|
--- |
|
library_name: hivex |
|
original_train_name: DroneBasedReforestation_difficulty_8_task_3_run_id_1_train |
|
tags: |
|
- hivex |
|
- hivex-drone-based-reforestation |
|
- reinforcement-learning |
|
- multi-agent-reinforcement-learning |
|
model-index: |
|
- name: hivex-DBR-PPO-baseline-task-3-difficulty-8 |
|
results: |
|
- task: |
|
type: sub-task |
|
name: drop_seed |
|
task-id: 3 |
|
difficulty-id: 8 |
|
dataset: |
|
name: hivex-drone-based-reforestation |
|
type: hivex-drone-based-reforestation |
|
metrics: |
|
- type: cumulative_distance_reward |
|
value: 1.3624776875972748 +/- 0.28554580887628567 |
|
name: Cumulative Distance Reward |
|
verified: true |
|
- type: cumulative_distance_until_tree_drop |
|
value: 48.52491760253906 +/- 6.240952470711805 |
|
name: Cumulative Distance Until Tree Drop |
|
verified: true |
|
- type: cumulative_distance_to_existing_trees |
|
value: 64.33281471252441 +/- 6.835068347254503 |
|
name: Cumulative Distance to Existing Trees |
|
verified: true |
|
- type: cumulative_normalized_distance_until_tree_drop |
|
value: 0.13624776691198348 +/- 0.02855457901250283 |
|
name: Cumulative Normalized Distance Until Tree Drop |
|
verified: true |
|
- type: cumulative_tree_drop_reward |
|
value: 4.091673822402954 +/- 0.9169991715461574 |
|
name: Cumulative Tree Drop Reward |
|
verified: true |
|
- type: out_of_energy_count |
|
value: 0.03841008508577943 +/- 0.017628847741743853 |
|
name: Out of Energy Count |
|
verified: true |
|
- type: recharge_energy_count |
|
value: 10.952794055938721 +/- 0.6585423813912649 |
|
name: Recharge Energy Count |
|
verified: true |
|
- type: tree_drop_count |
|
value: 0.9443181335926056 +/- 0.027217821741009757 |
|
name: Tree Drop Count |
|
verified: true |
|
- type: cumulative_reward |
|
value: 101.03555679321289 +/- 3.1604495163459303 |
|
name: Cumulative Reward |
|
verified: true |
|
--- |
|
|
|
This model serves as the baseline for the **Drone-Based Reforestation** environment, trained and tested on task <code>3</code> with difficulty <code>8</code> using the Proximal Policy Optimization (PPO) algorithm.<br><br>Environment: **Drone-Based Reforestation**<br>Task: <code>3</code><br>Difficulty: <code>8</code><br>Algorithm: <code>PPO</code><br>Episode Length: <code>2000</code><br>Training <code>max_steps</code>: <code>1200000</code><br>Testing <code>max_steps</code>: <code>300000</code><br><br>Train & Test [Scripts](https://github.com/hivex-research/hivex)<br>Download the [Environment](https://github.com/hivex-research/hivex-environments) |
|
|
|
[hivex-paper]: https://arxiv.org/abs/2501.04180 |