|
--- |
|
|
|
base_model: mlabonne/Daredevil-7B |
|
language: |
|
- tr |
|
license: cc-by-nc-4.0 |
|
model_creator: mlabonne |
|
model_name: Novus-7b-tr_v1 |
|
model_type: transformer |
|
quantized_by: Furkan Erdi |
|
tags: |
|
- GGUF |
|
- Transformers |
|
- Novus-7b-tr_v1 |
|
- Daredevil-7B |
|
library_name: transformers |
|
architecture: transformer |
|
inference: false |
|
|
|
--- |
|
|
|
# Novus-7b-tr_v1 - GGUF |
|
|
|
- Model creator: [mlabonne](https://huggingface.co/mlabonne) |
|
- Original model: [Daredevil-7B](https://huggingface.co/mlabonne/Daredevil-7B) |
|
|
|
- Model Fine-Tuner: [Novus Research](https://huggingface.co/NovusResearch) |
|
- Fine-tuned model: [Novus-7b-tr_v1](https://huggingface.co/NovusResearch/Novus-7b-tr_v1) |
|
|
|
## Description |
|
|
|
This repo contains GGUF format model files for [mlabonne's Daredevil-7B](https://huggingface.co/mlabonne/Daredevil-7B) model, fine-tuned to create Novus-7b-tr_v1 by [Novus Research](https://huggingface.co/NovusResearch). |
|
|
|
### About GGUF |
|
|
|
GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. |
|
|
|
Here is an incomplete list of clients and libraries that are known to support GGUF: |
|
|
|
* [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. |
|
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. |
|
* [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for storytelling. |
|
* [GPT4All](https://gpt4all.io/index.html), a free and open-source local running GUI, supporting Windows, Linux, and macOS with full GPU accel. |
|
* [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023. |
|
* [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. |
|
* [Faraday.dev](https://faraday.dev/), an attractive and easy-to-use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. |
|
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. |
|
* [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. |
|
* [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models. |
|
|
|
## Novus Research |
|
|
|
Novus Research is committed to pushing the boundaries in natural language processing by collaborating with the open-source community through innovative research. This commitment is coupled with our focus on empowering businesses with tailored, on-site AI and large language model solutions. |
|
|
|
## Compatibility |
|
|
|
These quantized GGUF files are compatible with candle from Hugging Face. |
|
|
|
## Provided Files |
|
|
|
| Name | Bit | Quant Method | Size | Use case | |
|
| ---------------------------------- | --- | ------------ | ----- | ------------------------- | |
|
| [Novus-7b-tr_v1.Q2_K.gguf](https://huggingface.co/helizac/Novus-7b-tr_v1-GGUF/blob/main/Novus-7b-tr_v1.Q2_K.gguf) | 2 | Q2_K | 2.72G | Smallest size, lowest precision | |
|
| [Novus-7b-tr_v1.Q3_K.gguf](https://huggingface.co/helizac/Novus-7b-tr_v1-GGUF/blob/main/Novus-7b-tr_v1.Q3_K.gguf) | 3 | Q3_K | 3.16G | Very low precision | |
|
