f1-score': 0.6931818181818181, 'support': 54.0}, 'weighted avg': {'precision': 0.7037037037037037, 'recall': 0.7037037037037037, 'f1-score': 0.7037037037037037, 'support': 54.0}}
No log 103.0 206 1.8314 {'0': {'precision': 0.6, 'recall': 0.5454545454545454, 'f1-score': 0.5714285714285714, 'support': 22.0}, '1': {'precision': 0.7058823529411765, 'recall': 0.75, 'f1-score': 0.7272727272727273, 'support': 32.0}, 'accuracy': 0.6666666666666666, 'macro avg': {'precision': 0.6529411764705882, 'recall': 0.6477272727272727, 'f1-score': 0.6493506493506493, 'support': 54.0}, 'weighted avg': {'precision': 0.6627450980392157, 'recall': 0.6666666666666666, 'f1-score': 0.6637806637806638, 'support': 54.0}}
No log 104.0 208 1.8233 {'0': {'precision': 0.65, 'recall': 0.5909090909090909, 'f1-score': 0.6190476190476191, 'support': 22.0}, '1': {'precision': 0.7352941176470589, 'recall': 0.78125, 'f1-score': 0.7575757575757576, 'support': 32.0}, 'accuracy': 0.7037037037037037, 'macro avg': {'precision': 0.6926470588235294, 'recall': 0.6860795454545454, 'f1-score': 0.6883116883116883, 'support': 54.0}, 'weighted avg': {'precision': 0.7005446623093682, 'recall': 0.7037037037037037, 'f1-score': 0.7011383678050345, 'support': 54.0}}
No log 105.0 210 1.8241 {'0': {'precision': 0.631578947368421, 'recall': 0.5454545454545454, 'f1-score': 0.5853658536585366, 'support': 22.0}, '1': {'precision': 0.7142857142857143, 'recall': 0.78125, 'f1-score': 0.746268656716418, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6729323308270676, 'recall': 0.6633522727272727, 'f1-score': 0.6658172551874773, 'support': 54.0}, 'weighted avg': {'precision': 0.6805903648008912, 'recall': 0.6851851851851852, 'f1-score': 0.6807156628780219, 'support': 54.0}}
No log 106.0 212 1.8202 {'0': {'precision': 0.6666666666666666, 'recall': 0.5454545454545454, 'f1-score': 0.6, 'support': 22.0}, '1': {'precision': 0.7222222222222222, 'recall': 0.8125, 'f1-score': 0.7647058823529411, 'support': 32.0}, 'accuracy': 0.7037037037037037, 'macro avg': {'precision': 0.6944444444444444, 'recall': 0.6789772727272727, 'f1-score': 0.6823529411764706, 'support': 54.0}, 'weighted avg': {'precision': 0.6995884773662552, 'recall': 0.7037037037037037, 'f1-score': 0.69760348583878, 'support': 54.0}}
No log 107.0 214 1.8317 {'0': {'precision': 0.631578947368421, 'recall': 0.5454545454545454, 'f1-score': 0.5853658536585366, 'support': 22.0}, '1': {'precision': 0.7142857142857143, 'recall': 0.78125, 'f1-score': 0.746268656716418, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6729323308270676, 'recall': 0.6633522727272727, 'f1-score': 0.6658172551874773, 'support': 54.0}, 'weighted avg': {'precision': 0.6805903648008912, 'recall': 0.6851851851851852, 'f1-score': 0.6807156628780219, 'support': 54.0}}
No log 108.0 216 1.8290 {'0': {'precision': 0.65, 'recall': 0.5909090909090909, 'f1-score': 0.6190476190476191, 'support': 22.0}, '1': {'precision': 0.7352941176470589, 'recall': 0.78125, 'f1-score': 0.7575757575757576, 'support': 32.0}, 'accuracy': 0.7037037037037037, 'macro avg': {'precision': 0.6926470588235294, 'recall': 0.6860795454545454, 'f1-score': 0.6883116883116883, 'support': 54.0}, 'weighted avg': {'precision': 0.7005446623093682, 'recall': 0.7037037037037037, 'f1-score': 0.7011383678050345, 'support': 54.0}}
No log 109.0 218 1.8441 {'0': {'precision': 0.631578947368421, 'recall': 0.5454545454545454, 'f1-score': 0.5853658536585366, 'support': 22.0}, '1': {'precision': 0.7142857142857143, 'recall': 0.78125, 'f1-score': 0.746268656716418, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6729323308270676, 'recall': 0.6633522727272727, 'f1-score': 0.6658172551874773, 'support': 54.0}, 'weighted avg': {'precision': 0.6805903648008912, 'recall': 0.6851851851851852, 'f1-score': 0.6807156628780219, 'support': 54.0}}
No log 110.0 220 1.8544 {'0': {'precision': 0.631578947368421, 'recall': 0.5454545454545454, 'f1-score': 0.5853658536585366, 'support': 22.0}, '1': {'precision': 0.7142857142857143, 'recall': 0.78125, 'f1-score': 0.746268656716418, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6729323308270676, 'recall': 0.6633522727272727, 'f1-score': 0.6658172551874773, 'support': 54.0}, 'weighted avg': {'precision': 0.6805903648008912, 'recall': 0.6851851851851852, 'f1-score': 0.6807156628780219, 'support': 54.0}}
No log 111.0 222 1.8491 {'0': {'precision': 0.631578947368421, 'recall': 0.5454545454545454, 'f1-score': 0.5853658536585366, 'support': 22.0}, '1': {'precision': 0.7142857142857143, 'recall': 0.78125, 'f1-score': 0.746268656716418, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6729323308270676, 'recall': 0.6633522727272727, 'f1-score': 0.6658172551874773, 'support': 54.0}, 'weighted avg': {'precision': 0.6805903648008912, 'recall': 0.6851851851851852, 'f1-score': 0.6807156628780219, 'support': 54.0}}
No log 112.0 224 1.8381 {'0': {'precision': 0.65, 'recall': 0.5909090909090909, 'f1-score': 0.6190476190476191, 'support': 22.0}, '1': {'precision': 0.7352941176470589, 'recall': 0.78125, 'f1-score': 0.7575757575757576, 'support': 32.0}, 'accuracy': 0.7037037037037037, 'macro avg': {'precision': 0.6926470588235294, 'recall': 0.6860795454545454, 'f1-score': 0.6883116883116883, 'support': 54.0}, 'weighted avg': {'precision': 0.7005446623093682, 'recall': 0.7037037037037037, 'f1-score': 0.7011383678050345, 'support': 54.0}}
No log 113.0 226 1.8562 {'0': {'precision': 0.631578947368421, 'recall': 0.5454545454545454, 'f1-score': 0.5853658536585366, 'support': 22.0}, '1': {'precision': 0.7142857142857143, 'recall': 0.78125, 'f1-score': 0.746268656716418, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6729323308270676, 'recall': 0.6633522727272727, 'f1-score': 0.6658172551874773, 'support': 54.0}, 'weighted avg': {'precision': 0.6805903648008912, 'recall': 0.6851851851851852, 'f1-score': 0.6807156628780219, 'support': 54.0}}
No log 114.0 228 1.8425 {'0': {'precision': 0.631578947368421, 'recall': 0.5454545454545454, 'f1-score': 0.5853658536585366, 'support': 22.0}, '1': {'precision': 0.7142857142857143, 'recall': 0.78125, 'f1-score': 0.746268656716418, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6729323308270676, 'recall': 0.6633522727272727, 'f1-score': 0.6658172551874773, 'support': 54.0}, 'weighted avg': {'precision': 0.6805903648008912, 'recall': 0.6851851851851852, 'f1-score': 0.6807156628780219, 'support': 54.0}}
