haznitrama/babybabellm-multi_gpu-gpt_bert-eng-classifier_head
GPT-BERT style BabyBabyLLM model for language eng.
This repository may include both main and EMA variants.
Default variant exposed to generic loaders: main
Variants Available
main
Files
- model.safetensors (alias of default variant)
Configuration
{
"attention_probs_dropout_prob": 0.1,
"hidden_dropout_prob": 0.1,
"hidden_size": 768,
"intermediate_size": 2560,
"max_position_embeddings": 512,
"position_bucket_size": 32,
"num_attention_heads": 12,
"num_hidden_layers": 12,
"vocab_size": 16384,
"layer_norm_eps": 1e-05,
"force_causal_mask": true,
"classifier_dropout": 0.1,
"classifier_layer_norm_eps": 1e-05,
"num_labels": 2
}
Tokenizer file: tokenizer_eng.json
Quick Usage
from transformers import AutoTokenizer, AutoModelForMaskedLM
model_id = 'haznitrama/babybabellm-multi_gpu-gpt_bert-eng-classifier_head'
tok = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForMaskedLM.from_pretrained(model_id, trust_remote_code=True)
out = model(**tok('Hello world', return_tensors='pt'))
Forced Causal Attention
Causal attention is enforced during inference by applying a triangular future mask inside the remote code. This prevents the hybrid GPT-BERT layers from attending to future tokens even when a bidirectional mask is provided.
Sequence Classification
GPTBertForSequenceClassification
mirrors the original GLUE classifier head for downstream fine-tuning.
from transformers import AutoTokenizer, AutoModelForSequenceClassification
model_id = 'haznitrama/babybabellm-multi_gpu-gpt_bert-eng-classifier_head'
tok = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForSequenceClassification.from_pretrained(model_id, trust_remote_code=True)
outputs = model(**tok('This movie was great!', return_tensors='pt'))
print(outputs.logits)
Notes
- Converted on 2025-10-03T22:11:01.747086+00:00
- Weights are the exact trained parameters; no new layers were initialized.
- Requires
trust_remote_code=True
due to custom architecture.
- Downloads last month
- 9