| [Novus-7b-tr_v1.Q3_K_S.gguf](https://huggingface.co/helizac/Novus-7b-tr_v1-GGUF/blob/main/Novus-7b-tr_v1.Q3_K_S.gguf) | 3 | Q3_K_S | 3.52G | Low precision, level 0 | |
|
| [Novus-7b-tr_v1.Q3_K_M.gguf](https://huggingface.co/helizac/Novus-7b-tr_v1-GGUF/blob/main/Novus-7b-tr_v1.Q3_K_M.gguf) | 3 | Q3_K_M | 3.82G | Slightly better than Q4_0 | |
|
| [Novus-7b-tr_v1.Q3_K_L.gguf](https://huggingface.co/helizac/Novus-7b-tr_v1-GGUF/blob/main/Novus-7b-tr_v1.Q3_K_L.gguf) | 3 | Q3_K_L | 3.47G | Kernel optimized, low precision | |
|
| [Novus-7b-tr_v1.Q4_0.gguf](https://huggingface.co/helizac/Novus-7b-tr_v1-GGUF/blob/main/Novus-7b-tr_v1.Q4_0.gguf) | 4 | Q4_0 | 4.11G | Moderate precision, level 0 | |
|
| [Novus-7b-tr_v1.Q4_K_M.gguf](https://huggingface.co/helizac/Novus-7b-tr_v1-GGUF/blob/main/Novus-7b-tr_v1.Q4_K_M.gguf) | 4 | Q4_K_M | 4.37G | Better than Q5_0 | |
|
| [Novus-7b-tr_v1.Q5_0.gguf](https://huggingface.co/helizac/Novus-7b-tr_v1-GGUF/blob/main/Novus-7b-tr_v1.Q5_0.gguf) | 5 | Q5_0 | 5.00G | Kernel optimized, moderate precision | |
|
| [Novus-7b-tr_v1.Q5_K_S.gguf](https://huggingface.co/helizac/Novus-7b-tr_v1-GGUF/blob/main/Novus-7b-tr_v1.Q5_K_S.gguf) | 5 | Q5_K_S | 5.00G | Higher precision than Q5_K | |
|
| [Novus-7b-tr_v1.Q5_K_M.gguf](https://huggingface.co/helizac/Novus-7b-tr_v1-GGUF/blob/main/Novus-7b-tr_v1.Q5_K_M.gguf) | 5 | Q5_K_M | 5.13G | Higher precision, level 0 | |
|
| [Novus-7b-tr_v1.Q6_K.gguf](https://huggingface.co/helizac/Novus-7b-tr_v1-GGUF/blob/main/Novus-7b-tr_v1.Q6_K.gguf) | 6 | Q6_K | 5.94G | Highest precision, level 1 | |
|
| [Novus-7b-tr_v1.Q8_0.gguf](https://huggingface.co/helizac/Novus-7b-tr_v1-GGUF/blob/main/Novus-7b-tr_v1.Q8_0.gguf) | 8 | Q8_0 | 7.77G | Kernel optimized, high precision | |
|
| [Novus-7b-tr_v1.F32.gguf](https://huggingface.co/helizac/Novus-7b-tr_v1-GGUF/blob/main/Novus-7b-tr_v1.F32.gguf) | 32 | F32 | 29.00G | Single-precision floating point | |
|
### How to Download |
|
|
|
To download the models, you can use the `huggingface-cli` command or the equivalent Python code with `hf_hub_download`. |
|
|
|
#### Using `huggingface-cli` command: |
|
|
|
```shell |
|
huggingface-cli download helizac/Novus-7b-tr_v1-GGUF <model_file> |
|
``` |
|
|
|
For example, to download the Q2_K model: |
|
|
|
```shell |
|
huggingface-cli download helizac/Novus-7b-tr_v1-GGUF Novus-7b-tr_v1_Q2_K.gguf |
|
``` |
|
|
|
#### Downloading all models: |
|
|
|
```shell |
|
huggingface-cli download helizac/Novus-7b-tr_v1-GGUF Novus-7b-tr_v1_Q2_K.gguf |
|
huggingface-cli download helizac/Novus-7b-tr_v1-GGUF Novus-7b-tr_v1_Q3_K.gguf |
|
huggingface-cli download helizac/Novus-7b-tr_v1-GGUF Novus-7b-tr_v1_Q4_0.gguf |
|
huggingface-cli download helizac/Novus-7b-tr_v1-GGUF Novus-7b-tr_v1_Q4_1.gguf |
|
huggingface-cli download helizac/Novus-7b-tr_v1-GGUF Novus-7b-tr_v1_Q4_K.gguf |
|
huggingface-cli download helizac/Novus-7b-tr_v1-GGUF Novus-7b-tr_v1_Q5_0.gguf |
|