No log 115.0 230 1.8307 {'0': {'precision': 0.6190476190476191, 'recall': 0.5909090909090909, 'f1-score': 0.6046511627906976, 'support': 22.0}, '1': {'precision': 0.7272727272727273, 'recall': 0.75, 'f1-score': 0.7384615384615385, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6731601731601732, 'recall': 0.6704545454545454, 'f1-score': 0.6715563506261181, 'support': 54.0}, 'weighted avg': {'precision': 0.6831810165143499, 'recall': 0.6851851851851852, 'f1-score': 0.6839462002252701, 'support': 54.0}}
No log 116.0 232 1.8397 {'0': {'precision': 0.5909090909090909, 'recall': 0.5909090909090909, 'f1-score': 0.5909090909090909, 'support': 22.0}, '1': {'precision': 0.71875, 'recall': 0.71875, 'f1-score': 0.71875, 'support': 32.0}, 'accuracy': 0.6666666666666666, 'macro avg': {'precision': 0.6548295454545454, 'recall': 0.6548295454545454, 'f1-score': 0.6548295454545454, 'support': 54.0}, 'weighted avg': {'precision': 0.6666666666666666, 'recall': 0.6666666666666666, 'f1-score': 0.6666666666666666, 'support': 54.0}}
No log 117.0 234 1.8385 {'0': {'precision': 0.65, 'recall': 0.5909090909090909, 'f1-score': 0.6190476190476191, 'support': 22.0}, '1': {'precision': 0.7352941176470589, 'recall': 0.78125, 'f1-score': 0.7575757575757576, 'support': 32.0}, 'accuracy': 0.7037037037037037, 'macro avg': {'precision': 0.6926470588235294, 'recall': 0.6860795454545454, 'f1-score': 0.6883116883116883, 'support': 54.0}, 'weighted avg': {'precision': 0.7005446623093682, 'recall': 0.7037037037037037, 'f1-score': 0.7011383678050345, 'support': 54.0}}
No log 118.0 236 1.8344 {'0': {'precision': 0.6190476190476191, 'recall': 0.5909090909090909, 'f1-score': 0.6046511627906976, 'support': 22.0}, '1': {'precision': 0.7272727272727273, 'recall': 0.75, 'f1-score': 0.7384615384615385, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6731601731601732, 'recall': 0.6704545454545454, 'f1-score': 0.6715563506261181, 'support': 54.0}, 'weighted avg': {'precision': 0.6831810165143499, 'recall': 0.6851851851851852, 'f1-score': 0.6839462002252701, 'support': 54.0}}
No log 119.0 238 1.8443 {'0': {'precision': 0.6, 'recall': 0.5454545454545454, 'f1-score': 0.5714285714285714, 'support': 22.0}, '1': {'precision': 0.7058823529411765, 'recall': 0.75, 'f1-score': 0.7272727272727273, 'support': 32.0}, 'accuracy': 0.6666666666666666, 'macro avg': {'precision': 0.6529411764705882, 'recall': 0.6477272727272727, 'f1-score': 0.6493506493506493, 'support': 54.0}, 'weighted avg': {'precision': 0.6627450980392157, 'recall': 0.6666666666666666, 'f1-score': 0.6637806637806638, 'support': 54.0}}
No log 120.0 240 1.8417 {'0': {'precision': 0.6190476190476191, 'recall': 0.5909090909090909, 'f1-score': 0.6046511627906976, 'support': 22.0}, '1': {'precision': 0.7272727272727273, 'recall': 0.75, 'f1-score': 0.7384615384615385, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6731601731601732, 'recall': 0.6704545454545454, 'f1-score': 0.6715563506261181, 'support': 54.0}, 'weighted avg': {'precision': 0.6831810165143499, 'recall': 0.6851851851851852, 'f1-score': 0.6839462002252701, 'support': 54.0}}
No log 121.0 242 1.8562 {'0': {'precision': 0.5714285714285714, 'recall': 0.5454545454545454, 'f1-score': 0.5581395348837209, 'support': 22.0}, '1': {'precision': 0.696969696969697, 'recall': 0.71875, 'f1-score': 0.7076923076923077, 'support': 32.0}, 'accuracy': 0.6481481481481481, 'macro avg': {'precision': 0.6341991341991342, 'recall': 0.6321022727272727, 'f1-score': 0.6329159212880143, 'support': 54.0}, 'weighted avg': {'precision': 0.6458233124899792, 'recall': 0.6481481481481481, 'f1-score': 0.6467634002517723, 'support': 54.0}}
No log 122.0 244 1.8369 {'0': {'precision': 0.5909090909090909, 'recall': 0.5909090909090909, 'f1-score': 0.5909090909090909, 'support': 22.0}, '1': {'precision': 0.71875, 'recall': 0.71875, 'f1-score': 0.71875, 'support': 32.0}, 'accuracy': 0.6666666666666666, 'macro avg': {'precision': 0.6548295454545454, 'recall': 0.6548295454545454, 'f1-score': 0.6548295454545454, 'support': 54.0}, 'weighted avg': {'precision': 0.6666666666666666, 'recall': 0.6666666666666666, 'f1-score': 0.6666666666666666, 'support': 54.0}}
No log 123.0 246 1.8531 {'0': {'precision': 0.5714285714285714, 'recall': 0.5454545454545454, 'f1-score': 0.5581395348837209, 'support': 22.0}, '1': {'precision': 0.696969696969697, 'recall': 0.71875, 'f1-score': 0.7076923076923077, 'support': 32.0}, 'accuracy': 0.6481481481481481, 'macro avg': {'precision': 0.6341991341991342, 'recall': 0.6321022727272727, 'f1-score': 0.6329159212880143, 'support': 54.0}, 'weighted avg': {'precision': 0.6458233124899792, 'recall': 0.6481481481481481, 'f1-score': 0.6467634002517723, 'support': 54.0}}
No log 124.0 248 1.8423 {'0': {'precision': 0.6190476190476191, 'recall': 0.5909090909090909, 'f1-score': 0.6046511627906976, 'support': 22.0}, '1': {'precision': 0.7272727272727273, 'recall': 0.75, 'f1-score': 0.7384615384615385, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6731601731601732, 'recall': 0.6704545454545454, 'f1-score': 0.6715563506261181, 'support': 54.0}, 'weighted avg': {'precision': 0.6831810165143499, 'recall': 0.6851851851851852, 'f1-score': 0.6839462002252701, 'support': 54.0}}
No log 125.0 250 1.8553 {'0': {'precision': 0.5909090909090909, 'recall': 0.5909090909090909, 'f1-score': 0.5909090909090909, 'support': 22.0}, '1': {'precision': 0.71875, 'recall': 0.71875, 'f1-score': 0.71875, 'support': 32.0}, 'accuracy': 0.6666666666666666, 'macro avg': {'precision': 0.6548295454545454, 'recall': 0.6548295454545454, 'f1-score': 0.6548295454545454, 'support': 54.0}, 'weighted avg': {'precision': 0.6666666666666666, 'recall': 0.6666666666666666, 'f1-score': 0.6666666666666666, 'support': 54.0}}
No log 126.0 252 1.8325 {'0': {'precision': 0.5909090909090909, 'recall': 0.5909090909090909, 'f1-score': 0.5909090909090909, 'support': 22.0}, '1': {'precision': 0.71875, 'recall': 0.71875, 'f1-score': 0.71875, 'support': 32.0}, 'accuracy': 0.6666666666666666, 'macro avg': {'precision': 0.6548295454545454, 'recall': 0.6548295454545454, 'f1-score': 0.6548295454545454, 'support': 54.0}, 'weighted avg': {'precision': 0.6666666666666666, 'recall': 0.6666666666666666, 'f1-score': 0.6666666666666666, 'support': 54.0}}
