haznitrama/babybabellm-multi_gpu-gpt_bert-eng-main-causal
GPT-BERT style BabyBabyLLM model for language eng.
This repository may include both main and EMA variants.
Default variant exposed to generic loaders: main
Variants Available
main
Files
- model.safetensors (alias of default variant)
Configuration
{
"attention_probs_dropout_prob": 0.1,
"hidden_dropout_prob": 0.1,
"hidden_size": 768,
"intermediate_size": 2560,
"max_position_embeddings": 512,
"position_bucket_size": 32,
"num_attention_heads": 12,
"num_hidden_layers": 12,
"vocab_size": 16384,
"layer_norm_eps": 1e-05
}
Tokenizer file: tokenizer_eng.json
Quick Usage
from transformers import AutoTokenizer, AutoModelForMaskedLM
model_id = 'haznitrama/babybabellm-multi_gpu-gpt_bert-eng-main-causal'
tok = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForMaskedLM.from_pretrained(model_id, trust_remote_code=True)
out = model(**tok('Hello world', return_tensors='pt'))
Causal LM Wrapper
This repo includes a lightweight GPTBertForCausalLM wrapper. Generation example:
from transformers import AutoTokenizer, AutoModelForCausalLM
mid='haznitrama/babybabellm-multi_gpu-gpt_bert-eng-main-causal'
tok=AutoTokenizer.from_pretrained(mid)
model=AutoModelForCausalLM.from_pretrained(mid, trust_remote_code=True)
print(tok.decode(model.generate(**tok('Hello', return_tensors='pt'), max_new_tokens=20)[0], skip_special_tokens=True))
Notes
- Converted on 2025-09-27T15:21:53.977598+00:00
- Weights are the exact trained parameters; no new layers were initialized.
- Requires
trust_remote_code=True
due to custom architecture.
- Downloads last month
- 15