huggingface-cli download helizac/Novus-7b-tr_v1-GGUF Novus-7b-tr_v1_Q5_1.gguf |
|
huggingface-cli download helizac/Novus-7b-tr_v1-GGUF Novus-7b-tr_v1_Q5_K.gguf |
|
huggingface-cli download helizac/Novus-7b-tr_v1-GGUF Novus-7b-tr_v1_Q6_K.gguf |
|
huggingface-cli download helizac/Novus-7b-tr_v1-GGUF Novus-7b-tr_v1_Q8_0.gguf |
|
huggingface-cli download helizac/Novus-7b-tr_v1-GGUF Novus-7b-tr_v1_Q8_1.gguf |
|
huggingface-cli download helizac/Novus-7b-tr_v1-GGUF Novus-7b-tr_v1_Q8_K.gguf |
|
huggingface-cli download helizac/Novus-7b-tr_v1-GGUF Novus-7b-tr_v1_F16.gguf |
|
huggingface-cli download helizac/Novus-7b-tr_v1-GGUF Novus-7b-tr_v1_F32.gguf |
|
``` |
|
|
|
#### Using Python: |
|
|
|
```python |
|
from huggingface_hub import hf_hub_download |
|
|
|
hf_hub_download("helizac/Novus-7b-tr_v1-GGUF", "<model_file>") |
|
``` |
|
|
|
To download all models, you can run: |
|
|
|
```python |
|
model_files = [ |
|
"Novus-7b-tr_v1_Q2_K.gguf", |
|
"Novus-7b-tr_v1_Q3_K.gguf", |
|
"Novus-7b-tr_v1_Q4_0.gguf", |
|
"Novus-7b-tr_v1_Q4_1.gguf", |
|
"Novus-7b-tr_v1_Q4_K.gguf", |
|
"Novus-7b-tr_v1_Q5_0.gguf", |
|
"Novus-7b-tr_v1_Q5_1.gguf", |
|
"Novus-7b-tr_v1_Q5_K.gguf", |
|
"Novus-7b-tr_v1_Q6_K.gguf", |
|
"Novus-7b-tr_v1_Q8_0.gguf", |
|
"Novus-7b-tr_v1_Q8_1.gguf", |
|
"Novus-7b-tr_v1_Q8_K.gguf", |
|
"Novus-7b-tr_v1_F32.gguf" |
|
] |
|
|
|
for model_file in model_files: |
|
hf_hub_download("helizac/Novus-7b-tr_v1-GGUF", model_file) |
|
``` |
|
|
|
You can also specify a folder to download the file(s) to: |
|
|
|
```python |
|
hf_hub_download("helizac/Novus-7b-tr_v1-GGUF", "<model_file>", local_dir="<output_directory>") |
|
``` |
|
|
|
## Usage |
|
|
|
```python |
|
!pip install llama-cpp-python |
|
|
|
from llama_cpp import Llama |
|
|
|
# Download the model from Hugging Face (replace URL with the actual one) |
|
model_url = "https://huggingface.co/helizac/Novus-7b-tr_v1-GGUF/blob/main/Novus-7b-tr_v1.Q8_0.gguf" |
|
model_path = "Novus-7b-tr_v1.gguf" # Local filename |
|
|
|
# Function to download the model (optional) |
|
def download_model(url, filename): |
|
import urllib.request |
|
if not os.path.isfile(filename): |
|
urllib.request.urlretrieve(url, filename) |
|
print(f"Downloaded model: {filename}") |
|
|
|
download_model(model_url, model_path) |
|
|
|
# Load the model |
|
llm = Llama(model_path=model_path) |
|
|
|
prompt = "Büyük dil modelleri nelerdir?" |
|
|
|
# Adjust these parameters for different outputs |
|
max_tokens = 256 |
|
temperature = 0.7 |
|
|
|
output = llm(prompt, max_tokens=max_tokens, temperature=temperature) |
|
output_text = output["choices"][0]["text"].strip() |
|
|
|
print(output_text) |
|
``` |
|
|
|
## Acknowledgements |
|
|
|
This model is built on top of the efforts from the [NovusResearch](https://huggingface.co/NovusResearch) and [mlabonne](https://huggingface.co/mlabonne) teams, and we appreciate their contribution to the AI community. |
|
|
|
# GGUF model card: |
|
|
|
``` |
|
{Furkan Erdi} |
|
``` |