No log 127.0 254 1.8464 {'0': {'precision': 0.5909090909090909, 'recall': 0.5909090909090909, 'f1-score': 0.5909090909090909, 'support': 22.0}, '1': {'precision': 0.71875, 'recall': 0.71875, 'f1-score': 0.71875, 'support': 32.0}, 'accuracy': 0.6666666666666666, 'macro avg': {'precision': 0.6548295454545454, 'recall': 0.6548295454545454, 'f1-score': 0.6548295454545454, 'support': 54.0}, 'weighted avg': {'precision': 0.6666666666666666, 'recall': 0.6666666666666666, 'f1-score': 0.6666666666666666, 'support': 54.0}}
No log 128.0 256 1.8315 {'0': {'precision': 0.6363636363636364, 'recall': 0.6363636363636364, 'f1-score': 0.6363636363636364, 'support': 22.0}, '1': {'precision': 0.75, 'recall': 0.75, 'f1-score': 0.75, 'support': 32.0}, 'accuracy': 0.7037037037037037, 'macro avg': {'precision': 0.6931818181818181, 'recall': 0.6931818181818181, 'f1-score': 0.6931818181818181, 'support': 54.0}, 'weighted avg': {'precision': 0.7037037037037037, 'recall': 0.7037037037037037, 'f1-score': 0.7037037037037037, 'support': 54.0}}
No log 129.0 258 1.8275 {'0': {'precision': 0.5909090909090909, 'recall': 0.5909090909090909, 'f1-score': 0.5909090909090909, 'support': 22.0}, '1': {'precision': 0.71875, 'recall': 0.71875, 'f1-score': 0.71875, 'support': 32.0}, 'accuracy': 0.6666666666666666, 'macro avg': {'precision': 0.6548295454545454, 'recall': 0.6548295454545454, 'f1-score': 0.6548295454545454, 'support': 54.0}, 'weighted avg': {'precision': 0.6666666666666666, 'recall': 0.6666666666666666, 'f1-score': 0.6666666666666666, 'support': 54.0}}
No log 130.0 260 1.8332 {'0': {'precision': 0.6190476190476191, 'recall': 0.5909090909090909, 'f1-score': 0.6046511627906976, 'support': 22.0}, '1': {'precision': 0.7272727272727273, 'recall': 0.75, 'f1-score': 0.7384615384615385, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6731601731601732, 'recall': 0.6704545454545454, 'f1-score': 0.6715563506261181, 'support': 54.0}, 'weighted avg': {'precision': 0.6831810165143499, 'recall': 0.6851851851851852, 'f1-score': 0.6839462002252701, 'support': 54.0}}
No log 131.0 262 1.8385 {'0': {'precision': 0.5909090909090909, 'recall': 0.5909090909090909, 'f1-score': 0.5909090909090909, 'support': 22.0}, '1': {'precision': 0.71875, 'recall': 0.71875, 'f1-score': 0.71875, 'support': 32.0}, 'accuracy': 0.6666666666666666, 'macro avg': {'precision': 0.6548295454545454, 'recall': 0.6548295454545454, 'f1-score': 0.6548295454545454, 'support': 54.0}, 'weighted avg': {'precision': 0.6666666666666666, 'recall': 0.6666666666666666, 'f1-score': 0.6666666666666666, 'support': 54.0}}
No log 132.0 264 1.8557 {'0': {'precision': 0.5909090909090909, 'recall': 0.5909090909090909, 'f1-score': 0.5909090909090909, 'support': 22.0}, '1': {'precision': 0.71875, 'recall': 0.71875, 'f1-score': 0.71875, 'support': 32.0}, 'accuracy': 0.6666666666666666, 'macro avg': {'precision': 0.6548295454545454, 'recall': 0.6548295454545454, 'f1-score': 0.6548295454545454, 'support': 54.0}, 'weighted avg': {'precision': 0.6666666666666666, 'recall': 0.6666666666666666, 'f1-score': 0.6666666666666666, 'support': 54.0}}
No log 133.0 266 1.8318 {'0': {'precision': 0.6190476190476191, 'recall': 0.5909090909090909, 'f1-score': 0.6046511627906976, 'support': 22.0}, '1': {'precision': 0.7272727272727273, 'recall': 0.75, 'f1-score': 0.7384615384615385, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6731601731601732, 'recall': 0.6704545454545454, 'f1-score': 0.6715563506261181, 'support': 54.0}, 'weighted avg': {'precision': 0.6831810165143499, 'recall': 0.6851851851851852, 'f1-score': 0.6839462002252701, 'support': 54.0}}
No log 134.0 268 1.8446 {'0': {'precision': 0.5909090909090909, 'recall': 0.5909090909090909, 'f1-score': 0.5909090909090909, 'support': 22.0}, '1': {'precision': 0.71875, 'recall': 0.71875, 'f1-score': 0.71875, 'support': 32.0}, 'accuracy': 0.6666666666666666, 'macro avg': {'precision': 0.6548295454545454, 'recall': 0.6548295454545454, 'f1-score': 0.6548295454545454, 'support': 54.0}, 'weighted avg': {'precision': 0.6666666666666666, 'recall': 0.6666666666666666, 'f1-score': 0.6666666666666666, 'support': 54.0}}
No log 135.0 270 1.8302 {'0': {'precision': 0.6190476190476191, 'recall': 0.5909090909090909, 'f1-score': 0.6046511627906976, 'support': 22.0}, '1': {'precision': 0.7272727272727273, 'recall': 0.75, 'f1-score': 0.7384615384615385, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6731601731601732, 'recall': 0.6704545454545454, 'f1-score': 0.6715563506261181, 'support': 54.0}, 'weighted avg': {'precision': 0.6831810165143499, 'recall': 0.6851851851851852, 'f1-score': 0.6839462002252701, 'support': 54.0}}
No log 136.0 272 1.8277 {'0': {'precision': 0.6190476190476191, 'recall': 0.5909090909090909, 'f1-score': 0.6046511627906976, 'support': 22.0}, '1': {'precision': 0.7272727272727273, 'recall': 0.75, 'f1-score': 0.7384615384615385, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6731601731601732, 'recall': 0.6704545454545454, 'f1-score': 0.6715563506261181, 'support': 54.0}, 'weighted avg': {'precision': 0.6831810165143499, 'recall': 0.6851851851851852, 'f1-score': 0.6839462002252701, 'support': 54.0}}
No log 137.0 274 1.8392 {'0': {'precision': 0.5909090909090909, 'recall': 0.5909090909090909, 'f1-score': 0.5909090909090909, 'support': 22.0}, '1': {'precision': 0.71875, 'recall': 0.71875, 'f1-score': 0.71875, 'support': 32.0}, 'accuracy': 0.6666666666666666, 'macro avg': {'precision': 0.6548295454545454, 'recall': 0.6548295454545454, 'f1-score': 0.6548295454545454, 'support': 54.0}, 'weighted avg': {'precision': 0.6666666666666666, 'recall': 0.6666666666666666, 'f1-score': 0.6666666666666666, 'support': 54.0}}
No log 138.0 276 1.8433 {'0': {'precision': 0.6190476190476191, 'recall': 0.5909090909090909, 'f1-score': 0.6046511627906976, 'support': 22.0}, '1': {'precision': 0.7272727272727273, 'recall': 0.75, 'f1-score': 0.7384615384615385, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6731601731601732, 'recall': 0.6704545454545454, 'f1-score': 0.6715563506261181, 'support': 54.0}, 'weighted avg': {'precision': 0.6831810165143499, 'recall': 0.6851851851851852, 'f1-score': 0.6839462002252701, 'support': 54.0}}
No log 139.0 278 1.8456 {'0': {'precision': 0.6086956521739131, 'recall': 0.6363636363636364, 'f1-score': 0.6222222222222222, 'support': 22.0}, '1': {'precision': 0.7419354838709677, 'recall': 0.71875, 'f1-score': 0.7301587301587301, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6753155680224404, 'recall': 0.6775568181818181, 'f1-score': 0.6761904761904762, 'support': 54.0}, 'weighted avg': {'precision': 0.6876525894758714, 'recall': 0.6851851851851852, 'f1-score': 0.6861845972957084, 'support': 54.0}}
No log 140.0 280 1.8351 {'0': {'precision': 0.5909090909090909, 'recall': 0.5909090909090909, 'f1-score': 0.5909090909090909, 'support': 22.0}, '1': {'precision': 0.71875, 'recall': 0.71875, 'f1-score': 0.71875, 'support': 32.0}, 'accuracy': 0.6666666666666666, 'macro avg': {'precision': 0.6548295454545454, 'recall': 0.6548295454545454, 'f1-score': 0.6548295454545454, 'support': 54.0}, 'weighted avg': {'precision': 0.6666666666666666, 'recall': 0.6666666666666666, 'f1-score': 0.6666666666666666, 'support': 54.0}}
No log 141.0 282 1.8503 {'0': {'precision': 0.6, 'recall': 0.5454545454545454, 'f1-score': 0.5714285714285714, 'support': 22.0}, '1': {'precision': 0.7058823529411765, 'recall': 0.75, 'f1-score': 0.7272727272727273, 'support': 32.0}, 'accuracy': 0.6666666666666666, 'macro avg': {'precision': 0.6529411764705882, 'recall': 0.6477272727272727, 'f1-score': 0.6493506493506493, 'support': 54.0}, 'weighted avg': {'precision': 0.6627450980392157, 'recall': 0.6666666666666666, 'f1-score': 0.6637806637806638, 'support': 54.0}}
No log 142.0 284 1.8450 {'0': {'precision': 0.6190476190476191, 'recall': 0.5909090909090909, 'f1-score': 0.6046511627906976, 'support': 22.0}, '1': {'precision': 0.7272727272727273, 'recall': 0.75, 'f1-score': 0.7384615384615385, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6731601731601732, 'recall': 0.6704545454545454, 'f1-score': 0.6715563506261181, 'support': 54.0}, 'weighted avg': {'precision': 0.6831810165143499, 'recall': 0.6851851851851852, 'f1-score': 0.6839462002252701, 'support': 54.0}}
No log 143.0 286 1.8336 {'0': {'precision': 0.5909090909090909, 'recall': 0.5909090909090909, 'f1-score': 0.5909090909090909, 'support': 22.0}, '1': {'precision': 0.71875, 'recall': 0.71875, 'f1-score': 0.71875, 'support': 32.0}, 'accuracy': 0.6666666666666666, 'macro avg': {'precision': 0.6548295454545454, 'recall': 0.6548295454545454, 'f1-score': 0.6548295454545454, 'support': 54.0}, 'weighted avg': {'precision': 0.6666666666666666, 'recall': 0.6666666666666666, 'f1-score': 0.6666666666666666, 'support': 54.0}}
No log 144.0 288 1.8347 {'0': {'precision': 0.6190476190476191, 'recall': 0.5909090909090909, 'f1-score': 0.6046511627906976, 'support': 22.0}, '1': {'precision': 0.7272727272727273, 'recall': 0.75, 'f1-score': 0.7384615384615385, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6731601731601732, 'recall': 0.6704545454545454, 'f1-score': 0.6715563506261181, 'support': 54.0}, 'weighted avg': {'precision': 0.6831810165143499, 'recall': 0.6851851851851852, 'f1-score': 0.6839462002252701, 'support': 54.0}}
No log 145.0 290 1.8489 {'0': {'precision': 0.6190476190476191, 'recall': 0.5909090909090909, 'f1-score': 0.6046511627906976, 'support': 22.0}, '1': {'precision': 0.7272727272727273, 'recall': 0.75, 'f1-score': 0.7384615384615385, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6731601731601732, 'recall': 0.6704545454545454, 'f1-score': 0.6715563506261181, 'support': 54.0}, 'weighted avg': {'precision': 0.6831810165143499, 'recall': 0.6851851851851852, 'f1-score': 0.6839462002252701, 'support': 54.0}}
No log 146.0 292 1.8469 {'0': {'precision': 0.6190476190476191, 'recall': 0.5909090909090909, 'f1-score': 0.6046511627906976, 'support': 22.0}, '1': {'precision': 0.7272727272727273, 'recall': 0.75, 'f1-score': 0.7384615384615385, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6731601731601732, 'recall': 0.6704545454545454, 'f1-score': 0.6715563506261181, 'support': 54.0}, 'weighted avg': {'precision': 0.6831810165143499, 'recall': 0.6851851851851852, 'f1-score': 0.6839462002252701, 'support': 54.0}}
No log 147.0 294 1.8301 {'0': {'precision': 0.6190476190476191, 'recall': 0.5909090909090909, 'f1-score': 0.6046511627906976, 'support': 22.0}, '1': {'precision': 0.7272727272727273, 'recall': 0.75, 'f1-score': 0.7384615384615385, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6731601731601732, 'recall': 0.6704545454545454, 'f1-score': 0.6715563506261181, 'support': 54.0}, 'weighted avg': {'precision': 0.6831810165143499, 'recall': 0.6851851851851852, 'f1-score': 0.6839462002252701, 'support': 54.0}}
No log 148.0 296 1.8529 {'0': {'precision': 0.6, 'recall': 0.5454545454545454, 'f1-score': 0.5714285714285714, 'support': 22.0}, '1': {'precision': 0.7058823529411765, 'recall': 0.75, 'f1-score': 0.7272727272727273, 'support': 32.0}, 'accuracy': 0.6666666666666666, 'macro avg': {'precision': 0.6529411764705882, 'recall': 0.6477272727272727, 'f1-score': 0.6493506493506493, 'support': 54.0}, 'weighted avg': {'precision': 0.6627450980392157, 'recall': 0.6666666666666666, 'f1-score': 0.6637806637806638, 'support': 54.0}}
No log 149.0 298 1.8336 {'0': {'precision': 0.6190476190476191, 'recall': 0.5909090909090909, 'f1-score': 0.6046511627906976, 'support': 22.0}, '1': {'precision': 0.7272727272727273, 'recall': 0.75, 'f1-score': 0.7384615384615385, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6731601731601732, 'recall': 0.6704545454545454, 'f1-score': 0.6715563506261181, 'support': 54.0}, 'weighted avg': {'precision': 0.6831810165143499, 'recall': 0.6851851851851852, 'f1-score': 0.6839462002252701, 'support': 54.0}}
No log 150.0 300 1.8365 {'0': {'precision': 0.6190476190476191, 'recall': 0.5909090909090909, 'f1-score': 0.6046511627906976, 'support': 22.0}, '1': {'precision': 0.7272727272727273, 'recall': 0.75, 'f1-score': 0.7384615384615385, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6731601731601732, 'recall': 0.6704545454545454, 'f1-score': 0.6715563506261181, 'support': 54.0}, 'weighted avg': {'precision': 0.6831810165143499, 'recall': 0.6851851851851852, 'f1-score': 0.6839462002252701, 'support': 54.0}}
No log 151.0 302 1.8388 {'0': {'precision': 0.6190476190476191, 'recall': 0.5909090909090909, 'f1-score': 0.6046511627906976, 'support': 22.0}, '1': {'precision': 0.7272727272727273, 'recall': 0.75, 'f1-score': 0.7384615384615385, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6731601731601732, 'recall': 0.6704545454545454, 'f1-score': 0.6715563506261181, 'support': 54.0}, 'weighted avg': {'precision': 0.6831810165143499, 'recall': 0.6851851851851852, 'f1-score': 0.6839462002252701, 'support': 54.0}}
No log 152.0 304 1.8289 {'0': {'precision': 0.5909090909090909, 'recall': 0.5909090909090909, 'f1-score': 0.5909090909090909, 'support': 22.0}, '1': {'precision': 0.71875, 'recall': 0.71875, 'f1-score': 0.71875, 'support': 32.0}, 'accuracy': 0.6666666666666666, 'macro avg': {'precision': 0.6548295454545454, 'recall': 0.6548295454545454, 'f1-score': 0.6548295454545454, 'support': 54.0}, 'weighted avg': {'precision': 0.6666666666666666, 'recall': 0.6666666666666666, 'f1-score': 0.6666666666666666, 'support': 54.0}}
No log 153.0 306 1.8479 {'0': {'precision': 0.5909090909090909, 'recall': 0.5909090909090909, 'f1-score': 0.5909090909090909, 'support': 22.0}, '1': {'precision': 0.71875, 'recall': 0.71875, 'f1-score': 0.71875, 'support': 32.0}, 'accuracy': 0.6666666666666666, 'macro avg': {'precision': 0.6548295454545454, 'recall': 0.6548295454545454, 'f1-score': 0.6548295454545454, 'support': 54.0}, 'weighted avg': {'precision': 0.6666666666666666, 'recall': 0.6666666666666666, 'f1-score': 0.6666666666666666, 'support': 54.0}}
No log 154.0 308 1.8517 {'0': {'precision': 0.6190476190476191, 'recall': 0.5909090909090909, 'f1-score': 0.6046511627906976, 'support': 22.0}, '1': {'precision': 0.7272727272727273, 'recall': 0.75, 'f1-score': 0.7384615384615385, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6731601731601732, 'recall': 0.6704545454545454, 'f1-score': 0.6715563506261181, 'support': 54.0}, 'weighted avg': {'precision': 0.6831810165143499, 'recall': 0.6851851851851852, 'f1-score': 0.6839462002252701, 'support': 54.0}}
No log 155.0 310 1.8554 {'0': {'precision': 0.5909090909090909, 'recall': 0.5909090909090909, 'f1-score': 0.5909090909090909, 'support': 22.0}, '1': {'precision': 0.71875, 'recall': 0.71875, 'f1-score': 0.71875, 'support': 32.0}, 'accuracy': 0.6666666666666666, 'macro avg': {'precision': 0.6548295454545454, 'recall': 0.6548295454545454, 'f1-score': 0.6548295454545454, 'support': 54.0}, 'weighted avg': {'precision': 0.6666666666666666, 'recall': 0.6666666666666666, 'f1-score': 0.6666666666666666, 'support': 54.0}}
No log 156.0 312 1.8439 {'0': {'precision': 0.5909090909090909, 'recall': 0.5909090909090909, 'f1-score': 0.5909090909090909, 'support': 22.0}, '1': {'precision': 0.71875, 'recall': 0.71875, 'f1-score': 0.71875, 'support': 32.0}, 'accuracy': 0.6666666666666666, 'macro avg': {'precision': 0.6548295454545454, 'recall': 0.6548295454545454, 'f1-score': 0.6548295454545454, 'support': 54.0}, 'weighted avg': {'precision': 0.6666666666666666, 'recall': 0.6666666666666666, 'f1-score': 0.6666666666666666, 'support': 54.0}}
No log 157.0 314 1.8401 {'0': {'precision': 0.5909090909090909, 'recall': 0.5909090909090909, 'f1-score': 0.5909090909090909, 'support': 22.0}, '1': {'precision': 0.71875, 'recall': 0.71875, 'f1-score': 0.71875, 'support': 32.0}, 'accuracy': 0.6666666666666666, 'macro avg': {'precision': 0.6548295454545454, 'recall': 0.6548295454545454, 'f1-score': 0.6548295454545454, 'support': 54.0}, 'weighted avg': {'precision': 0.6666666666666666, 'recall': 0.6666666666666666, 'f1-score': 0.6666666666666666, 'support': 54.0}}
No log 158.0 316 1.8299 {'0': {'precision': 0.6190476190476191, 'recall': 0.5909090909090909, 'f1-score': 0.6046511627906976, 'support': 22.0}, '1': {'precision': 0.7272727272727273, 'recall': 0.75, 'f1-score': 0.7384615384615385, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6731601731601732, 'recall': 0.6704545454545454, 'f1-score': 0.6715563506261181, 'support': 54.0}, 'weighted avg': {'precision': 0.6831810165143499, 'recall': 0.6851851851851852, 'f1-score': 0.6839462002252701, 'support': 54.0}}
No log 159.0 318 1.8467 {'0': {'precision': 0.5909090909090909, 'recall': 0.5909090909090909, 'f1-score': 0.5909090909090909, 'support': 22.0}, '1': {'precision': 0.71875, 'recall': 0.71875, 'f1-score': 0.71875, 'support': 32.0}, 'accuracy': 0.6666666666666666, 'macro avg': {'precision': 0.6548295454545454, 'recall': 0.6548295454545454, 'f1-score': 0.6548295454545454, 'support': 54.0}, 'weighted avg': {'precision': 0.6666666666666666, 'recall': 0.6666666666666666, 'f1-score': 0.6666666666666666, 'support': 54.0}}
No log 160.0 320 1.8445 {'0': {'precision': 0.6086956521739131, 'recall': 0.6363636363636364, 'f1-score': 0.6222222222222222, 'support': 22.0}, '1': {'precision': 0.7419354838709677, 'recall': 0.71875, 'f1-score': 0.7301587301587301, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6753155680224404, 'recall': 0.6775568181818181, 'f1-score': 0.6761904761904762, 'support': 54.0}, 'weighted avg': {'precision': 0.6876525894758714, 'recall': 0.6851851851851852, 'f1-score': 0.6861845972957084, 'support': 54.0}}
No log 161.0 322 1.8470 {'0': {'precision': 0.6190476190476191, 'recall': 0.5909090909090909, 'f1-score': 0.6046511627906976, 'support': 22.0}, '1': {'precision': 0.7272727272727273, 'recall': 0.75, 'f1-score': 0.7384615384615385, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6731601731601732, 'recall': 0.6704545454545454, 'f1-score': 0.6715563506261181, 'support': 54.0}, 'weighted avg': {'precision': 0.6831810165143499, 'recall': 0.6851851851851852, 'f1-score': 0.6839462002252701, 'support': 54.0}}
No log 162.0 324 1.8533 {'0': {'precision': 0.5909090909090909, 'recall': 0.5909090909090909, 'f1-score': 0.5909090909090909, 'support': 22.0}, '1': {'precision': 0.71875, 'recall': 0.71875, 'f1-score': 0.71875, 'support': 32.0}, 'accuracy': 0.6666666666666666, 'macro avg': {'precision': 0.6548295454545454, 'recall': 0.6548295454545454, 'f1-score': 0.6548295454545454, 'support': 54.0}, 'weighted avg': {'precision': 0.6666666666666666, 'recall': 0.6666666666666666, 'f1-score': 0.6666666666666666, 'support': 54.0}}
No log 163.0 326 1.8370 {'0': {'precision': 0.6190476190476191, 'recall': 0.5909090909090909, 'f1-score': 0.6046511627906976, 'support': 22.0}, '1': {'precision': 0.7272727272727273, 'recall': 0.75, 'f1-score': 0.7384615384615385, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6731601731601732, 'recall': 0.6704545454545454, 'f1-score': 0.6715563506261181, 'support': 54.0}, 'weighted avg': {'precision': 0.6831810165143499, 'recall': 0.6851851851851852, 'f1-score': 0.6839462002252701, 'support': 54.0}}
No log 164.0 328 1.8510 {'0': {'precision': 0.5714285714285714, 'recall': 0.5454545454545454, 'f1-score': 0.5581395348837209, 'support': 22.0}, '1': {'precision': 0.696969696969697, 'recall': 0.71875, 'f1-score': 0.7076923076923077, 'support': 32.0}, 'accuracy': 0.6481481481481481, 'macro avg': {'precision': 0.6341991341991342, 'recall': 0.6321022727272727, 'f1-score': 0.6329159212880143, 'support': 54.0}, 'weighted avg': {'precision': 0.6458233124899792, 'recall': 0.6481481481481481, 'f1-score': 0.6467634002517723, 'support': 54.0}}
No log 165.0 330 1.8353 {'0': {'precision': 0.6190476190476191, 'recall': 0.5909090909090909, 'f1-score': 0.6046511627906976, 'support': 22.0}, '1': {'precision': 0.7272727272727273, 'recall': 0.75, 'f1-score': 0.7384615384615385, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6731601731601732, 'recall': 0.6704545454545454, 'f1-score': 0.6715563506261181, 'support': 54.0}, 'weighted avg': {'precision': 0.6831810165143499, 'recall': 0.6851851851851852, 'f1-score': 0.6839462002252701, 'support': 54.0}}
No log 166.0 332 1.8533 {'0': {'precision': 0.5909090909090909, 'recall': 0.5909090909090909, 'f1-score': 0.5909090909090909, 'support': 22.0}, '1': {'precision': 0.71875, 'recall': 0.71875, 'f1-score': 0.71875, 'support': 32.0}, 'accuracy': 0.6666666666666666, 'macro avg': {'precision': 0.6548295454545454, 'recall': 0.6548295454545454, 'f1-score': 0.6548295454545454, 'support': 54.0}, 'weighted avg': {'precision': 0.6666666666666666, 'recall': 0.6666666666666666, 'f1-score': 0.6666666666666666, 'support': 54.0}}
No log 167.0 334 1.8582 {'0': {'precision': 0.5909090909090909, 'recall': 0.5909090909090909, 'f1-score': 0.5909090909090909, 'support': 22.0}, '1': {'precision': 0.71875, 'recall': 0.71875, 'f1-score': 0.71875, 'support': 32.0}, 'accuracy': 0.6666666666666666, 'macro avg': {'precision': 0.6548295454545454, 'recall': 0.6548295454545454, 'f1-score': 0.6548295454545454, 'support': 54.0}, 'weighted avg': {'precision': 0.6666666666666666, 'recall': 0.6666666666666666, 'f1-score': 0.6666666666666666, 'support': 54.0}}
No log 168.0 336 1.8508 {'0': {'precision': 0.6190476190476191, 'recall': 0.5909090909090909, 'f1-score': 0.6046511627906976, 'support': 22.0}, '1': {'precision': 0.7272727272727273, 'recall': 0.75, 'f1-score': 0.7384615384615385, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6731601731601732, 'recall': 0.6704545454545454, 'f1-score': 0.6715563506261181, 'support': 54.0}, 'weighted avg': {'precision': 0.6831810165143499, 'recall': 0.6851851851851852, 'f1-score': 0.6839462002252701, 'support': 54.0}}
No log 169.0 338 1.8416 {'0': {'precision': 0.6190476190476191, 'recall': 0.5909090909090909, 'f1-score': 0.6046511627906976, 'support': 22.0}, '1': {'precision': 0.7272727272727273, 'recall': 0.75, 'f1-score': 0.7384615384615385, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6731601731601732, 'recall': 0.6704545454545454, 'f1-score': 0.6715563506261181, 'support': 54.0}, 'weighted avg': {'precision': 0.6831810165143499, 'recall': 0.6851851851851852, 'f1-score': 0.6839462002252701, 'support': 54.0}}
No log 170.0 340 1.8405 {'0': {'precision': 0.6086956521739131, 'recall': 0.6363636363636364, 'f1-score': 0.6222222222222222, 'support': 22.0}, '1': {'precision': 0.7419354838709677, 'recall': 0.71875, 'f1-score': 0.7301587301587301, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6753155680224404, 'recall': 0.6775568181818181, 'f1-score': 0.6761904761904762, 'support': 54.0}, 'weighted avg': {'precision': 0.6876525894758714, 'recall': 0.6851851851851852, 'f1-score': 0.6861845972957084, 'support': 54.0}}
No log 171.0 342 1.8340 {'0': {'precision': 0.6363636363636364, 'recall': 0.6363636363636364, 'f1-score': 0.6363636363636364, 'support': 22.0}, '1': {'precision': 0.75, 'recall': 0.75, 'f1-score': 0.75, 'support': 32.0}, 'accuracy': 0.7037037037037037, 'macro avg': {'precision': 0.6931818181818181, 'recall': 0.6931818181818181, 'f1-score': 0.6931818181818181, 'support': 54.0}, 'weighted avg': {'precision': 0.7037037037037037, 'recall': 0.7037037037037037, 'f1-score': 0.7037037037037037, 'support': 54.0}}
No log 172.0 344 1.8380 {'0': {'precision': 0.5909090909090909, 'recall': 0.5909090909090909, 'f1-score': 0.5909090909090909, 'support': 22.0}, '1': {'precision': 0.71875, 'recall': 0.71875, 'f1-score': 0.71875, 'support': 32.0}, 'accuracy': 0.6666666666666666, 'macro avg': {'precision': 0.6548295454545454, 'recall': 0.6548295454545454, 'f1-score': 0.6548295454545454, 'support': 54.0}, 'weighted avg': {'precision': 0.6666666666666666, 'recall': 0.6666666666666666, 'f1-score': 0.6666666666666666, 'support': 54.0}}
No log 173.0 346 1.8567 {'0': {'precision': 0.5909090909090909, 'recall': 0.5909090909090909, 'f1-score': 0.5909090909090909, 'support': 22.0}, '1': {'precision': 0.71875, 'recall': 0.71875, 'f1-score': 0.71875, 'support': 32.0}, 'accuracy': 0.6666666666666666, 'macro avg': {'precision': 0.6548295454545454, 'recall': 0.6548295454545454, 'f1-score': 0.6548295454545454, 'support': 54.0}, 'weighted avg': {'precision': 0.6666666666666666, 'recall': 0.6666666666666666, 'f1-score': 0.6666666666666666, 'support': 54.0}}
No log 174.0 348 1.8468 {'0': {'precision': 0.6363636363636364, 'recall': 0.6363636363636364, 'f1-score': 0.6363636363636364, 'support': 22.0}, '1': {'precision': 0.75, 'recall': 0.75, 'f1-score': 0.75, 'support': 32.0}, 'accuracy': 0.7037037037037037, 'macro avg': {'precision': 0.6931818181818181, 'recall': 0.6931818181818181, 'f1-score': 0.6931818181818181, 'support': 54.0}, 'weighted avg': {'precision': 0.7037037037037037, 'recall': 0.7037037037037037, 'f1-score': 0.7037037037037037, 'support': 54.0}}
No log 175.0 350 1.8516 {'0': {'precision': 0.5909090909090909, 'recall': 0.5909090909090909, 'f1-score': 0.5909090909090909, 'support': 22.0}, '1': {'precision': 0.71875, 'recall': 0.71875, 'f1-score': 0.71875, 'support': 32.0}, 'accuracy': 0.6666666666666666, 'macro avg': {'precision': 0.6548295454545454, 'recall': 0.6548295454545454, 'f1-score': 0.6548295454545454, 'support': 54.0}, 'weighted avg': {'precision': 0.6666666666666666, 'recall': 0.6666666666666666, 'f1-score': 0.6666666666666666, 'support': 54.0}}
No log 176.0 352 1.8513 {'0': {'precision': 0.6190476190476191, 'recall': 0.5909090909090909, 'f1-score': 0.6046511627906976, 'support': 22.0}, '1': {'precision': 0.7272727272727273, 'recall': 0.75, 'f1-score': 0.7384615384615385, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6731601731601732, 'recall': 0.6704545454545454, 'f1-score': 0.6715563506261181, 'support': 54.0}, 'weighted avg': {'precision': 0.6831810165143499, 'recall': 0.6851851851851852, 'f1-score': 0.6839462002252701, 'support': 54.0}}
No log 177.0 354 1.8428 {'0': {'precision': 0.5909090909090909, 'recall': 0.5909090909090909, 'f1-score': 0.5909090909090909, 'support': 22.0}, '1': {'precision': 0.71875, 'recall': 0.71875, 'f1-score': 0.71875, 'support': 32.0}, 'accuracy': 0.6666666666666666, 'macro avg': {'precision': 0.6548295454545454, 'recall': 0.6548295454545454, 'f1-score': 0.6548295454545454, 'support': 54.0}, 'weighted avg': {'precision': 0.6666666666666666, 'recall': 0.6666666666666666, 'f1-score': 0.6666666666666666, 'support': 54.0}}
No log 178.0 356 1.8395 {'0': {'precision': 0.6190476190476191, 'recall': 0.5909090909090909, 'f1-score': 0.6046511627906976, 'support': 22.0}, '1': {'precision': 0.7272727272727273, 'recall': 0.75, 'f1-score': 0.7384615384615385, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6731601731601732, 'recall': 0.6704545454545454, 'f1-score': 0.6715563506261181, 'support': 54.0}, 'weighted avg': {'precision': 0.6831810165143499, 'recall': 0.6851851851851852, 'f1-score': 0.6839462002252701, 'support': 54.0}}
No log 179.0 358 1.8570 {'0': {'precision': 0.6, 'recall': 0.5454545454545454, 'f1-score': 0.5714285714285714, 'support': 22.0}, '1': {'precision': 0.7058823529411765, 'recall': 0.75, 'f1-score': 0.7272727272727273, 'support': 32.0}, 'accuracy': 0.6666666666666666, 'macro avg': {'precision': 0.6529411764705882, 'recall': 0.6477272727272727, 'f1-score': 0.6493506493506493, 'support': 54.0}, 'weighted avg': {'precision': 0.6627450980392157, 'recall': 0.6666666666666666, 'f1-score': 0.6637806637806638, 'support': 54.0}}
No log 180.0 360 1.8530 {'0': {'precision': 0.5909090909090909, 'recall': 0.5909090909090909, 'f1-score': 0.5909090909090909, 'support': 22.0}, '1': {'precision': 0.71875, 'recall': 0.71875, 'f1-score': 0.71875, 'support': 32.0}, 'accuracy': 0.6666666666666666, 'macro avg': {'precision': 0.6548295454545454, 'recall': 0.6548295454545454, 'f1-score': 0.6548295454545454, 'support': 54.0}, 'weighted avg': {'precision': 0.6666666666666666, 'recall': 0.6666666666666666, 'f1-score': 0.6666666666666666, 'support': 54.0}}
No log 181.0 362 1.8455 {'0': {'precision': 0.5909090909090909, 'recall': 0.5909090909090909, 'f1-score': 0.5909090909090909, 'support': 22.0}, '1': {'precision': 0.71875, 'recall': 0.71875, 'f1-score': 0.71875, 'support': 32.0}, 'accuracy': 0.6666666666666666, 'macro avg': {'precision': 0.6548295454545454, 'recall': 0.6548295454545454, 'f1-score': 0.6548295454545454, 'support': 54.0}, 'weighted avg': {'precision': 0.6666666666666666, 'recall': 0.6666666666666666, 'f1-score': 0.6666666666666666, 'support': 54.0}}
No log 182.0 364 1.8381 {'0': {'precision': 0.5909090909090909, 'recall': 0.5909090909090909, 'f1-score': 0.5909090909090909, 'support': 22.0}, '1': {'precision': 0.71875, 'recall': 0.71875, 'f1-score': 0.71875, 'support': 32.0}, 'accuracy': 0.6666666666666666, 'macro avg': {'precision': 0.6548295454545454, 'recall': 0.6548295454545454, 'f1-score': 0.6548295454545454, 'support': 54.0}, 'weighted avg': {'precision': 0.6666666666666666, 'recall': 0.6666666666666666, 'f1-score': 0.6666666666666666, 'support': 54.0}}
No log 183.0 366 1.8519 {'0': {'precision': 0.5909090909090909, 'recall': 0.5909090909090909, 'f1-score': 0.5909090909090909, 'support': 22.0}, '1': {'precision': 0.71875, 'recall': 0.71875, 'f1-score': 0.71875, 'support': 32.0}, 'accuracy': 0.6666666666666666, 'macro avg': {'precision': 0.6548295454545454, 'recall': 0.6548295454545454, 'f1-score': 0.6548295454545454, 'support': 54.0}, 'weighted avg': {'precision': 0.6666666666666666, 'recall': 0.6666666666666666, 'f1-score': 0.6666666666666666, 'support': 54.0}}
No log 184.0 368 1.8427 {'0': {'precision': 0.5909090909090909, 'recall': 0.5909090909090909, 'f1-score': 0.5909090909090909, 'support': 22.0}, '1': {'precision': 0.71875, 'recall': 0.71875, 'f1-score': 0.71875, 'support': 32.0}, 'accuracy': 0.6666666666666666, 'macro avg': {'precision': 0.6548295454545454, 'recall': 0.6548295454545454, 'f1-score': 0.6548295454545454, 'support': 54.0}, 'weighted avg': {'precision': 0.6666666666666666, 'recall': 0.6666666666666666, 'f1-score': 0.6666666666666666, 'support': 54.0}}
No log 185.0 370 1.8438 {'0': {'precision': 0.6190476190476191, 'recall': 0.5909090909090909, 'f1-score': 0.6046511627906976, 'support': 22.0}, '1': {'precision': 0.7272727272727273, 'recall': 0.75, 'f1-score': 0.7384615384615385, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6731601731601732, 'recall': 0.6704545454545454, 'f1-score': 0.6715563506261181, 'support': 54.0}, 'weighted avg': {'precision': 0.6831810165143499, 'recall': 0.6851851851851852, 'f1-score': 0.6839462002252701, 'support': 54.0}}
No log 186.0 372 1.8430 {'0': {'precision': 0.6190476190476191, 'recall': 0.5909090909090909, 'f1-score': 0.6046511627906976, 'support': 22.0}, '1': {'precision': 0.7272727272727273, 'recall': 0.75, 'f1-score': 0.7384615384615385, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6731601731601732, 'recall': 0.6704545454545454, 'f1-score': 0.6715563506261181, 'support': 54.0}, 'weighted avg': {'precision': 0.6831810165143499, 'recall': 0.6851851851851852, 'f1-score': 0.6839462002252701, 'support': 54.0}}
No log 187.0 374 1.8598 {'0': {'precision': 0.6086956521739131, 'recall': 0.6363636363636364, 'f1-score': 0.6222222222222222, 'support': 22.0}, '1': {'precision': 0.7419354838709677, 'recall': 0.71875, 'f1-score': 0.7301587301587301, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6753155680224404, 'recall': 0.6775568181818181, 'f1-score': 0.6761904761904762, 'support': 54.0}, 'weighted avg': {'precision': 0.6876525894758714, 'recall': 0.6851851851851852, 'f1-score': 0.6861845972957084, 'support': 54.0}}
No log 188.0 376 1.8442 {'0': {'precision': 0.6363636363636364, 'recall': 0.6363636363636364, 'f1-score': 0.6363636363636364, 'support': 22.0}, '1': {'precision': 0.75, 'recall': 0.75, 'f1-score': 0.75, 'support': 32.0}, 'accuracy': 0.7037037037037037, 'macro avg': {'precision': 0.6931818181818181, 'recall': 0.6931818181818181, 'f1-score': 0.6931818181818181, 'support': 54.0}, 'weighted avg': {'precision': 0.7037037037037037, 'recall': 0.7037037037037037, 'f1-score': 0.7037037037037037, 'support': 54.0}}
No log 189.0 378 1.8466 {'0': {'precision': 0.6190476190476191, 'recall': 0.5909090909090909, 'f1-score': 0.6046511627906976, 'support': 22.0}, '1': {'precision': 0.7272727272727273, 'recall': 0.75, 'f1-score': 0.7384615384615385, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6731601731601732, 'recall': 0.6704545454545454, 'f1-score': 0.6715563506261181, 'support': 54.0}, 'weighted avg': {'precision': 0.6831810165143499, 'recall': 0.6851851851851852, 'f1-score': 0.6839462002252701, 'support': 54.0}}
No log 190.0 380 1.8384 {'0': {'precision': 0.6190476190476191, 'recall': 0.5909090909090909, 'f1-score': 0.6046511627906976, 'support': 22.0}, '1': {'precision': 0.7272727272727273, 'recall': 0.75, 'f1-score': 0.7384615384615385, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6731601731601732, 'recall': 0.6704545454545454, 'f1-score': 0.6715563506261181, 'support': 54.0}, 'weighted avg': {'precision': 0.6831810165143499, 'recall': 0.6851851851851852, 'f1-score': 0.6839462002252701, 'support': 54.0}}
No log 191.0 382 1.8523 {'0': {'precision': 0.5909090909090909, 'recall': 0.5909090909090909, 'f1-score': 0.5909090909090909, 'support': 22.0}, '1': {'precision': 0.71875, 'recall': 0.71875, 'f1-score': 0.71875, 'support': 32.0}, 'accuracy': 0.6666666666666666, 'macro avg': {'precision': 0.6548295454545454, 'recall': 0.6548295454545454, 'f1-score': 0.6548295454545454, 'support': 54.0}, 'weighted avg': {'precision': 0.6666666666666666, 'recall': 0.6666666666666666, 'f1-score': 0.6666666666666666, 'support': 54.0}}
No log 192.0 384 1.8471 {'0': {'precision': 0.6190476190476191, 'recall': 0.5909090909090909, 'f1-score': 0.6046511627906976, 'support': 22.0}, '1': {'precision': 0.7272727272727273, 'recall': 0.75, 'f1-score': 0.7384615384615385, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6731601731601732, 'recall': 0.6704545454545454, 'f1-score': 0.6715563506261181, 'support': 54.0}, 'weighted avg': {'precision': 0.6831810165143499, 'recall': 0.6851851851851852, 'f1-score': 0.6839462002252701, 'support': 54.0}}
No log 193.0 386 1.8426 {'0': {'precision': 0.6190476190476191, 'recall': 0.5909090909090909, 'f1-score': 0.6046511627906976, 'support': 22.0}, '1': {'precision': 0.7272727272727273, 'recall': 0.75, 'f1-score': 0.7384615384615385, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6731601731601732, 'recall': 0.6704545454545454, 'f1-score': 0.6715563506261181, 'support': 54.0}, 'weighted avg': {'precision': 0.6831810165143499, 'recall': 0.6851851851851852, 'f1-score': 0.6839462002252701, 'support': 54.0}}
No log 194.0 388 1.8424 {'0': {'precision': 0.5909090909090909, 'recall': 0.5909090909090909, 'f1-score': 0.5909090909090909, 'support': 22.0}, '1': {'precision': 0.71875, 'recall': 0.71875, 'f1-score': 0.71875, 'support': 32.0}, 'accuracy': 0.6666666666666666, 'macro avg': {'precision': 0.6548295454545454, 'recall': 0.6548295454545454, 'f1-score': 0.6548295454545454, 'support': 54.0}, 'weighted avg': {'precision': 0.6666666666666666, 'recall': 0.6666666666666666, 'f1-score': 0.6666666666666666, 'support': 54.0}}
No log 195.0 390 1.8432 {'0': {'precision': 0.5909090909090909, 'recall': 0.5909090909090909, 'f1-score': 0.5909090909090909, 'support': 22.0}, '1': {'precision': 0.71875, 'recall': 0.71875, 'f1-score': 0.71875, 'support': 32.0}, 'accuracy': 0.6666666666666666, 'macro avg': {'precision': 0.6548295454545454, 'recall': 0.6548295454545454, 'f1-score': 0.6548295454545454, 'support': 54.0}, 'weighted avg': {'precision': 0.6666666666666666, 'recall': 0.6666666666666666, 'f1-score': 0.6666666666666666, 'support': 54.0}}
No log 196.0 392 1.8511 {'0': {'precision': 0.6190476190476191, 'recall': 0.5909090909090909, 'f1-score': 0.6046511627906976, 'support': 22.0}, '1': {'precision': 0.7272727272727273, 'recall': 0.75, 'f1-score': 0.7384615384615385, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6731601731601732, 'recall': 0.6704545454545454, 'f1-score': 0.6715563506261181, 'support': 54.0}, 'weighted avg': {'precision': 0.6831810165143499, 'recall': 0.6851851851851852, 'f1-score': 0.6839462002252701, 'support': 54.0}}
No log 197.0 394 1.8382 {'0': {'precision': 0.6190476190476191, 'recall': 0.5909090909090909, 'f1-score': 0.6046511627906976, 'support': 22.0}, '1': {'precision': 0.7272727272727273, 'recall': 0.75, 'f1-score': 0.7384615384615385, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6731601731601732, 'recall': 0.6704545454545454, 'f1-score': 0.6715563506261181, 'support': 54.0}, 'weighted avg': {'precision': 0.6831810165143499, 'recall': 0.6851851851851852, 'f1-score': 0.6839462002252701, 'support': 54.0}}
No log 198.0 396 1.8549 {'0': {'precision': 0.5909090909090909, 'recall': 0.5909090909090909, 'f1-score': 0.5909090909090909, 'support': 22.0}, '1': {'precision': 0.71875, 'recall': 0.71875, 'f1-score': 0.71875, 'support': 32.0}, 'accuracy': 0.6666666666666666, 'macro avg': {'precision': 0.6548295454545454, 'recall': 0.6548295454545454, 'f1-score': 0.6548295454545454, 'support': 54.0}, 'weighted avg': {'precision': 0.6666666666666666, 'recall': 0.6666666666666666, 'f1-score': 0.6666666666666666, 'support': 54.0}}
No log 199.0 398 1.8486 {'0': {'precision': 0.6190476190476191, 'recall': 0.5909090909090909, 'f1-score': 0.6046511627906976, 'support': 22.0}, '1': {'precision': 0.7272727272727273, 'recall': 0.75, 'f1-score': 0.7384615384615385, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6731601731601732, 'recall': 0.6704545454545454, 'f1-score': 0.6715563506261181, 'support': 54.0}, 'weighted avg': {'precision': 0.6831810165143499, 'recall': 0.6851851851851852, 'f1-score': 0.6839462002252701, 'support': 54.0}}
No log 200.0 400 1.8529 {'0': {'precision': 0.6190476190476191, 'recall': 0.5909090909090909, 'f1-score': 0.6046511627906976, 'support': 22.0}, '1': {'precision': 0.7272727272727273, 'recall': 0.75, 'f1-score': 0.7384615384615385, 'support': 32.0}, 'accuracy': 0.6851851851851852, 'macro avg': {'precision': 0.6731601731601732, 'recall': 0.6704545454545454, 'f1-score': 0.6715563506261181, 'support': 54.0}, 'weighted avg': {'precision': 0.6831810165143499, 'recall': 0.6851851851851852, 'f1-score': 0.6839462002252701, 'support': 54.0}}

Framework versions

  • Transformers 4.53.1
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
96
Safetensors
Model size
396M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for harun27/overall_binary

Finetuned
(145)
this model